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A B S T R A C T

Robot sequential decision-making in the real world is a challenge because it requires the robots to simulta-
neously reason about the current world state and dynamics, while planning actions to accomplish complex
tasks. On the one hand, declarative languages and reasoning algorithms support representing and reasoning
with commonsense knowledge. But these algorithms are not good at planning actions toward maximizing
cumulative reward over a long, unspecified horizon. On the other hand, probabilistic planning frameworks,
such as Markov decision processes (MDPs) and partially observable MDPs (POMDPs), support planning to
achieve long-term goals under uncertainty. But they are ill-equipped to represent or reason about knowledge
that is not directly related to actions. In this article, we present an algorithm, called iCORPP, to simultaneously
estimate the current world state, reason about world dynamics, and construct task-oriented controllers. In this
process, robot decision-making problems are decomposed into two interdependent (smaller) subproblems that
focus on reasoning to ‘‘understand the world’’ and planning to ‘‘achieve the goal’’ respectively. The developed
algorithm has been implemented and evaluated both in simulation and on real robots using everyday service
tasks, such as indoor navigation, and dialog management. Results show significant improvements in scalability,
efficiency, and adaptiveness, compared to competitive baselines including handcrafted action policies.
1. Introduction

Automated reasoning and planning under uncertainty are two of the
most important research areas in intelligent robotics. On the one hand,
reasoning is concerned with using existing knowledge to efficiently and
robustly draw conclusions, where the provided knowledge is typically
in a declarative form. On the other hand, planning algorithms can be
used for sequencing actions to accomplish complex tasks that require
more than one action. Despite the significant achievements made in
the two subareas of intelligent robotics, relatively little work has been
conducted to exploit their complementary features. Focusing on appli-
cations of (semi-)autonomous robots that frequently require capabilities
of both reasoning and planning, this article aims at developing a prin-
cipled integration of the two computational paradigms to significantly
improve robot decision-making performance in scalability, accuracy,
efficiency, and adaptiveness.

In this article, we use ‘‘commonsense reasoning’’ to refer to rule-
based methods that are able to infer not only the truthfulness of
logical statements, but also their probabilities. There are many existing
algorithms and corresponding systems supporting this type of logical-
probabilistic reasoning [1–4]. We use ‘‘probabilistic planning’’ to refer
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to methods that aim to compute a policy for sequential action selection
based on the current (estimated) state. While also important for mobile
intelligent robots, motion planning and classical automated planning
methods are beyond the scope of this article. Generally, we consider
domains where the current world state is partially observable, so rea-
soning to infer the world state is necessary. Even when we use Markov
decision processes (MDPs) to build our planners, we do not assume
that the whole world state is fully observable, but rather that there are
aspects of the world that are not modeled in the MDPs.

This work is motivated by mobile robot platforms that have been
able to navigate for unprecedented distances in recent years, while
providing services such as human guidance and object delivery [5–
8]. Toward autonomy over extended periods of time, one needs the
decision-making capability of simultaneously reasoning about the state
and dynamics of the world, and planning to accomplish tasks. Robot
decision-making has been extremely challenging, because both reason-
ing and planning are computationally complex problems in real-world
domains: a complex robotic task frequently requires the robot to reason
vailable online 10 January 2024
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Fig. 1. Integrated reasoning and planning (IRP) algorithms decompose a robot sequen-
tial decision-making problem into two (smaller) sub-problems that focus on reasoning
about the current state of the world (including world dynamics) and selecting actions
to achieve goals.

about a large number of objects and their properties, resulting in a high-
dimensional reasoning space (the so-called ‘‘curse of dimensionality’’);
a robot often needs to take many actions to reach the goal of complex
tasks, resulting in a long planning horizon (the so-called ‘‘curse of
history’’) [9].

Integrated reasoning and planning (IRP) algorithms decompose a
robot sequential decision-making problem into two sub-problems that
focus on high-dimensional reasoning (about world state, dynamics, or
both) and long-horizon planning (for goal achievement) respectively.
The two interdependent sub-problems are much ‘‘smaller’’ than the
original decision-making problems. This key idea of IRP algorithms is
illustrated in Fig. 1, where an IRP algorithm can be identified based
on the forms of its reasoning and planning components and how they
interact with each other.

In this article, we present a realization of IRP called interleaved
commonsense reasoning and probabilistic planning (iCORPP). We build
the reasoning component of iCORPP using P-log, a declarative pro-
gramming paradigm that supports representing and reasoning with
both logical and probabilistic knowledge [10,11]. We build the plan-
ning component of iCORPP using decision-making frameworks based
on Markov Decision Processes (MDPs) or Partially Observable MDPs
(POMDPs) [12,13], depending on the observability of the relevant
aspects of the world state. Assuming a factored state space, the (single)
reasoner of iCORPP faces a world model that includes all domain
variables, and each planner (out of potentially many) corresponds to a
partial world model that includes a minimal set of variables relevant to
one task. We use the reasoner to dynamically estimate the current state
of the world, and reason about the parameters of probabilistic planners
(i.e., world dynamics), which are then used to construct probabilistic
controllers, enabling scalable and adaptive robot decision-making.

This article builds on our previous research that appeared in two
conference papers [14,15]. This article unifies their terminology, prob-
lem statements, and algorithms. Compared to the prior work, this
article introduces a new problem statement in Section 4.1, which covers
the problems addressed in both conference papers. To address this prob-
lem, we have reformulated the iCORPP algorithm (Section 4.2) into
a novel form that includes the three key steps of ‘‘logical reasoning’’,
‘‘probabilistic reasoning over world states’’, and ‘‘probabilistic reason-
ing about world dynamics’’. Despite a few new figures, the experimental
results are based mainly on those from the conference papers. A new
subsection in Section 6 has been introduced to discuss the applicabil-
ity of iCORPP. We implement and evaluate iCORPP1 using a mobile
robot that works in an office environment on everyday service tasks
of indoor navigation, and dialog management. Experimental results
suggest significant improvements in both scalability and adaptiveness,
in comparison to hand-coded action policies and other competitive
baselines.

The remainder of this article is organized as follows. Section 2
discusses existing IRP algorithms, and how this work differs from them.

1 We initially introduced a restricted version of the algorithm called
ORPP [14] that only reasons about world states. iCORPP in this article
easons about both states and dynamics, and CORPP is treated as an ablation
hat does not allow interleaving of planning and acting.
2
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Section 3 presents the two ‘‘building blocks’’ of this work, including
P-log for logical-probabilistic knowledge representation and reasoning,
and (PO)MDPs for probabilistic planning. Section 4 points to the main
contribution of this article, where Section 4.1 provides a definition
of IRP problems, and Section 4.2 describes the iCORPP algorithm.
Section 5.1 summarizes the implementation strategy of iCORPP, and
hypotheses used in evaluations. Sections 5.2 and 5.3 detail the im-
plementations of iCORPP on mobile robot navigation and spoken dialog
system problems respectively, where each section includes the results
of evaluations using the hypotheses listed in Section 5.1. Section 6
discusses the applicability of iCORPP, and concludes this article, while
listing a few open problems for future work.

2. Related work

In the knowledge representation and reasoning (KRR) literature,
common sense is a term that has been extensively used with different
definitions—see the review article by Davis and Marcus [16]. In this ar-
ticle, we use the term commonsense knowledge to refer to the knowledge
that is normally true but not always. Examples include ‘‘people prefer
coffee in the mornings’’, and ‘‘office doors are closed over weekends’’.
Such knowledge can be represented in a variety of forms, and we
use probabilities and defaults in this article. P-log [10,11] is a declar-
ative programming paradigm that extends Answer set programming
(ASP) [17,18] by enabling the representation of and reasoning with
probabilities. P-log and its supporting systems [19,20] meet our need
of commonsense reasoning and are used in this research. Syntax and
semantics of P-log (and ASP) are summarized in Section 3.

In addition to P-log, researchers have developed many other lan-
guages and algorithms that support representing and reasoning with
both logical and probabilistic knowledge, including probabilistic first-
order logic [1], Markov logic networks (MLN) [2], Bayesian logic
(BLOG) [21], probabilistic Prolog (ProbLog) [22], LPMLN [3], and
probabilistic soft logic (PSL) [23]. These languages and algorithms
were developed for different purposes, but all can be used to draw
conclusions that are associated with probabilities. Most of these compu-
tational paradigms are concerned with a static world, meaning that the
programs do not look into world changes over time, while some can be
used for modeling planning domains [19,24,25] as optimization prob-
lems to find actions leading to the goal state with the highest probability.
Despite the KRR strengths of these languages and algorithms, none
of these (including P-log) support planning under uncertainty toward
maximizing cumulative reward over a long, unspecified horizon, which
is frequently required while a robot is working on complex tasks. pBC+
is a KRR paradigm that can be used for declaratively encoding MDPs
and POMDPs [26], and further supports the automatic construction
of (PO)MDP programs that can be processed by systems for planning
under uncertainty. pBC+ can be used to realize the idea described in
this article.

Within the context of AI, there are mainly two classes of planning
algorithms, fully observable deterministic planning (frequently referred
to as classical planning) and planning under uncertainty.2 Classical
planning algorithms, e.g., Fast Forward (FF) [29] and Fast Down-
ward (FD) [30], focus on computing a sequence of actions, implicitly
assuming perfect action executions in a deterministic domain. Classical
planning domains and problems are usually formalized using action
languages [31–33], where early action languages are surveyed in [34].
Algorithms for planning under uncertainty, e.g., Value Iteration [35]
and UCT [36], aim at computing an action policy that suggests an
action from any state under the uncertainty from the non-deterministic

2 The broadly defined planning problem also includes motion planning [27]
hat focuses on computing trajectories in continuous space. Motion planning,
nd integrated task and motion planning (TAMP) [28] are beyond the scope
f this article.
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outcomes of robot actions. Examples of non-deterministic action out-
comes include opponent moves in chess and results of grasping an
object using an unreliable gripper. This article focuses on the class
of planning under uncertainty in stochastic domains, although the
developed algorithms have potential applications to both classes.

Sequential decision-making frameworks, such as MDPs [12] and
partially observable MDPs (POMDPs) [13], can be used for plan-
ning under uncertainty toward maximizing long-term reward. These
frameworks and their descriptive languages, such as PPDDL [37] and
RDDL [38], well support the representation of and reasoning about
action knowledge. However, they are not designed for, and are hence
less effective in, tasks that require reasoning about stationary worlds,
e.g., to query whether a state is valid or estimate the current state of
the world before taking any action. Logical-probabilistic KRR languages,
such as P-log, are suitable for such reasoning tasks. In short, both
the commonsense reasoning and probabilistic planning paradigms have
strengths and weaknesses.

