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Abstract— Mechanisms such as auctions, voting and traffic
control systems incentivize agents in multiagent systems in
order to achieve or optimize certain global outcomes such as
safety, productivity, and welfare. Designing mechanisms in the
form of programs would bring several benefits such as inter-
pretability, transparency and verifiability. However, program
synthesis for finding suitable mechanisms from a search space
represented by programs leads to computationally expensive
two-level optimization problems, where mechanisms need to
be evaluated in an inner loop, which entails learning agent
responses for each mechanism. Multi-Task Learning (MTL)
approaches efficiently learn parameterized agent strategies that
can be used to act in various tasks, here mechanisms defined
by programs. Such multi-task agent policies allow for rapid
evaluation of mechanism performance for a given program
by bypassing the need to learn agent responses from scratch,
thus allowing for efficient evaluation of mechanisms. In this
work, we use learned program representations (or embeddings)
to provide suitable task contexts that make MTL feasible
with combinatorially large programmatic search spaces of
mechanisms. We demonstrate experimentally that program
embeddings generated by an off-the-shelf Code2Vec model are
sufficient for reconstructing matrix games based on only a
programmatic description. The embeddings are also able to
serve as task context to guide a set of agent strategies to act
near-optimally in mechanisms from the search space.

I. INTRODUCTION

Mechanism design aims to facilitate safe and productive
interactions and coordination between agents, both human
and artificial. Thus, it is a critical problem in multi-robot sys-
tems, human-robot interaction, autonomous vehicles, traffic
management and many other domains. Automating mech-
anism design is crucial for being able to design effective
mechanisms in settings involving complex environments and
interactions between many agents. At the same time, these
complex mechanisms have many human participants and
stakeholders, for whom it is important to be able to inspect
and analyze the behavior of a mechanism. That is, some form
of interpretability is also a necessity.

The use of Machine Learning (ML) for mechanism design
in complex environments, particularly Deep Reinforcement
Learning (RL) has recently gained traction [15], [2], [6],
[12], [4], [3]. Such approaches, however, design mechanisms
in the form of deep Neural Networks (NN), which are
difficult to interpret and analyze. Program Synthesis has
been proposed as a solution to this problem. Mechanisms
(multiagent environments) are represented as programs in a
high-level Domain-Specific (programming) Language (DSL),
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which can be interpreted by humans much more easily than
neural networks, and can also be analyzed and formally
verified. Mechanism design is then cast as the problem of
finding such a programmatic mechanism from a search space
defined by the DSL, such that the mechanism it represents
maximizes a global outcome (such as social welfare) when
agents learn to maximize their own personal payoffs.

Techniques to convert learned NN policies into programs,
notably NDPS [13], open up possibilities for leveraging the
efficiency of Deep RL approaches for performing program
synthesis. NDPS maintains a pool of candidate programs
whose output closely matches that of the target NN pol-
icy. The performance of this pool is then evaluated and
improved until a program is found that matches the network’s
performance. However, such evaluation in the setting of
mechanism design faces a challenge that stems from the
fact that even a small change in the mechanism can cause a
large change in the agents’ responses. In general, it is also
expected that it will not be possible to match the behavior of
a given neural mechanism exactly using any program from
the DSL. These issues lead to compromised evaluations of
candidate programs if agent responses are kept fixed. An
alternative is to learn agent behaviors from scratch for each
candidate program, so that an accurate evaluation of the
mechanism is obtained, which is extremely expensive due
to the combinatorial nature of search spaces of programs.

The above dilemma captures the need for a solution to
the problem of rapidly finding agent responses to any given
mechanism from a programmatic search space. Having a way
to do so enables rapid evaluation of any mechanism from the
search space, which in turn makes the improvement step in
NDPS more tractable.

The aim of this work is to investigate ways to utilize
Multi-Task Learning (MTL) as a means to this end. MTL
concerns learning policies that are able to perform any
task from a given set of tasks. Particularly of interest is
the task-conditioned setting where tasks have parameters
or equivalently, some form of “task ID” that are given as
additional context input to the policy, as these tend to be
the most reliable and the easiest to implement. Here, each
mechanism from the search space is a task. Rather than just
one policy in single agent settings, we would want to learn
a task-conditioned policy for each agent.