As a result, integrated reasoning and planning (IRP) algorithms have
been developed in recent years [39]. For instance, logical reasoning
has been incorporated into planning under uncertainty to compute
informative prior distributions [40], where domain-dependent heuris-
tics are required to generate such priors, limiting its applicability
to complex problems. The OpenDial system integrates probabilistic
reasoning and POMDP-based probabilistic planning [41], but their
approach was specifically developed for the application of dialog man-
agement, limiting the applicability to other domains. A two-level,
refinement-based architecture has been developed for robot reasoning
and planning [42]. The high-level reasoner is used for computing a
deterministic sequence of actions to guide a low-level probabilistic
controller. The reasoner also supports complicated reasoning tasks,
such as explaining past behaviors, that are impossible for probabilistic
planners. In the work of Hanheide et al. [43], commonsense reasoning
was used for diagnostic tasks and generating explanations, and a hy-
brid planner allows switching between deterministic and probabilistic
planners. Human-provided information is provided to probabilistic con-
trollers in domains with probabilistic relational constraints [44]. Unlike
the above algorithms, iCORPP uses a logical-probabilistic paradigm
for KRR, and allows dynamically reasoning about and constructing
complete, probabilistic controllers.

Algorithms have been developed for integrating reinforcement
learning (RL) [35] and commonsense reasoning. Leonetti et al. [45]
used action knowledge to help a robot select reasonable actions in
exploration. In that work, the robot used a RL algorithm to learn
an action policy in unknown environments. Sridharan et al. [46]
used relational RL to learn action affordances that are needed by a
reasoner for both reasoning and planning tasks. Focusing on non-
stationary domains, reasoning methods have been used to help find
possible trajectories for reinforcement learners [47]. Declarative action
knowledge has been integrated with hierarchical RL for improving the
learning rate of a reinforcement learner [48,49]. Reward machines
from domain experts for encoding temporal logics have been used to
guide RL agents to learn faster via exploiting the internal structures of
reward functions [50,51]. In our recent work, model-based RL was used
for learning world dynamics, where a robot uses the learned knowledge
to construct probabilistic controllers on the fly, while accounting for
new circumstances [52]. In these works, machine learning algorithms
(RL in particular) were used for improving the reasoning or planning
components of IRP methods. The above algorithms (integrating rea-
soning and RL) can potentially be applied to IRP algorithms to enable
the planning components to evolve over time and experience, though
learning is not a focus in this article. iCORPP has the potential to
enable promising lines of research that involve reasoning, planning,
and learning, as discussed in our future work (Section 6).

The strategy of decomposing sequential decision-making tasks into
reasoning and planning has been observed in the study of human
3

behaviors [53,54]. For instance, existing research on human decision-
making has provided empirical evidence that people make decisions
by first understanding the domain (including analyzing a discrete set
of alternatives) and then finding the optimal solution (by evaluating
the impact of the alternatives on certain criteria) to maximize the
overall utility [54]. From the perspective of decomposing decision-
making tasks into reasoning and planning subtasks, iCORPP functions
like the process of human decision-making, as evidenced by human
behavior research [53], and can potentially be used for the imitation
of human decision-making processes.

Finally, we qualitatively compare this article with three related
conference papers, upon two of which it is based. Compared with
CORPP [14], this article supports reasoning about beliefs, dynamics,
and rewards of a planning system, whereas CORPP only supports rea-
soning about beliefs. Compared with iCORPP [15], this article includes
a problem statement that describes the input, output, and assumptions
of our approach. Additionally, this article unifies the terminology of
the CORPP and iCORPP papers (see Section 4.1), and reformulates
the algorithm accordingly (see Section 4.2). These changes required a
significant amount of detail-oriented thinking and re-writing. Finally,
PBCPLUS2POMDP [26] is a system paper, which developed a realiza-
tion of the approach described in the original iCORPP paper [15]. The
PBCPLUS2POMDP system was realized using a knowledge represen-
tation and reasoning paradigm called PBCPLUS, whereas this article
focuses on formally presenting the problem and an algorithm for ad-
dressing the problem. This article is not based on the PBCPLUS2POMDP
system.

3. Background

In this section, we review the substrate techniques used in this
article for knowledge representation and reasoning (KRR) and planning
under uncertainty respectively. Specifically, we use P-log [10] for
KRR, and use Markov decision processes (MDPs) [12] and partially
observable MDPs (POMDPs) [13] for planning under uncertainty.

3.1. Answer set programming and P-log

Answer set programming (ASP) [17,55] is a non-monotonic logic
programming paradigm with stable model semantics [56]. ASP has
been applied to a variety of problem domains [57], including robotics
[58].

An ASP program can be described as a five-tuple ⟨𝛩,, , ,⟩ of
ets. These sets contain names of the sorts, objects, functions, predicates,
nd variables used in the program, respectively. Variables and object
onstants are terms. An atom is an expression of the form p(t)=true
r a(t)=y, where p is a predicate, a is a function, y is a constant from
he range of a or a variable, and t is a vector of terms. For example,
lice is an object of sort person. We can define a predicate prof
nd use prof(P) to identify whether person P is a professor, where P
s a variable.

A literal is an atom or its negation, where an atom’s negation
s of the form p(t)=false or a(t)≠ y. In this article, we call
(t) and a(t) attributes, if there is no variable in t. For instance,
rof(alice)=true is a literal and we can say the value of attribute
rof(alice) is true. For simplicity’s sake, we replace p(t)=true
ith p(t) and p(t)=false with -p(t) in the rest of this article.

An ASP program consists of a set of rules of the form:

, ..., q :- r, ..., s, not t, ..., not u.

here {p, ...,u} are literals, ‘‘:-’’ is a Prolog-style implication sign,
nd symbol not is a logical connective called default negation.

A rule is separated by the symbol ‘‘:-’’, where the left side is called
he head and the right side is called the body. A rule is read as ‘‘head is
rue if body is true’’. A rule with an empty body is referred to as a fact. If
is a literal, expressions l and not l are called extended literals. Default
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negation supports reasoning about unknowns, and not l is read as ‘‘it
is unknown that l is true’’, which does not imply that l is believed to
e false. For instance, not prof(alice) means it is not believed that
alice is a professor or there is no evidence supporting alice being a
professor.

Using default negation, ASP can represent (prioritized) default
knowledge with different levels of exceptions. Default knowledge al-
lows us to draw tentative conclusions by reasoning with incomplete
information and commonsense knowledge. The rule below shows a
simplified form of defaults that only allows strong exceptions that refute
the default’s conclusion: for object 𝚇 of property 𝚌, it is believed that 𝚇
has property 𝚙, if there is no evidence to the contrary.

𝚙(𝚇) ← 𝚌(𝚇), 𝚗𝚘𝚝 ¬𝚙(𝚇).

Traditionally, ASP does not explicitly quantify degrees of uncer-
tainty: a literal is either true, false or unknown. P-log [10] is an
extension to ASP that allows random selections. A random selection
states that, if B holds, the value of a(t) is selected randomly from the
set {X:q(X)} ∩ range(a), unless this value is fixed elsewhere:

random(a(t): {X:q(X)}) :- B.

where B is a collection of extended literals; q is a predicate.
Finally, the following probability atom (or pr-atom) states that, if B

holds, the probability of a(t)=y is v ∈ [0, 1].

r(a(t)=y|B)=v.

Reasoning with an ASP program generates a set of possible worlds:
𝑊0,𝑊1,…}, where each is in the form of an answer set that includes

set of literals. Probabilistic models consist of a finite set whose
lements are referred to as possible worlds [17]. The random selections
nd pr-atoms enable P-log to calculate a probability for each possible
orld. Therefore, ASP and P-log together enable one to draw infer-
nces regarding possible (and impossible) world states using the strong
apabilities of representing and reasoning with (logical and probabilis-
ic) commonsense knowledge. P-log systems, such as those developed
y Zhu [19] and Balai et al. [4], use causal Bayesian networks [59]
o compute a probability for each possible world. Neither ASP nor P-
og supports planning under uncertainty toward maximizing long-term
ewards with long, unspecified horizons.

.2. MDPs and partially observable MDPs

The Markov property states that the next state depends on only
he current state and action, and is independent of all previous states
nd actions (the first-order case). Following the Markov assumption,
Markov decision process (MDP) can be described as a four-tuple

 ,, 𝑇 , 𝑅⟩.  defines all possible states of the world. In this article,
e assume a factored state space, where a state can be specified using
set of attributes and their values.  is a set of actions, where an action

eads state transitions by changing the value(s) of domain attribute(s);
∶  × ×  → [0, 1] represents the probabilistic state transition; and
∶  × → R specifies the rewards. Solving an MDP produces a policy
∶ 𝑠 ↦ 𝑎 that maps the current state 𝑠 to action 𝑎 in such a way that
aximizes long-term rewards.

A POMDP generalizes a MDP by assuming the partial observability
f the current state. As a result, a POMDP can be described as a six-
uple ⟨ ,, 𝑇 , 𝑍,𝑂,𝑅⟩, where 𝑍 is a set of observations; 𝑂 ∶  × ×

→ [0, 1] is the observation function; and the definitions of , ,
, and 𝑅 are inherited from MDP. Unlike MDPs, the current state can
nly be estimated through observations in POMDPs. A POMDP hence
aintains a belief state (or simply belief ), 𝑏, in the form of a probability
istribution over all possible states.

The belief update of a POMDP proceeds as follows:

′(𝑠′) =
𝑂(𝑠′, 𝑎, 𝑜)

∑

𝑠∈ 𝑇 (𝑠, 𝑎, 𝑠′)𝑏(𝑠)
(1)
4

𝑝𝑟(𝑜|𝑎, 𝑏)
where 𝑠, 𝑎 and 𝑜 represent a state, an action and an observation
respectively; and 𝑝𝑟(𝑜|𝑎, 𝑏) is a normalizer. Solving a POMDP produces
policy 𝜋 ∶ 𝑏 ↦ 𝑎 that maps beliefs to actions in such a way that
aximizes long-term rewards.

MDPs and POMDPs enable principled decision making under un-
ertainty, but are ill-equipped to scale to large numbers of domain
ariables or reason with commonsense knowledge that is not directly
elevant to actions. Intuitively, we use ASP and P-log to represent the
ommonsense knowledge that includes all domain attributes, and use
DPs and POMDPs to model a subset of attributes that are needed

or computing the action policy for a specific task. Therefore, given a
ask, there can be many of the attributes that contribute to calculating
he POMDP priors, parameters, or both. Section 4.2 describes the
echnical details of using a commonsense reasoner to reason about
orld state and dynamics, and dynamically construct MDP and POMDP
robabilistic controllers.

Existing work has investigated modeling exogenous events, e.g.,
unlight reduces success rate of a robot navigating through an area (due
o the limitations of range-finder sensors), within decision-theoretic
odels [60,61]. However, it is often difficult to predict how an exoge-
ous change will affect the system state, and what the distribution for
he occurrence of these exogenous events will be. Doing so also presents
trade-off between model correctness and computational tractability

as more domain variables are modeled). Although it is possible to
mplement domain-specific planners to efficiently handle the exogenous
vents, we argue that, from a practical perspective, using common-
ense reasoning to shield exogenous domain attributes from MDPs and
OMDPs is relatively a much more easy-to-use approach than directly
anipulating probabilistic controllers’ graphical representations.

. Our approach

In this section, we first present a formal statement about the do-
ains and problems that we are interested in, and then describe our

lgorithm for addressing the problem.

.1. Problem statement

In this subsection, we first categorize domain variables, then moti-
ate the problem statement, and finally present the technical problem
efinition.

ategorization of domain variables. An integrated reasoning and planning
IRP) problem has a factored state space that is specified by a finite set
f variables,  .

• Endogenous variables, 𝑒𝑛 ⊆  , are the variables whose values
the robot actively changes, estimates probabilistically, or both.
Note that for this purpose, using logical reasoning to determine
the value of a variable is not considered probabilistic estimation,
and thus does not render a variable endogenous.

• Exogenous variables, 𝑒𝑥 ⊆  , are the variables whose values
the robot observes and adapts to [60]. Exogenous variables are
the ones that can be excluded from the (PO)MDP the agent needs
to solve when determining its action policy.

n endogenous (exogenous) event corresponds to an update of an
endogenous (exogenous) variable. 𝑒𝑛∩𝑒𝑥 is empty, and  = 𝑒𝑛∪𝑒𝑥

specifies a factored state space 𝑆 . It will not harm correctness if more
variables are designated as endogenous. But in practice, one should
designate as many variables as possible as being exogenous, so as to
limit the computational complexity of finding a good behavior policy.
𝐴 is a finite set of actions that a robot can perform.

Example 1. Consider a 2D navigation domain, where a robot knows

its current position, and needs to navigate to a goal using actions that
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only probabilistically lead the robot to its desired positions. The 𝑥-
xis and 𝑦-axis positions are endogenous variables, because the robot
ants to actively change their values. One can formulate this problem
sing a standard MDP. Now we further consider that positions near
indows are under sunlight (which probabilistically blinds the range

ensors) when there are no clouds – the default case. In this extended
D navigation problem, the ‘‘cloud’’ variable is exogenous, because the
obot cannot change its value and does not actively estimate it either –
ts value can be directly observed. Additionally, for each position, there
re two exogenous variables indicating its ‘‘near window’’ and ‘‘sunlit’’
tatuses.

xample 2. Consider the partially observable tiger problem introduced
y Kaelbling et al. [13], where a tiger lurks behind one of two doors.
robot can use two ‘‘listen’’ actions for estimating behind which door

he tiger is, and take an ‘‘open door’’ action to produce a big reward
if no tiger behind the door) or a big penalty (otherwise). The tiger’s
eal position is the only endogenous variable, because the robot cannot
irectly observe it, but has to make observations to actively estimate its
alue (though it cannot be changed). Note that a variable is endogenous
f a robot actively changes its value or probabilistically estimate it. The
erceived tiger position is an exogenous variable, because it can be
bserved (even though its value is available only after a ‘‘listen’’ action)
ut not actively changed. In other words, the perceived position serves
s fully observable ‘‘evidence’’, which is exogenous and can be used for
pdating the robot’s endogenous belief about the tiger’s position. In our
xtended tiger problem, let us further consider that the tiger’s position
s more perceivable when it is awake. It is known that the tiger sleeps
t night when its monkey neighbor does not scream. The monkey’s be-
avior is out of the robot’s control, but fully observable. The ‘‘awake’’,

‘time’’, and ‘‘screaming’’ statuses are exogenous variables. The robot
dapts its behaviors to their values, which are either observable or can
e logically inferred.

Intuitively, one can reason about the exogenous variables to infer the
values of endogenous variables, whose values are needed for planning.
This categorization of variables is the key idea of this article.

tate knowledge and action knowledge. State knowledge 𝑆 is in the
orm of a set of logical and probabilistic rules about  , and implicitly
pecifies a causal Bayesian network (CBN), where each node corre-
ponds to a single state 𝑠 ∈ 𝑆 that represents one of the combinatorial
ossible settings of the variables in  . A state is equivalent to a
ossible world using the terminology of logic programming. 𝑆 includes
ommonsense knowledge that is normally true but not always. In each
ossible world, it is guaranteed that each 𝑣𝑒𝑥 ∈ 𝑒𝑥 has a value that
s either directly encoded in 𝑆 as a default value, or can be inferred
sing other variables’ default values. Action knowledge 𝐴 is in the
orm of a set of logical and probabilistic rules about  and 𝐴, and,
ogether with 𝑆 , implicitly specifies one dynamic Bayesian network
DBN) for each 𝑎 ∈ 𝐴. A DBN is a Bayesian network which relates
ariables to each other over adjacent time steps. The DBNs share the
ame set of nodes (variables) inherited from the above-mentioned CBN.

escription of an IRP domain. An IRP domain includes a finite set of
xogenous variables 𝑒𝑥, a finite set of endogenous variables 𝑒𝑛, a
inite set of actions 𝐴, state knowledge 𝑆 , action knowledge 𝐴, and
eward function 𝑅 ∶ 𝑆 × 𝐴 → R. To summarize, a domain description
s a tuple:

= ⟨𝑒𝑥,𝑒𝑛, 𝐴,𝑆 ,𝐴, 𝑅⟩

Latent variables are variables that are not directly observed but are
ather inferred from other variables that are observed. If there exists at
east one endogenous variable 𝑣 ∈ 𝑒𝑛 that is a latent variable, then
e say the current world state of the domain is partially observable.
5

therwise, the current world state is fully observable. We consider that
he properties of exogenous variables do not affect the observability
f IRP domains, because reasoning with defaults [62] enables a robot
o use assumed values to reason about exogenous variables. From the
erspective of sequential decision-making, the values of exogenous
ariables are fully observable and defeasible by subsequent observa-
ions. For partially observable domains, the agent maintains a belief
istribution 𝑏 over 𝑆 .

nput of an IRP algorithm. The input of an IRP algorithm includes a set
f logical rules, a set of probabilistic rules, and a reward function 𝑅.
he rules are used for specifying 𝑒𝑥, 𝑒𝑛, 𝐴, 𝑆 , and 𝐴.

Logical rules are used for specifying exogenous variables 𝑒𝑥 and
heir logical relations within an IRP problem. Each logical rule is of
he form:

:- r1, r2, ..., not u1, not u2, ....

here {p,r1,r2, ...,u1,u2, ...} are literals, and each literal is
n atom or its negation. An atom is an expression of the form f(t)=y,

where f is a function, y is a constant or a schematic variable, and t

is a vector of terms. An exogenous variable 𝑣𝑒𝑥𝑓 (𝑡) ∈ 𝑒𝑥 is defined as
f(t). The domain of each 𝑣𝑒𝑥𝑓 (𝑡) may be provided; otherwise, a P-log
system [4,19] assigns a default domain of {true, false}.

Probabilistic rules, in the form of pr-atoms in P-log, are used for
specifying endogenous variables 𝑒𝑛, and their probabilistic relations
that are conditioned on the values of 𝑒𝑥. The following pr-atom about
𝑒𝑛
𝑔(𝑡) states that, if B holds, the probability of g(t)=y is v:

pr(g(t)=y|B)=v.

where B is a collection of extended literals about 𝑒𝑛 and 𝑒𝑥. An
extended literal l is a literal or its default negation. A conditional
probability table may be provided for each endogenous variable; other-
wise, P-log systems assume uniform distributions. The above-mentioned
logical and probabilistic rules together specify 𝑒𝑥 and 𝑒𝑛 of domain

, as well as its state knowledge 𝑆 .
Action set 𝐴 and action knowledge 𝐴 are also defined as pr-atoms.

ction 𝑎 ∈ 𝐴 is defined as a P-log random variable, action. Here
e use different font styles to distinguish ‘‘actions’’ in P-log rules and

RP problem definitions. 𝐴 is defined using pr-atoms in the following
orm:

r(f’(t)=y’|f(t)=y, action=a, r1, r2, ...,

not u1, not u2,...)=v.

here f’(t) under a different function name is a duplicate of f(t).
he above rule states that action a changes the value of endogenous
ariable 𝑒𝑛

𝑓 (𝑡) from y to y’ with probability v in the presence of
xtended literals r1, r2, ..., not u1, not u2, .... Such rules
re used for representing action knowledge 𝐴.

Reward function 𝑅 is defined by enumerating the rewards given the
alues of variables and an action.

(𝑣𝑒𝑛0 = 𝑉 𝑒𝑛
0 , 𝑣𝑒𝑛1 = 𝑉 𝑒𝑛

1 ,… ,

𝑣𝑒𝑥0 = 𝑉 𝑒𝑥
0 , 𝑣𝑒𝑥1 = 𝑉 𝑒𝑥

1 ,… , 𝑎) = 𝑟

Next we use Example 1 (Navigation under Sunlight) to illustrate
the input of IRP algorithms. The endogenous variables in this domain
include only the two for representing the robot’s 𝑥 and 𝑦 coordinates,
because the robot only needs to change the values of those two vari-
ables for navigation purposes. To reason about the state space, there are
exogenous variables about current time, and whether each grid cell is
near a window or under sunlight. All those endogenous and exogenous
variables are provided as part of the input. There are logical and
probabilistic rules provided to the agent. For instance, one rule is that a
grid cell, specified by its 𝑥 and 𝑦 coordinates (endogenous variables), is
under sunlight, if it is next to a window (an exogenous variable) and the
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Fig. 2. Diagram of integrated reasoning and planning (IRP) problems that includes
two main components: State Estimator (SE) for updating belief 𝑏, and policy 𝜋 for
action selection based on 𝑏. Policy 𝜋 is computed using domain description  and the
observation over exogenous variables. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

current time is morning (another exogenous variable). Such rules are
provided as part of the input. The actions include the NESW directions
of North, East, South and West. There are probabilistic rules provided
as prior knowledge. One example is that a robot’s navigation action
fails with probability 0.9 when it navigates under sunlight; otherwise,
a navigation action leads to its intended location. Such rules about
world dynamics are provided as part of the input. Finally, the robot’s
navigation goal is specified by giving it a big reward (say 100) if the
robot lands in one of the goal cells.

Output of an IRP algorithm. The output of an IRP algorithm is an action
policy 𝜋. The objective is to compute 𝜋 for the robot to choose actions
at each time step toward maximizing its expected future discounted
reward,

𝜋∗ = argmax
𝜋

𝐸

[ ∞
∑

𝑡=0
𝛾 𝑡𝑟𝑡

]

where 𝛾 is a discount factor that determines how much immediate
rewards are favored over more distant rewards, and 𝑟𝑡 is the reward
received at time 𝑡.