Although there appear to be a very large number of tasks
due to the combinatorial nature of search spaces of programs,
it is not necessary to treat each of them as separate tasks.
Just like natural language and other data, it is possible to
learn vector embeddings for programs that serve as compact
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representations of their structure and behavior [1], [14], [11].
We investigate if these program embeddings could serve as
the task context that guides the agents’ policies.

The key insight is that by training only one set of multi-
task agent policies guided by program embeddings, it would
be possible at test time to evaluate any given programmatic
mechanism by simply providing its embedding to the poli-
cies, and rolling out episodes using them. The embedding
network that maps a given program (as source code) to its
vector embedding can also be trained offline. Further, once
the multi-task policies and embedding network have been
trained, they can be reused to evaluate mechanisms according
to any performance criterion.

The contributions of this work are as follows:
1) We propose a novel method to enable rapid evaluation

of mechanisms from a programmatically described
search space.

2) We develop a domain of matrix games for our ex-
periments whose entries are populated by programs
from a simple DSL. Although we consider 2-player
(bi)matrix games here, our approach is applicable to
games with more than two players (tensor games), as
well as more general multiagent environments such as
Markov games.

3) In this domain, we experimentally demonstrate that:
• Program embeddings generated by an off-the-

shelf, general-purpose embedding network pre-
trained using the Code2Vec [1] approach are able
to accurately describe mechanisms from a pro-
grammatic search space, without any additional
training of the embedding network.

• These embeddings also hold sufficient information
for agents to act near-optimally in the mechanism
using only the embeddings as task context.

II. RELATED WORK

Task Conditioned Multi-task RL: Solving multiple tasks
using information about the task as additional context input
to a policy has been explored in different forms. Goal-
conditioned RL [8] considers settings in which each task
is to reach a goal. IMPALA [5] is an approach to scale up
general task-conditioned RL that also uses a learned repre-
sentation for natural language instructions as task context. In
Multiagent RL (MARL) settings, [10] develops an approach
for multi-task learning using recurrent deep Q-networks and
a concurrent experience replay scheme.

Deep Program Representation Learning: Program rep-
resentation learning is the problem of mapping a program
(in the form of source code) to a vector representation,
also known as a program embedding. Code2Vec [1] was
one of the earliest works to use deep neural networks to
successfully learn meaningful representations of code based
on both syntax and semantics. It uses attention over paths in
the abstract syntax tree of an input program to generate an
embedding. A classifier is trained to predict the purpose of
a program method based on this embedding using a labeled
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Fig. 1: An illustration of agent learning and acting in the proposed frame-
work. The program representing the mechanism (here defining the operation
of a traffic signal at an intersection) is encoded by a neural network (trained
separately using standard techniques) into a vector embedding. Agents
learn and act with task-conditioned policies that take in both observations
from the environment as well as the program embedding as task context.
When evaluating a new mechanism after learning, the agent policies can be
executed in the same way without the need for learning a separate set of
policies.

corpus of 1 Million Java programs. It is shown in [1] that
although trained for a single task, these embeddings, also
referred to as code vectors, hold information that can be used
for more general downstream tasks. Approaches that improve
on Code2Vec by more strongly incorporating semantics have
also been proposed, such as Liger [14], which uses program
execution traces, and NPM [11], which learns embeddings
for Hoare Triples of the program.