Assumptions. We make the following set of assumptions about IRP
domains:

• The program that consists of the logical rules about exogenous
variables is satisfiable, i.e., there is no inconsistency among the
provided logical statements.

• Values of exogenous variables are either fully observable or un-
observable. When fully observable, they are formulated as logical
facts; otherwise, their values can be inferred using the other
variables.

• An exogenous variable’s value can become known during the
execution of a policy, and an IRP agent is immediately aware of
such changes.

• An endogenous variable is either partially observable or fully ob-
servable. An endogenous variable’s observability does not change
over time, and is known.

Remarks. One might wonder why there is no observation set defined
in  in case of partially observable domains. The reason is that the
DBNs, one for each 𝑎 ∈ 𝐴, already allow updating beliefs based on the
current belief, values of exogenous variables (or evidence variables),
and the performed action. In other words, the observation function can
be inferred from the DBNs specified by .

Fig. 2 illustrates the high-level structure of partially observable IRP
problems. In standard POMDPs [13], observations are active, because
what an agent observes depends on the performed action. In partially
observable IRP domains, each observation (modeled in 𝑒𝑥) includes
6

two components: active and passive. The component of observations
for estimating 𝑒𝑛 is active. For instance, the tiger’s perceived position
belongs to the active component of observations, because it is used
for estimating the tiger’s real position. 𝑒𝑥 also models the passive
component of observations (e.g., the perceived ‘‘screaming’’ status) that
are not affected by an agent’s actions. The passively observed compo-
nent of 𝑒𝑥 can potentially affect the agent’s action policy, whereas
the active components cannot. This main difference from the standard
POMDP diagram is marked using a red dashed line in Fig. 2. It should
be noted that the introduction of IRP observations’ active and passive
components is only for the comparison with the standard POMDP’s
diagram, and is not required by IRP algorithms. The realization of state
estimator (SE) is the same as that of standard POMDPs, as summarized
in Section 3.

Generally, in partially observable IRP domains, exogenous variables
affect beliefs over endogenous variables. The policy maps beliefs over
endogenous variables to actions. So while the exogenous variables
indirectly affect the policy via the endogenous variables, only the en-
dogenous variables are actually inputs to the policy. Next, we describe
our approach for addressing IRP problems.

4.2. iCORPP, our approach

The key idea of this article is to reason with declarative logical-
probabilistic knowledge about the world state and dynamics for plan-
ning under uncertainty. Fig. 3 illustrates the interleaved commonsense
reasoning and probabilistic planning (iCORPP) process. In this section,
we discuss the following topics:

(I) Using logical reasoning to specify a task-oriented partial state
space;

(II) Probabilistic reasoning for computing a belief distribution over
states (in case of domains under partial observability); and

(III) Probabilistic reasoning about transition function that may change
over time, i.e., world dynamics.

The three steps together enable an agent to dynamically construct
probabilistic graphical models on the fly via reasoning with logical-
probabilistic commonsense knowledge. After that, reward functions,
as well as observation functions in case of partially observable do-
mains, can be constructed accordingly to form complete (PO)MDPs.
Algorithms for planning under uncertainty take the (PO)MDP models
as input, and generate action policies.

iCORPP, the algorithm. iCORPP is described in Algorithm 1. We use off-
the-shelf reasoning and planning systems, including 𝑆𝑜𝑙𝑙𝑟 for logical
reasoning, 𝑆𝑜𝑙𝑝𝑟 for probabilistic reasoning, and 𝑆𝑜𝑙𝑝𝑙 for planning
under uncertainty. 𝑆𝑜𝑙𝑙𝑟 takes as inputs Prolog-style logical statements
about variables  , and outputs a set of possible worlds  , where
𝑤 ∈  gives each variable a value. The input statements can po-
tentially include commonsense statements that are not always correct.
𝑆𝑜𝑙𝑝𝑟 takes logical statements (same as those provided to 𝑆𝑜𝑙𝑙𝑟) and
probabilistic statements as the input, and computes a probability for
each possible world. It should be noted that, in our implementation
of iCORPP, the reasoning system we use supports the functionalities
of both 𝑆𝑜𝑙𝑙𝑟 and 𝑆𝑜𝑙𝑝𝑟, while we separate the two systems to discuss
the general case. Without actions in the input of 𝑆𝑜𝑙𝑝𝑟, each possible
world corresponds to a state in (PO)MDP terminology. When action
descriptions are provided to 𝑆𝑜𝑙𝑝𝑟, one can build the correspondence
between possible worlds and state–action pairs.

Here we look into the steps of iCORPP as presented in Algorithm 1.
Entering the main loop of Steps 1–19, in Steps 2–3, the robot collects
facts  over ̂𝑒𝑥 ⊆ 𝑒𝑥, fully observable exogenous variables. Step 4 is
for logical reasoning to compute a set of possible worlds 𝑐𝑝𝑙𝑡, where
𝑤𝑐𝑝𝑙𝑡 ∈ 𝑐𝑝𝑙𝑡 corresponds to a complete assignment to all variables
(endogenous and exogenous). Dimensionality reduction in Step 5 filters
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Fig. 3. Overview of iCORPP. The original (complete) state space includes potentially many states. The logical-reasoning step produces a partial state space through a dimensionality-
reduction process, focusing on the endogenous variables required by the current task. In case of the current state being partially observable, iCORPP computes a prior belief
distribution over the states. Finally, iCORPP reasons about world dynamics for task-oriented planning under uncertainty.
Algorithm 1 iCORPP.

Ensure: 𝑒𝑥; 𝑒𝑛; 𝐴; 𝑆 ; 𝐴; 𝑅.
Require: solver for logical reasoning 𝑆𝑜𝑙𝑙𝑟; solver for probabilistic reasoning 𝑆𝑜𝑙𝑝𝑟; solver for planning 𝑆𝑜𝑙𝑝𝑙

1: repeat
2: Iterate over 𝑒𝑥, identify the fully observable subset ̂𝑒𝑥 ⊆ 𝑒𝑥, and collect values of ̂𝑒𝑥

3: Convert assignments of ̂𝑒𝑥 into a logical form,  , referred to as facts
4: 𝑐𝑝𝑙𝑡 ← 𝑆𝑜𝑙𝑙𝑟( ,𝑆 ), where 𝑤𝑐𝑝𝑙𝑡 ∈ 𝑐𝑝𝑙𝑡 is a complete assignment to variables 𝑒𝑛 ∪ 𝑒𝑥 {Logical reasoning}
5: Generate  using 𝑐𝑝𝑙𝑡 (dimensionality reduction), where 𝑤 ∈  is an assignment to 𝑒𝑛

6: Construct state space 𝑆, where 𝑠 ∈ 𝑆 corresponds to 𝑤 ∈ 
7: if ∃𝑉 𝑒𝑛 ∈ 𝑒𝑛 that is latent then
8: Call 𝑆𝑜𝑙𝑝𝑟( ,𝑆 ) to compute 𝑃𝑟(𝑤) for each 𝑤 ∈  ; 𝑏(𝑠) ← 𝑃𝑟(𝑤) {Probabilistic reasoning about states}
9: Generate observation function  accordingly: (𝑜, 𝑠′, 𝑎) = 𝑃𝑟(𝑜|𝑠′, 𝑎)

10: end if
11: Call 𝑆𝑜𝑙𝑝𝑟(( , 𝐴),𝐴) to compute 𝑇 (𝑠, 𝑎, 𝑠′) {Probabilistic reasoning about transitions}
12: Construct (PO)MDP specified by  , A,  , and  (and )
13: Compute policy 𝜋 using 𝑆𝑜𝑙𝑝𝑙 for the (PO)MDP {Probabilistic planning}
14: while 𝑠 is not 𝑡𝑒𝑟𝑚 and  ⊖𝑐𝑝𝑙𝑡 do
15: Update state 𝑠 (or belief state 𝑏) using 
16: Select action 𝑎 with 𝜋, and execute 𝑎
17: Make an observation to update  about 𝑒𝑥 {Collect facts  for detecting exogenous events}
18: end while
19: until 𝑠 is 𝑡𝑒𝑟𝑚
out the exogenous variables to compute a smaller state space  focus-
ing on 𝑒𝑛.3 Step 6 bridges the gap between logic programming, and
planning under uncertainty by building the correspondence between
state 𝑠 ∈ 𝑆 and 𝑤 ∈  . 𝑐𝑝𝑙𝑡 and  (or 𝑆) correspond to the complete
state space and partial state space respectively, as shown in Fig. 3.

Step 7 evaluates the state observability, and determines if it is nec-
essary to maintain a belief distribution for state estimation. If so, Step 8
calls a probabilistic reasoning system to compute the probability of
each possible world, which corresponds to ‘‘Belief state (task-oriented)’’
in Fig. 3. After that, we assume the robot’s perception model is pro-
vided (though it can be learned from data), and hence the observation
function  can be constructed in Step 9.

Step 11 calls a probabilistic reasoning system to compute the tran-
sition function. This is a rather complex process; we discuss the imple-
mentation of Step 11 after describing iCORPP in general. In Step 12,
iCORPP constructs (PO)MDP models. Steps 13 is for policy generation.
For instance, 𝑆𝑜𝑙𝑝𝑙 can compute a policy 𝜋 ∶ 𝑠 → 𝑎 using algorithms

3 The ‘‘dimensionality reduction’’ referred to in Step 5 is also called ‘‘ab-
straction’’ in the AI literature. In this article, the dimensionality reduction
process relies on expert knowledge that specifies the relevance between
variables and tasks. We leave the automation of this process to future work.
7

such as SARSOP (for POMDPs) [63] and value iteration or Monte Carlo
tree search (for MDPs) [36].

Steps 14–18 are for interaction with the real world using the gen-
erated policy. To account for exogenous events at execution time,
Step 17 updates facts  in each iteration, and checks in Step 14 if it
is necessary to break the loop to reconstruct the (PO)MDP to adapt to
the exogenous events. It should be noted that not all exogenous events
trigger the reconstruction of (PO)MDPs. The necessity is evaluated
through a logical operation in Step 14 by

 ⊖𝑐𝑝𝑙𝑡,

which reports true when facts  are consistent with each 𝑤 ∈ 𝑐𝑝𝑙𝑡, and
otherwise reports false. The main loop (Steps 1–19) continues until a
terminal state is reached, which identifies the end of a complete trial.

As an example of exogenous events causing inconsistency, consider
a robot that plans to avoid the sunlit area (which blinds the range
sensors) when it was started. Should clouds appear (an exogenous
event) and the previously sunlit area no longer poses a problem to
the robot, all possible worlds are rendered inconsistent with the ‘‘no
cloud’’ commonsense rule, and the robot reactivates the commonsense
reasoner to recompute the MDP state space (and recompute the action
policy). Therefore, iCORPP enables the robot’s behavior to adapt to the
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fact of a weather change, without modeling exogenous variable weather
in its (PO)MDP-based planners.

Next, we look into a few steps of Algorithm 1 providing implementa-
tion details, namely Step 4 for logical reasoning, Step 8 for probabilistic
reasoning about belief initialization for POMDPs, and Step 11 for
probabilistic reasoning to compute the transition function.

Logical reasoning with incomplete knowledge. Since real-world domains
are dynamically changing all the time and robots’ observations are
partial and unreliable, robots frequently need to reason with incomplete
domain knowledge, and exogenous events.4 Using ASP, on which P-
og is based, our robot can take a set of defaults as input, as a part
f 𝑆 , and smoothly revise their values using observed ‘‘facts’’ when
vailable (Step 4), and hence is capable of reasoning with incomplete
omain knowledge well. As an example, a robot using an MDP for
ndoor navigation may have default knowledge: ‘‘area 𝐴 is sunlit in the
ornings’’. A fact of ‘‘no sunlight is currently observed in area 𝐴’’ can

moothly defeat the default. The set of possible worlds,  , is described
y a set of endogenous attributes and their values.

Formally, the logical reasoning step (Step 4) takes as inputs facts
and logical commonsense knowledge in 𝑆 , and outputs complete

ossible worlds 𝑐𝑝𝑙𝑡. In this step, both endogenous and exogenous
ariables are reasoned about, and each produced possible world is a
omplete assignment to both types of variables.

robabilistic reasoning over world states. In the case of partially ob-
ervable domains, we use probabilistic information assignments (or
imply probabilistic rules), to compute a probability distribution over
he set of possible worlds, i.e., the prior belief of POMDPs.5 As a
esult, probabilistic reasoning associates each possible world with a
robability {0 ∶ 𝑝𝑟0, 1 ∶ 𝑝𝑟1,…}. Step 8 computes a probability,

𝑃𝑟(𝑤), for each possible world whose dimensionality has been reduced
in Step 5.

In practice, logical and probabilistic commonsense rules in P-log
are processed together using off-the-shelf software packages, i.e., one
system that supports the functionalities of both 𝑆𝑜𝑙𝑙𝑟 and 𝑆𝑜𝑙𝑝𝑟, and
he rules cover both exogenous and endogenous domain attributes (𝑆

nd 𝐴). Informally, the steps of logical-probabilistic reasoning about
tates are to specify the parts of the world that may have effects on the
obot working on the current task, i.e., reasoning to ‘‘understand’’ the
urrent world state.

robabilistic reasoning about world dynamics. To represent and reason
bout state transitions (i.e., world dynamics), we define two identical
tate spaces using predicates curr_s and next_s in P-log:

𝚞𝚛𝚛_𝚜(𝚅1,… , 𝚅𝚗) ← 𝚟1 = 𝚅1,… , 𝚟𝚗 = 𝚅𝚗.

𝚎𝚡𝚝_𝚜(𝚅1,… , 𝚅𝚗) ← 𝚟′1 = 𝚅1,… , 𝚟′
𝚗
= 𝚅𝚗.

here curr_s and next_s specify the current and next states and the
’s and V’s are endogenous attributes and their variables respectively.
f there is at least one endogenous attribute whose value is not directly
bservable to the robot (Step 7), the corresponding task needs to be
odeled as a POMDP (otherwise, an MDP).

We introduce sort action and explicitly list a set of 𝑖 actions, 𝐴, as
set of objects in P-log. Random function curr_a maps to one of the

ctions.

𝚌𝚝𝚒𝚘𝚗 ={𝚊0, 𝚊1,… , 𝚊𝚒}.

𝚞𝚛𝚛_𝚊 ∶ 𝚊𝚌𝚝𝚒𝚘𝚗.

4 When we solve an MDP, we simply assume the endogenous attributes are
ully observable, and the complete world state is still not fully observable.
obots face a partially observable world in general.

5 When the current world state is fully observable, there is no need to
stimate the current state of the world with observations, and iCORPP uses
8

DPs for action selections.
𝚛𝚊𝚗𝚍𝚘𝚖(𝚌𝚞𝚛𝚛_𝚊).

Formally, Step 11 for probabilistic reasoning about transitions takes
as inputs a set of possible worlds  (that is about only 𝑒𝑛) and action
knowledge 𝐴, and outputs transition function 𝑇 (𝑠, 𝑎, 𝑠′), which can be
described using a set of pr-atoms in P-log. For instance, the rule below
states that the probability of action A changing the value of attribute v
from V1 to V2 is 0.9.

𝚙𝚛(𝚟′= 𝚅2 ∣ 𝚟 = 𝚅1, 𝚌𝚞𝚛𝚛_𝚊 = 𝙰)= 𝟶.𝟿.

For MDPs, the values of endogenous attributes are fully observable
to the robot, whereas POMDPs need to model a set of observations,
𝑍, for estimating the underlying state. We define obser as a sort, and
curr_o as a random function that maps to an observation object o.

𝚘𝚋𝚜𝚎𝚛={𝚘0, 𝚘1,… , 𝚘𝚓}.

𝚌𝚞𝚛𝚛_𝚘 ∶ 𝚘𝚋𝚜𝚎𝚛.

𝚛𝚊𝚗𝚍𝚘𝚖(𝚌𝚞𝚛𝚛_𝚘).

The observation function, , defines the probability of observing O

given the current state being s and current action being a. For instance,
the following 𝑝𝑟-rule states that, if attribute v’s current value is V, the
probability of observing O after taking action A is 0.8.

𝚙𝚛(𝚌𝚞𝚛𝚛_𝚘 = 𝙾 ∣ 𝚌𝚞𝚛𝚛_𝚊 = 𝙰, 𝚟 = 𝚅) = 𝟶.𝟾.

The reward function 𝑅 maps a state–action pair to a numeric
value. For instance, the following rule states that taking action A given
attribute v’s value being V yields a reward of 10.0.

𝚛𝚎𝚠𝚊𝚛𝚍(𝟷𝟶.𝟶, 𝙰, 𝚅1,… , 𝚅𝚗) ← 𝚌𝚞𝚛𝚛_𝚊 = 𝙰,

𝚌𝚞𝚛𝚛_𝚜(𝚅1,… , 𝚅𝚗).

Building the reward function of (PO)MDPs requires numerical rea-
soning, which is not supported by many declarative languages and
systems, and hence is not included in the algorithm. In our imple-
mentation, we manually encode the reward function using procedural
languages.

Next, we describe the design of experiments, and the robot plat-
forms where we implement and evaluate iCORPP.

5. Instantiation and evaluations

In this section, we first describe our experiment design in general,
and then introduce two application domains (mobile robot navigation
and human–robot dialog). In each of the two domains, we first illustrate
the implementation of iCORPP, and then present the experiment results
from systematic evaluations.

5.1. Experiment design

iCORPP enables an agent to reason about the current world state
and dynamics to construct probabilistic planners (controllers) on the
fly, where the reasoning is logical-probabilistic and the planning is
based on an MDP or POMDP. Accordingly, experiments were aimed at
evaluating the following hypotheses:

(I) Incorporating logical reasoning into probabilistic controllers im-
proves efficiency and accuracy in information gathering;

(II) iCORPP further improves the performance in both accuracy
and efficiency by combining logical-probabilistic reasoning and
probabilistic controllers;

(III) iCORPP enables fine-tuning of agent behaviors at a level, where
a comparable hand-coded controller requires a prohibitively
large number of parameters; and

(IV) iCORPP enables agent behaviors that are adaptive to exoge-
nous events, without modeling these exogenous attributes in its

controllers.
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Fig. 4. The robot platform used in experiments, called BWIBot [5]. The platform is
based on a Segway RMP, and is equipped with sensing capabilities, including laser-
based range finding for localization, voice recognition for human–robot dialog, and
RGB-depth sensors for human detection and obstacle avoidance. The right is a picture
of two BWIBots running at the venue of the Twenty-Ninth AAAI Conference on Artificial
Intelligence in Austin, TX.

Baseline algorithms include hand-coded action policies, standard
POMDP-based methods, POMDPs with logical reasoning [40], and the
CORPP strategies [14].

We used a solver introduced by Zhu [19] for P-log programs except
that reasoning about reward was manually conducted, the APPL solver
for POMDPs [63], and value iteration for MDPs [35].

The iCORPP algorithm has been implemented both in simulation
and on real robots. The robot platform used in this study is shown in
Fig. 4, where the software and hardware were described in a journal
article [5]. The robot is built on top of a Segway Robotic Mobility
Platform. It uses a Hokuyo URG-04LX laser rangefinder and a Kinect
RGB-D camera for navigation and sensing, and Sphinx-4 [64] for speech
recognition. The software modules run in Robot Operating System
(ROS) [65]. After the proposed approach determines the parameters
of the shopping request, it is passed to a hierarchical task planner for
creating a sequence of primitive actions that can be directly executed
by the robot [66].

Experiments in simulation were conducted using [67], where the en-
vironment is shown in Fig. 5. In particular, the simulation environment
includes a set of human walkers that repeatedly move to arbitrarily-
selected navigation goals. The humans can probabilistically block the
robot’s way.

Next, we evaluate iCORPP using a mobile robot (simulated or
physical) that operates in an office environment. Specifically, we use
the tasks of mobile robot navigation and spoken dialog system for illustrat-
ing the implementations of iCORPP and system evaluations. The two
capabilities together enable the mobile robot to provide a variety of
services in human-inhabited environments, such as human guidance,
question answering, and object deliveries.

5.2. Algorithm instantiation and evaluations: Mobile robot navigation

Consider a robot navigation problem in a fully-observable 2D grid
world shown in Fig. 5. The robot can take actions (North, East, South,
and West) to move toward one of its nearby grid cells, and such
actions succeed probabilistically. The area marked with a ‘‘sun’’ is a
dangerous area to the robot, because, in the mornings under sunny
weather, there is sunlight in areas near east-facing windows that can
blind the robot’s range-finder sensor, probabilistically causing it to
become unrecoverably lost. In this example, the robot’s current location
should be modeled as an endogenous variable, because its value change
needs to be modeled in the planning process, i.e., its value needs to be
actively changed. Current time (morning or not) should be modeled as
an exogenous variable, meaning that the robot does not need to change
its value in the planning process. However, it is indeed necessary
to keep an eye on (i.e., to passively observe) its value, and adjust
the probabilistic planner as needed, e.g., reducing the success rate of
navigating though the near-window cell when current time is morning.
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5.2.1. Algorithm instantiation
In the mobile robot navigation task, the state is fully observable, and

hence an MDP is used for probabilistic planning. The robot navigates
in a domain shown in Fig. 5(a). In this domain, people can move and
probabilistically block the robot’s way, as shown in Fig. 5(b). In addi-
tion, sunlight can probabilistically blind the robot’s laser range-finder,
making the robot unrecoverably lost.