Mechanism Design using ML: Many recent works have
explored the use of deep learning for mechanism design.
Deep Learning is used to design auctions using a hand-
designed differentiable objective in [4]. Deep RL has also
gained traction for being able to handle more generic and
sophisticated settings and objectives with minimal manual
intervention in the design process [15], [2], [6], [12], [3].
A majority of these works [2], [6], [12], [3] has involved
settings where agent responses have been modeled a priori.
In contrast, [15] proposes the AI Economist, an approach that
does not require pre-defined models for agent behavior. It
treats the mechanism as yet another agent acting concurrently
with the other agents to optimize the mechanism design
objective, and approximates a Nash solution using a MARL
algorithm. Thus, it approximates the Stackelberg equilibrium
we consider in this work, where the mechanism makes
the first “move” to fix its behavior such that the resulting
agent behavior leads to desirable outcomes. Doing so brings
benefits in that it not only enables the modeling of agents’



responses to a mechanism as they learn to maximize their
own payoffs, but also circumvents the need for multiple
levels of learning (that is, for each different mechanism
encountered, learning the agents’ behaviors from scratch),
thus making it computationally tractable.

III. METHODS

A. Problem Formulation

We consider the context of mechanism design over a
search space of programs F , as described in [9]. Each
mechanism f ∈ F is represented by a program from a
specific DSL. Strategy profiles and strategies of agents are
denoted as π = (π1, π2 . . . πk). Mechanism design is then
played as a Stackelberg game where the designer makes
the first move by choosing the mechanism, and the agents
respond by arriving at a strategy profile according to an
(agent) behavior generator, B, that maps mechanisms from
the search space to a distribution over strategy profiles. This
behavior generator encodes assumptions about how agents
respond to a given mechanism.

An example, which we use in our experiments, is a Nash
solver, which outputs some Nash point from the set of all
Nash points. The Nash solver could also be probabilistic and
approximate, such as a multiagent RL algorithm. Like the
above examples, many effective behavior generators cannot
provide the entire output distribution, or any associated
derivatives. Therefore, we assume that the only available
access to the behavior generator is through sampling.

The objective function for the design problem, denoted J
decides how good the mechanism is based on the outcomes
when agents act according to the behavior generator. Thus,
the mechanism design problem can be stated as finding

argmax
f∈F

J (f,B(f))

In this work, we are concerned with finding an efficient
way to evaluate B(f) for any f ∈ F . That is, we require
a parameterized strategy profile (in the MARL setting, a
collection of of multi-task policies for all agents) π(.) that
takes as input the program associated with a mechanism
f , and returns a strategy profile π(f) such that π(f) is
of maximum likelihood under B(f). In practice, we mainly
need π(.) to be representative of the equilibrium behavior,
and by extension, provide good estimates of J (f,B(f)).
Note that by training π(.) once, it can be reused to evaluate
mechanisms for any choice of the mechanism objective J .

B. Solution

1) Program Representations: A network M takes in the
text source code of the program representing mechanism f ,
and returns a vector embedding ve = M(f) of dimension de.
In this work, we don’t consider the training of this network,
instead choosing to use a network that has been trained
offline, as detailed in the experiments. That is, the weights
of the network are not changed during our experiments.

Fig. 2: Visualization of the matrix domain: Matrices are shown as images
with black=0 and white=1. The matrix on the right is obtained by executing
the program set(7, 9, 0, 15, 1); set(0, 15, 7, 9, 1);

2) Task-Parameterized Agent Strategies: Each agent uses
a policy network πθi that takes as input a state, and the
program embedding as task context, and returns action prob-
abilities πθi(a|s, ve). Weights θi could be shared between
agents, or independent as we use in our experiments. These
networks enable the agent to make use of the program
embedding to act in the mechanism.

3) Training: In the general setting, training can be done
using MARL with each agent acting to maximize its return.
Each episode of training occurs in a different mechanism,
sampled at random from the search space. The mechanism’s
embedding only needs to be evaluated once per episode and
can also be cached. A schematic of these steps is shown in
Fig. 1. Other training algorithms can also be used, such as
Behavioral Cloning or Imitation Learning when an expert
(such as an analytical solver, or a planner like MCTS) is
available.

IV. EXPERIMENTS

A. Components

1) Matrix Game Domain: For our experiments, we use
a domain of two-player, zero sum games (matrix games),
whose entries are populated by programs from a DSL
described in the next section. Here, player 1 chooses a row
and seeks to minimize the value chosen, whereas player 2
chooses a column and seeks to maximize the value chosen.
The matrices are of size 16x16, and each entry is either 0 or
1.