Planning is achieved by mapping the domain to a grid, which is
defined using sorts row and col, and predicates belowof and leftof.

𝚛𝚘𝚠 ={𝚛𝚠𝟶, 𝚛𝚠𝟷,… , 𝚛𝚠𝟺}.

𝚌𝚘𝚕 ={𝚌𝚕𝟶, 𝚌𝚕𝟷,… , 𝚌𝚕𝟻}.

𝚕𝚎𝚏𝚝𝚘𝚏(𝚌𝚕𝟶, 𝚌𝚕𝟷).⋯ 𝚕𝚎𝚏𝚝𝚘𝚏(𝚌𝚕𝟺, 𝚌𝚕𝟻).

𝚋𝚎𝚕𝚘𝚠𝚘𝚏(𝚛𝚠𝟷, 𝚛𝚠𝟶).⋯ 𝚋𝚎𝚕𝚘𝚠𝚘𝚏(𝚛𝚠𝟺, 𝚛𝚠𝟹).

We then introduce predicates near_row and near_col used for
specifying if two grid cells are next to each other, where R’s (C’s) are
variables of row (column).

𝚗𝚎𝚊𝚛_𝚛𝚘𝚠(𝚁𝚆1, 𝚁𝚆2) ← 𝚋𝚎𝚕𝚘𝚠𝚘𝚏(𝚁𝚆1, 𝚁𝚆2).

𝚗𝚎𝚊𝚛_𝚛𝚘𝚠(𝚁𝚆1, 𝚁𝚆2) ← 𝚗𝚎𝚊𝚛_𝚛𝚘𝚠(𝚁𝚆2, 𝚁𝚆1).
𝚗𝚎𝚊𝚛_𝚌𝚘𝚕(𝙲𝙻1, 𝙲𝙻2) ← 𝚕𝚎𝚏𝚝𝚘𝚏(𝙲𝙻1, 𝙲𝙻2).

𝚗𝚎𝚊𝚛_𝚌𝚘𝚕(𝙲𝙻1, 𝙲𝙻2) ← 𝚗𝚎𝚊𝚛_𝚌𝚘𝚕(𝙲𝙻2, 𝙲𝙻1).

To model the non-deterministic action outcomes, we define random
functions curr_row and next_row that map to the current and next
rows, and curr_col and next_col that map to the current and next
columns. For instance, the first of the following two random rules states
that, given the robot’s current row is RW, it will be in row R_ in the next
step, where R_ and RW are adjacent rows, i.e., near_row(R_,RW) is
true.

𝚛𝚊𝚗𝚍𝚘𝚖(𝚗𝚎𝚡𝚝_𝚛𝚘𝚠 ∶ {𝚁_ ∶ 𝚗𝚎𝚊𝚛_𝚛𝚘𝚠(𝚁_, 𝚁𝚆)})
← 𝚌𝚞𝚛𝚛_𝚛𝚘𝚠 = 𝚁𝚆.

𝚛𝚊𝚗𝚍𝚘𝚖(𝚗𝚎𝚡𝚝_𝚌𝚘𝚕 ∶ {𝙲_ ∶ 𝚗𝚎𝚊𝚛_𝚌𝚘𝚕(𝙲_, 𝙲𝙻)})
← 𝚌𝚞𝚛𝚛_𝚌𝚘𝚕 = 𝙲𝙻.

We use predicates near_window and sunlit to define the cells
that are near to a window and the sunlit cells. The P-log rule below is
a default stating that: in the mornings, a cell near a window is believed
to be under sunlight, unless the statement is defeated elsewhere.

𝚜𝚞𝚗𝚕𝚒𝚝(𝚁𝚆, 𝙲𝙻) ← 𝚗𝚎𝚊𝚛_𝚠𝚒𝚗𝚍𝚘𝚠(𝚁𝚆, 𝙲𝙻),
𝚗𝚘𝚝 ¬𝚜𝚞𝚗𝚕𝚒𝚝(𝚁𝚆, 𝙲𝙻),

𝚌𝚞𝚛𝚛_𝚝𝚒𝚖𝚎 = 𝚖𝚘𝚛𝚗𝚒𝚗𝚐.

The above-mentioned rules are logical state knowledge in 𝑆 as
defined in Algorithm 1. While navigating in areas under sunlight, there
is a large probability of becoming lost (0.9), which deterministically
leads to the end of an episode.

𝚙𝚛(𝚗𝚎𝚡𝚝_𝚝𝚎𝚛𝚖 = 𝚝𝚛𝚞𝚎 ∣𝚌𝚞𝚛𝚛_𝚛𝚘𝚠 = 𝚁𝚆,

𝚌𝚞𝚛𝚛_𝚌𝚘𝚕 = 𝙲𝙻,

𝚜𝚞𝚗𝚕𝚒𝚝(𝚁𝚆, 𝙲𝙻)) = 𝟶.𝟿.

𝚙𝚛(𝚗𝚎𝚡𝚝_𝚝𝚎𝚛𝚖 = 𝚝𝚛𝚞𝚎 ∣𝚌𝚞𝚛𝚛_𝚝𝚎𝚛𝚖 = 𝚝𝚛𝚞𝚎) = 𝟷.𝟶.

In this domain, curr_row, curr_col, and curr_term (and their
‘‘next_’’ counterparts) are endogenous variables 𝑒𝑛, meaning that the
robot actively changes their values, and all the other variables are
exogenous.

The robot can take actions to move to a grid cell next to its current
one: action={left,right,up,down}. Action knowledge is defined
in 𝐴. For instance, given action up, the probability of successfully
moving to the above grid cell is 0.9, given no obstacle is in the above
cell.

𝚙𝚛(𝚗𝚎𝚡𝚝_𝚛𝚘𝚠= 𝚁𝚆 ∣ 𝚌𝚞𝚛𝚛_𝚛𝚘𝚠 = 𝚁𝚆 , 𝚌𝚞𝚛𝚛_𝚌𝚘𝚕 = 𝙲𝙻 ,
2 1 1
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Fig. 5. (a) Simulation environment used in experiments, where the red arrows indicate the delivery routes from the shop to individual rooms; and (b) A human walker blocking
the way of the robot. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
𝚋𝚎𝚕𝚘𝚠𝚘𝚏(𝚁𝚆1, 𝚁𝚆2), ¬𝚜𝚞𝚗𝚕𝚒𝚝(𝚁𝚆2, 𝙲𝙻1),

¬𝚋𝚕𝚘𝚌𝚔𝚎𝚍(𝚁𝚆2, 𝙲𝙻1), 𝚌𝚞𝚛𝚛_𝚊 = 𝚞𝚙)= 𝟶.𝟿.

Finally, the current state is specified by endogenous attributes
curr_row, curr_col, and curr_term:

𝚌𝚞𝚛𝚛_𝚜𝚝𝚊𝚝𝚎(𝚁𝚆, 𝙲𝙻, 𝚃𝙼) ← 𝚌𝚞𝚛𝚛_𝚛𝚘𝚠 = 𝚁𝚆,

𝚌𝚞𝚛𝚛_𝚌𝚘𝚕 = 𝙲𝙻,

𝚌𝚞𝚛𝚛_𝚝𝚎𝚛𝚖 = 𝚃𝙼.

The goal of visiting room (r0,c3) can be defined as below, where
successfully arriving at the goal room produces a reward of 50 and an
early termination causes a reward of −100.0 (i.e., a penalty of 100).

𝚙𝚛(𝚗𝚎𝚡𝚝_𝚝𝚎𝚛𝚖 = 𝚝𝚛𝚞𝚎 ∣ 𝚌𝚞𝚛𝚛_𝚛𝚘𝚠 = 𝚛𝟶,

𝚌𝚞𝚛𝚛_𝚌𝚘𝚕 = 𝚌𝟹) = 𝟷.𝟶.

𝚛𝚎𝚠𝚊𝚛𝚍(𝟻𝟶.𝟶, 𝙰, 𝚛𝟶, 𝚌𝟹, 𝚝𝚛𝚞𝚎)

← 𝚌𝚞𝚛𝚛_𝚜𝚝𝚊𝚝𝚎(𝚛𝟶, 𝚌𝟹, 𝚝𝚛𝚞𝚎).
𝚛𝚎𝚠𝚊𝚛𝚍(−𝟷𝟶𝟶.𝟶, 𝙰, 𝚁𝚆, 𝙲𝙻, 𝚝𝚛𝚞𝚎)

← 𝚌𝚞𝚛𝚛_𝚜𝚝𝚊𝚝𝚎(𝚁𝚆, 𝙲𝙻, 𝚝𝚛𝚞𝚎), 𝚁𝚆 <> 𝚛𝟶.

𝚛𝚎𝚠𝚊𝚛𝚍(−𝟷𝟶𝟶.𝟶, 𝙰, 𝚁𝚆, 𝙲𝙻, 𝚝𝚛𝚞𝚎)

← 𝚌𝚞𝚛𝚛_𝚜𝚝𝚊𝚝𝚎(𝚁𝚆, 𝙲𝙻, 𝚝𝚛𝚞𝚎), 𝙲𝙻 <> 𝚌𝟹.

5.2.2. Evaluation
Since the robot navigation domain is highly dynamic with human

walkers, we focus on evaluating the hypothesis of the robot being able
to adapt its behaviors to exogenous events (human positions in this
case), i.e., Hypothesis IV as listed in Section 5.1.

The testing environment and the robot are shown in Fig. 5(a)
and 5(b). We limit the number of random walkers that affect robot nav-
igation actions to be 1 and its speed to be one fifth of the robot’s. This
setting ensures no human–robot collisions given the robot’s intention
and capability of obstacle avoidance. A goal room is randomly selected
from the four flag rooms. Reasoning happens only after the current
episode is terminated (goal room is reached). The walker’s position is
the only exogenous domain change (by temporarily setting the time
to be ‘‘evening’’). We cached policies for both the baseline that uses
stationary policies (four policies corresponding to four goal rooms) and
iCORPP (56 policies).

Table 1 shows the robot’s traveling time given start-goal pairs: once
the robot arrives at its current goal, the next one is randomly selected.
The walker moves slowly near the door of room 𝑟1. Without adaptive
planning developed in this work, the robot follows the ‘‘optimal’’ path
and keeps trying to bypass the walker for a fixed length of time. If
the low-level motion planner does not find a way to bypass the walker
within the time, the robot will take the other way to navigate to the
other side of the walker and continues executing the ‘‘optimal’’ plan
generated by the outdated model. We can see when the robot navigates
between 𝑙𝑜𝑐0 and 𝑙𝑜𝑐2, iCORPP reduces the traveling time from about
250 seconds to about 110 seconds, producing a significant improvement.
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Table 1
Average time (with standard deviations) consumed in navigating between location pairs
when awalker moves near the door of room 𝑟1.