Possible mechanism design objectives in this domain could
include functions of the players’ costs at Nash equilibrium,
and could also take into account how much the program
changes the matrix (cost of modifying incentives in the real
world).

An advantage of this domain is that a Nash solution can
always be found exactly using standard Linear Programming
solvers such as simplex and interior point methods, a fact we
make use of in our training setup described later on.

2) Domain Specific Language: We use a simple DSL
consisting of a sequence of 3 statements of the form:
set(row min, row max, col min, col max, value);

Each of these statements sets the block of the matrix
specified by the ranges in the arguments to the given value.
The base matrix that it modifies is assumed to be the zero
matrix. An example of the execution of a program is shown
in Fig 2. An interpreter for the programs was implemented
using the ANTLR4 framework.



3) Program Representation: For the program embedding
network, we use the Code2Vec [1] approach described ear-
lier. We use the pre-trained model released with [1] without
any further training. As our DSL is syntax-compatible with
Java, the pre-trained model is able to accept programs from
the DSL without any modifications. For this model, the size
of the code vectors produced is de = 384.

4) Search Space: In the following experiments, we restrict
our attention to programs with 3 statements as described
above (with row and column ranges being being within
bounds). As the Code2Vec model is quite large and takes
time to evaluate, we use the previously suggested strategy of
caching the code vectors for a fixed set of 1 Million programs
generated uniformly randomly from the search space.

B. Matrix Prediction

In this first experiment, we investigate whether the code
vectors of programs from the search space are able to
describe the matrix that would result from the program’s
execution. To test this, we train a network using supervised
learning to predict the resulting matrix using the code vector
as the sole input.

1) Network: The network takes the code vector as input
and outputs a 16x16 matrix (as a 1-channel image). Its archi-
tecture is similar to the decoder parts of standard autoencoder
architectures: A linear layer converts the size-384 code vector
into 384 2x2 images. A series of transposed convolutional
layers with 128, 64 and 32 filters Leaky ReLU activations
and Batch Normalization upsample it to size 16x16, and a
regular convolutional layer then outputs the predicted 16x16
matrix.

2) Training: It is trained for 40 epochs on the above
cached dataset (5% validation set) to minimize the Mean
Square Error loss between the ground truth matrix resulting
from the program, and the network’s prediction.

3) Results: The prediction results are shown in Fig. 3 for
programs that were not in the training or validation sets. We
observe that:

• The network is able to predict the regions that have
value 1 with a high degree of accuracy in number,
position, shape and size.

• It is confounded minimally by the presence of blocks
of zeros in the background.

The above results show that the code vectors are sufficient
to accurately describe the behavior of the program from our
DSL, despite the Code2Vec model being used off-the-shelf
without any further training.

C. Equilibrium Strategies

Now, we investigate whether the code vectors encode
information in a way that enables the agent to act optimally
in the mechanism. We test this by training agent policies
using behavioral cloning to imitate (mixed) Nash equilibrium
strategy profiles based on only the code vector.

1) Network: The input to the network is again just the
code vector, as there is only a single state in this domain. The
output is a distribution over the number of rows/columns,
which are the actions that each agent chooses from.

The architecture used in this experiment uses a similar
series of transposed convolutions as in the matrix prediction
experiment, but with filters of sizes 32, 64, 128 and 256. This
is then followed by a series of strided convolutional layers
that downsample the image and result in logits of the policy
probabilities. The output is a log-softmax layer representing
the action probabilities for each action.

2) Training: Similar to the prediction experiment, it is
trained for 80 epochs on the cached data. The loss function
being minimized is the KL divergence between the agent
policy probabilities and a ground truth Nash strategy for each
agent.

We use the TensorGames.jl library[7] to exactly solve
for a Nash equilibrium, thus allowing us to study the effec-
tiveness of prediction based on the code vectors separately
from the multi-task learning component.