Navigation Positions

Start loc0 loc0 loc0 loc1 loc1 loc2
Goal loc1 loc2 loc3 loc2 loc3 loc3

Strategies Average navigation time (second)

Stationary
policy

193.15
(38.64)

252.47
(29.51)

82.40
(1.38)

59.65
(2.44)

94.81
(1.49)

59.97
(1.03)

iCORPP 151.01
(1.89)

115.82
(1.65)

81.78
(1.74)

60.48
(1.00)

94.86
(1.21)

60.06
(1.22)

Fig. 6. iCORPP enables the robot to adapt to exogenous domain changes (the walker’s
position). Results are processed in batches (each has 50 trials, when available).

We do not see a significant difference for position pairs other than ‘‘0-
1’’ and ‘‘0-2’’, because the walking human is constrained to be near the
door of room 𝑟1.

Results over 8.5 h of experiments (wall-clock time) are shown in
Fig. 6: 224 trials using iCORPP and 112 trials using the baseline of
stationary policies. Without caching, we find the time consumed by
iCORPP (over 54 trials) is distributed over P-log reasoning (𝑇𝑟, 28%),
MDP planning (𝑇𝑝, <1%), and execution (𝑇𝑒, 72%). Compared to the
baseline, iCORPP enables the robot to spend much less time in execu-
tion (𝑇𝑒) in all phases. At the beginning phase, iCORPP requires more
reasoning time for dynamically constructing MDPs, which together
with the less execution time makes the overall time comparable to the
baseline (left ends of Fig. 6). Eventually, the low execution time (𝑇𝑒)
dominates the long-term performance (right ends of Fig. 6), supporting
that iCORPP enables the robot to adapt to exogenous domain changes,
whereas stationary policies cannot.

Fig. 7 shows the office environment where real-robot experiments
were conducted. It includes ten offices, two meeting rooms, and three
research labs. The occupancy-grid map of the environment was gener-
ated using a simultaneous localization and mapping (SLAM) algorithm.
The ‘‘SUN’’ area is an area that is subject to strong sunlight in the
mornings given the current weather being sunny. The default reasoning
capability of P-log supports that a fact of ‘‘under sunlight’’ (or not)
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Fig. 7. iCORPP enables the robot to select ‘‘Route 1’’, successfully avoiding the
‘‘sunlight’’ area along ‘‘Route 2’’. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

can defeat the default belief about sunlight. Such sunlight can blind
the robot’s laser range-finder, and makes the robot unrecoverably lost.
Therefore, the robot needs to reason about the knowledge of current
time and weather to dynamically construct its MDP-based probabilistic
transition system, including the success rate of navigating through the
‘‘SUN’’ area given the current condition. Fig. 7 also shows two routes in
a demonstration trial where the robot needs to navigate from its start
point (‘‘S’’ in the green box) to the goal (‘‘G’’ in the red box).

To test the robot’s behavior adapting to sunlight change, we left
the robot two routes that lead to the goal. For instance, Route 1 is
shorter, but it goes through the area that is currently under sunlight.
Fig. 8 shows screenshots of two trials in which the baseline of stationary
policies and iCORPP were used respectively. iCORPP enables the robot
to select the safer route (Route 2), even though it is longer. the
baseline strategy cannot adapt to the exogenous change of current time
being morning and current weather being sunny, letting the robot still
believe the shorter path is safe. In experiments, we directly encode
such exogenous knowledge to the robot. Demo videos of simulated and
real-robot trials are available at: https://youtu.be/QvuWLuGjsOY

5.3. Algorithm instantiation and evaluations: Spoken dialog systems

In this section, we present an instantiation of iCORPP in a second
evaluation domain, namely spoken dialog system (SDS). The main
difference from mobile robot navigation (Section 5.2) is that the current
state of the world in SDSs (i.e., the dialog state) is partially observable
to the agent. As a result, dialog agents use observations to maintain
a belief over possible dialog states. To account for the partial observ-
ability, we use POMDPs for probabilistic planning in spoken dialog
systems. Accordingly, Step 8 in Algorithm 1, where iCORPP reasons
to compute a prior belief distribution for state estimation, is activated
in this instantiation. Next, we briefly summarize the key components
of complete SDSs, and then present the instantiation details.

A spoken dialog system enables an agent to interact with a human
using speech, and typically has three key components: spoken language
understanding (SLU), dialog management (DM), and natural language
generation (NLG). SLU takes speech from humans and provides se-
mantic representations to a dialog manager; DM uses the semantic
representations to update its internal state 𝑠 and uses a policy 𝜋 to
determine the next language action; and NLG converts the action back
into speech. Despite significant improvements in speech recognition
over the past decades, e.g., the work of Graves et al. [68], it is still a
challenge to reliably understand spoken language, especially in robotic
domains. POMDPs have been used in dialog management (spoken and
text-based) to account for the uncertainties from SLU by maintaining a
distribution (as a POMDP belief state) over all possible user meanings.
Solving a POMDP problem generates a policy that maps the current
belief state to an optimal action (an utterance by the system). Young
et al. [69] reviewed existing POMDP-based spoken dialog systems.
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Fig. 8. Screen shots of two illustrative trials. (a) Using the baseline approach (CORPP),
the robot chose Route 1 that is dangerous but shorter, causing the robot to become
unrecoverably lost in the sunlit area; (b) By reasoning about current time (morning)
and weather (sunny), iCORPP successfully helps the robot take Route 2 to avoid being
trapped in the ‘‘sunlight’’ area, even though the route is longer.

5.3.1. Algorithm instantiation
In a campus environment, the mobile robot can help buy an item

for a person and deliver to a room, so a shopping request is in the
form of ⟨𝑖𝑡𝑒𝑚, 𝑟𝑜𝑜𝑚, 𝑝𝑒𝑟𝑠𝑜𝑛⟩. The ontology of items is shown in Fig. 9.
The distances between rooms are shown in Fig. 5(a). A person can
be either a professor or a student. Registered students are authorized
to use the robot and professors are not unless they paid. The robot
can get access to a database to query about registration and payment
information, but the database may be incomplete. The robot can ini-
tiate spoken dialog to gather information for understanding shopping
requests and take a delivery action when it becomes confident in
the estimation. This task is challenging for the robot because of its
imperfect speech recognition ability. The goal is to identify shopping
requests, e.g., ⟨𝑐𝑜𝑓𝑓𝑒𝑒, 𝑜𝑓𝑓𝑖𝑐𝑒1, 𝑎𝑙𝑖𝑐𝑒⟩, efficiently and accurately. The
original shopping request identification problem, which requires a
spoken dialog system, was presented in our previous work [14].

Unlike the navigation task, the current dialog state is partially
observable to the robot, and has to be estimated using observations
via POMDPs. We use this task to illustrate constructions of POMDP-
based controllers on the fly, and evaluate how iCORPP enables the
robot to adapt to exogenous domain changes (e.g., missing items in the
ontology) and fine-tune its behaviors.

Logical reasoning about states. This domain has the following sorts, 𝛩,
and each sort has a set of objects.

𝚝𝚒𝚖𝚎 ={𝚖𝚘𝚛𝚗𝚒𝚗𝚐, 𝚗𝚘𝚘𝚗,…}. 𝚛𝚘𝚘𝚖 ={𝚛𝟶, 𝚛𝟷,… , 𝚜𝚑𝚘𝚙,…}.

https://youtu.be/QvuWLuGjsOY
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Fig. 9. An ontology of available items used in the ‘‘shopping’’ task. This ontology is
sed for two purposes: (1) the evaluation of iCORPP generating robot behaviors that
dapt to dynamic changes (e.g., missing items in this ontology); and (2) the evaluation
f iCORPP generating fine-tuned behaviors.

𝚎𝚛𝚜𝚘𝚗 ={𝚊𝚕𝚒𝚌𝚎, 𝚋𝚘𝚋,…}. 𝚒𝚝𝚎𝚖 ={𝚛𝚎𝚐𝚞𝚕𝚊𝚛, 𝚍𝚎𝚌𝚊𝚏,…}.

𝚌𝚕𝚊𝚜𝚜 = {𝚒𝚝𝚎𝚖, 𝚍𝚛𝚒𝚗𝚔, 𝚏𝚘𝚘𝚍, 𝚌𝚘𝚏𝚏𝚎𝚎, 𝚜𝚘𝚍𝚊}.

We then define predicate set  ∶ {request,subcls}, where
request(I,R,P) specifies a shopping request of delivering item I to
room R for person P, and subcls(C1C2) claims class C1 to be a subclass
of class C2. Fig. 9 shows the categorical tree that can be represented
using rules:

𝚜𝚞𝚋𝚌𝚕𝚜(𝙲1, 𝙲3) ← 𝚜𝚞𝚋𝚌𝚕𝚜(𝙲1, 𝙲2), 𝚜𝚞𝚋𝚌𝚕𝚜(𝙲2, 𝙲3).

𝚒𝚜(𝙸, 𝙲1) ← 𝚒𝚜(𝙸, 𝙲2), 𝚜𝚞𝚋𝚌𝚕𝚜(𝙲2, 𝙲1).

and other predicates include:

𝚙𝚕𝚊𝚌𝚎(𝙿, 𝚁). 𝚙𝚛𝚘𝚏(𝙿). 𝚜𝚝𝚞𝚍𝚎𝚗𝚝(𝙿). 𝚛𝚎𝚐𝚒𝚜𝚝𝚎𝚛𝚎𝚍(𝙿).

𝚊𝚞𝚝𝚑𝚘𝚛𝚒𝚣𝚎𝚍(𝙿). 𝚙𝚊𝚒𝚍(𝙿). 𝚝𝚊𝚜𝚔(𝙸, 𝚁, 𝙿).

where 𝚙𝚕𝚊𝚌𝚎(𝙿, 𝚁) represents person 𝙿’s working room is 𝚁,
𝚊𝚞𝚝𝚑𝚘𝚛𝚒𝚣𝚎𝚍(𝙿) states P is authorized to place orders, and a ground of
𝚝𝚊𝚜𝚔(𝙸, 𝚁, 𝙿) specifies a shopping request.

The following two logical reasoning rules state that professors who
have paid and students who have registered are authorized to place
orders.

𝚊𝚞𝚝𝚑𝚘𝚛𝚒𝚣𝚎𝚍(𝙿) ← 𝚙𝚊𝚒𝚍(𝙿), 𝚙𝚛𝚘𝚏(𝙿).

𝚊𝚞𝚝𝚑𝚘𝚛𝚒𝚣𝚎𝚍(𝙿) ← 𝚛𝚎𝚐𝚒𝚜𝚝𝚎𝚛𝚎𝚍(𝙿), 𝚜𝚝𝚞𝚍𝚎𝚗𝚝(𝙿).