Although a large number of Nash equilibria might exist,
the aim is to learn to choose any one of them. When
designing mechanisms, it is intractable to account for, or even
simply characterize the entire space of equilibria. However,
a small subset of equilibria can be informative enough,
especially when agents are of bounded rationality (e.g limited
knowledge and computational power).

3) Results: The predicted strategies for a held-out set
of programs are visualized in Fig. 4 for both players. We
observe that whenever a row of zeroes is present, the learned
strategies for P1 avoid the rows where there are ones present,
even when they are very few in number. Similarly, the
learned strategies for P2 avoid columns where zeroes are
present whenever possible. That is, both players learn to
recognize a dominant strategy when one is present. This
result shows that the code vector is informative enough to
precisely guide the actions of the agents. We emphasize again
that the agents need to rely on the code vector as the only
available information to choose their actions.

In Fig. 5, we plot the average deviation of player 1’s
cost under the learned policy from its true value at Nash
equilibrium (which is constant across all Nash equilibria)
over the course of 3 training runs, evaluated on a set of
1000 random test programs. We find that the best model
iterations exhibit strategies that deviate by only 1-2% from
Nash strategies in value on average. These results provide
further evidence for the viability of using agent strategies
guided by program embeddings to evaluate mechanisms.

V. CONCLUSIONS

The above results establish that general-purpose program
embeddings such as from Code2Vec can offer concise de-
scriptions of a programmatic mechanism in vector form that
can be acted upon by neural policies. Particularly, they were
successfully used as task context to learn parameterized agent
strategies that are representative of equilibrium behavior
across a large search space of programmatic mechanisms.



Fig. 3: Matrix prediction results visualized for a set of randomly held-out test programs. The top row shows the matrices generated by the programs
(which are not given as inputs to the network), and the bottom row visualizes the predicted matrices. The reconstructions closely resemble the ground truth
matrices.

Fig. 4: Learned policy probabilities for a set of random test programs: The top row shows the matrix generated by the programs (note that these are
not given as inputs to the network). The middle row visualizes the policy probabilities for player 1. The intensity of the color of each horizontal line
represents the probability of player 1 choosing that row of the matrix. The probabilities are normalized so that the largest value for any particular strategy
is 1 (darkest). Similarly, the bottom row visualizes the policy probabilities for player 1 for choosing columns of the matrix. We see that both agents have
learned to act near-optimally by avoiding rows/columns where the other agent can always win (whenever possible). They do so even when such blocks
are very small, such as the rightmost matrix or the third from the right, where player 1 is able to choose.

Fig. 5: Average deviation in player 1’s cost between learned strategies and
the true Nash equilibrium cost across 1000 random test programs over the
course of training.

Thus, our results indicate that it will be possible to use
such a method to rapidly and accurately evaluate mecha-
nisms, even without using custom-trained program represen-
tation networks. Further, since the above experiments studied
the properties of the embeddings independently from the

learning aspect, the results could possibly carry over to full-
fledged sequential multiagent environments.

Therefore, this work has taken important first steps to-
wards realizing a program synthesis approach for mechanism
design that is scalable to complex multiagent environments.
A natural next step is to obtain similar results through
learning from interaction, e.g. MARL, so that the embedding-
guided strategies can be learned without the need for expert
policies, and in more complex environments. Doing so would
allow for fully automated mechanism design via the NDPS
procedure as described earlier.

Another question not considered in this work is learning
suitable program embeddings for the search space. Large
Language Models continue to improve dramatically, making
it reasonable to assume that they will improve large-scale,
general-purpose program representation learning. Although
our results indicate that general-purpose embeddings can be
quite informative about the mechanism, it is likely that using
embeddings that are more tailored to the search space would
result in better scalability to more complex search spaces
and environments. One way to train such embeddings is
to fine-tune a pre-trained embedding network such as the
Code2Vec model we use by training it further on programs
from the search space. We might also expect benefits from
incorporating not only program syntax and semantics, but



also the dynamics of the mechanism into the embedding,
possibly by predicting state transitions and rewards as an
auxiliary task.
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