Since the database can be incomplete about the registration and
payment information, we need default knowledge to reason about
unspecified variables. For instance, if it is unknown that a professor has
paid, we believe the professor has not; if it is unknown that a student
has registered, we believe the student has not.

¬𝚙𝚊𝚒𝚍(𝙿) ← 𝚗𝚘𝚝 𝚙𝚊𝚒𝚍(𝙿), 𝚙𝚛𝚘𝚏(𝙿).

¬𝚛𝚎𝚐𝚒𝚜𝚝𝚎𝚛𝚎𝚍(𝙿) ← 𝚗𝚘𝚝 𝚛𝚎𝚐𝚒𝚜𝚝𝚎𝚛𝚎𝚍(𝙿), 𝚜𝚝𝚞𝚍𝚎𝚗𝚝(𝙿).

ASP is strong in default reasoning in that it allows prioritized de-
faults and exceptions at different levels [17]. There is the Closed World
Assumption (CWA) in logical reasoning for some predicates, e.g., the
below rule guarantees that the value of attribute 𝚊𝚞𝚝𝚑𝚘𝚛𝚒𝚣𝚎𝚍(𝙿) must
be either 𝚝𝚛𝚞𝚎 or 𝚏𝚊𝚕𝚜𝚎 (cannot be unknown):

¬𝚊𝚞𝚝𝚑𝚘𝚛𝚒𝚣𝚎𝚍(𝙿) ← 𝚗𝚘𝚝 𝚊𝚞𝚝𝚑𝚘𝚛𝚒𝚣𝚎𝚍(𝙿).

To identify a shopping request, the robot always starts with collect-
ing all available facts, e.g.,

𝚙𝚛𝚘𝚏(𝚊𝚕𝚒𝚌𝚎). 𝚙𝚛𝚘𝚏(𝚋𝚘𝚋). 𝚙𝚛𝚘𝚏(𝚌𝚊𝚛𝚘𝚕). 𝚜𝚝𝚞𝚍𝚎𝚗𝚝(𝚍𝚊𝚗).

𝚜𝚝𝚞𝚍𝚎𝚗𝚝(𝚎𝚛𝚒𝚗). 𝚙𝚕𝚊𝚌𝚎(𝚊𝚕𝚒𝚌𝚎, 𝚘𝚏𝚏𝚒𝚌𝚎𝟷).

𝚙𝚕𝚊𝚌𝚎(𝚋𝚘𝚋, 𝚘𝚏𝚏𝚒𝚌𝚎𝟸). 𝚙𝚕𝚊𝚌𝚎(𝚎𝚛𝚒𝚗, 𝚕𝚊𝚋).

If the robot also observes facts of 𝚙𝚊𝚒𝚍(𝚊𝚕𝚒𝚌𝚎), 𝚙𝚊𝚒𝚍(𝚋𝚘𝚋) and
𝚛𝚎𝚐𝚒𝚜𝚝𝚎𝚛𝚎𝚍(𝚍𝚊𝚗), reasoning with the above defaults and rules will
imply that 𝚊𝚕𝚒𝚌𝚎, 𝚋𝚘𝚋 and 𝚍𝚊𝚗 are authorized to place orders. Thus,
logical reasoning produces a set of possible worlds by reasoning with
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the rules, facts and defaults. 𝑟
Probabilistic reasoning about states. A set of random functions describes
the possible values of random variables: curr_time, req_item(P),
req_room(P), and req_person. E.g., the two rules below state that
if the delivery is for person P, the value of req_item is randomly
selected from the range of item, unless fixed elsewhere:

𝚛𝚊𝚗𝚍𝚘𝚖(𝚛𝚎𝚚_𝚒𝚝𝚎𝚖(𝙿)). 𝚛𝚎𝚚_𝚒𝚝𝚎𝚖 ∶ 𝚙𝚎𝚛𝚜𝚘𝚗 → 𝚒𝚝𝚎𝚖.

We can then use a pr-atom to specify a probability. For instance,
the rule below states that the probability of delivering coffee in the
morning is 0.8.

𝚙𝚛(𝚛𝚎𝚚_𝚒𝚝𝚎𝚖(𝙿) = 𝚌𝚘𝚏𝚏𝚎𝚎|𝚌𝚞𝚛𝚛_𝚝𝚒𝚖𝚎 = 𝚖𝚘𝚛𝚗𝚒𝚗𝚐) = 0.8.

Such random selection rules and pr-atoms allow us to represent
and reason with commonsense with probabilities. In this domain, the
‘‘req_’’ variables are endogenous, where the agent actively observes
their values. Finally, a shopping request is specified as follows:

𝚝𝚊𝚜𝚔(𝙸, 𝚁, 𝙿) ←𝚛𝚎𝚚_𝚒𝚝𝚎𝚖(𝙿) = 𝙸, 𝚛𝚎𝚚_𝚛𝚘𝚘𝚖(𝙿) = 𝚁,

𝚛𝚎𝚚_𝚙𝚎𝚛𝚜𝚘𝚗 = 𝙿, 𝚊𝚞𝚝𝚑𝚘𝚛𝚒𝚣𝚎𝚍(𝙿).

The P-log reasoner takes queries from the POMDP-based planner
and returns the joint probability. For instance, if it is known that Bob,
as a professor, has paid and the current time is morning, a query for
calculating the probability of ⟨𝚜𝚊𝚗𝚍𝚠𝚒𝚌𝚑, 𝚘𝚏𝚏𝚒𝚌𝚎𝟷, 𝚊𝚕𝚒𝚌𝚎⟩ is of the form:

?{𝚝𝚊𝚜𝚔(𝚜𝚊𝚗𝚍𝚠𝚒𝚌𝚑, 𝚘𝚏𝚏𝚒𝚌𝚎𝟷, 𝚊𝚕𝚒𝚌𝚎)} ∣𝚍𝚘(𝚙𝚊𝚒𝚍(𝚋𝚘𝚋)),

𝚘𝚋𝚜(𝚌𝚞𝚛𝚛_𝚝𝚒𝚖𝚎 = 𝚖𝚘𝚛𝚗𝚒𝚗𝚐).

The fact of 𝚋𝚘𝚋 having paid increases the uncertainty in estimating
the value of 𝚛𝚎𝚚_𝚙𝚎𝚛𝚜𝚘𝚗 by bringing additional possible worlds that
include 𝚛𝚎𝚚_𝚙𝚎𝚛𝚜𝚘𝚗 = 𝚋𝚘𝚋.

Reasoning about actions. The action set is explicitly enumerated as
below.

𝚊𝚌𝚝𝚒𝚘𝚗 ={𝚊𝚜𝚔_𝚒, 𝚊𝚜𝚔_𝚛, 𝚊𝚜𝚔_𝚙, 𝚌𝚘𝚗𝚏_𝚒𝟶, 𝚌𝚘𝚗𝚏_𝚒𝟷,… ,

𝚌𝚘𝚗𝚏_𝚛𝟶, 𝚌𝚘𝚗𝚏_𝚛𝟷,… , 𝚌𝚘𝚗𝚏_𝚙𝟶, 𝚌𝚘𝚗𝚏_𝚙𝟷,… ,

𝚍𝚎𝚕_𝚒𝟶_𝚛𝟶_𝚙𝟶, 𝚍𝚎𝚕_𝚒𝟶_𝚛𝟶_𝚙𝟷,…}

where, ask_’s are general questions (e.g., ask_r corresponds to ‘‘which
room to deliver?’’), conf_’s are confirming questions (e.g., conf_r0
corresponds to ‘‘is this delivery to room0?’’), and del_’s are actions of
deliveries.

For delivery actions, the reward function  maps a state–action pair
to a real number, and is defined as:

(𝑎𝑑𝑒𝑙 , 𝑠) =
{

𝑅+, 𝐢𝐟 𝑎𝑖 ⊙ 𝑠𝑖 𝐚𝐧𝐝 𝑎𝑝 ⊙ 𝑠𝑝 𝐚𝐧𝐝 𝑎𝑟 ⊙ 𝑠𝑟
(

1 − 𝜆𝑖(𝑎𝑖, 𝑠𝑖) ⋅ 𝜆𝑝(𝑎𝑝, 𝑠𝑝) ⋅ 𝜆𝑟(𝑎𝑟, 𝑠𝑟)
)

𝑅−, 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

where operator ⊙ returns true if the action on the left matches the
state on the right in the given dimension (subscript). 𝜆 in the range
of (0, 1) measures the closeness between actual delivery (action) and
underlying request (state) in item, person, and room, respectively. 𝑅+

and 𝑅− are the reward and penalty that a robot can get in extreme cases
(completely correct or completely incorrect deliveries).

We compute the closeness of two items, 𝜆(𝐼1, 𝐼2) by post-processing
the resulting answer set. Specifically, the heuristic closeness function
of two items is defined as:

𝜆𝑖(𝐼1, 𝐼2) = 1 −
𝑚𝑎𝑥

(

𝑑𝑒𝑝(𝐿𝐶𝐴, 𝐼1), 𝑑𝑒𝑝(𝐿𝐶𝐴, 𝐼2)
)

− 1

𝑚𝑎𝑥
(

𝑑𝑒𝑝(𝑟𝑜𝑜𝑡, 𝐼1), 𝑑𝑒𝑝(𝑟𝑜𝑜𝑡, 𝐼2)
) (2)

here LCA is the lowest common ancestor of 𝐼1 and 𝐼2 and dep(C,I) is
he number of nodes (inclusive) between 𝐶 and 𝐼 .

Informally, the closeness of room 𝑅1 to room 𝑅2 is inversely pro-
ortional to the effort needed to recover from a delivery to 𝑅1 given
he request being to 𝑅2. In Fig. 5(a), for instance, a wrong delivery to

0 given the request being to 𝑟1 requires the robot to go back to shop,
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learn the delivery room being 𝑟1, and then move to room 𝑟1. Therefore,
the asymmetric room closeness function is defined as below:

𝜆𝑟(𝑅1, 𝑅2) =
𝑑𝑖𝑠(𝑠ℎ𝑜𝑝, 𝑅2)

2 ⋅ 𝑑𝑖𝑠(𝑠ℎ𝑜𝑝, 𝑅1) + 𝑑𝑖𝑠(𝑠ℎ𝑜𝑝, 𝑅2)
(3)

We simply set 𝜆𝑝 to 1. The costs of question-asking actions are
stationary: (𝑎𝑎𝑠𝑘, 𝑠)=−1, and (𝑎𝑐𝑜𝑛𝑓 , 𝑠)=−2.

Probabilistic planning with POMDPs. A POMDP needs to model all par-
tially observable attributes relevant to the task at hand. In the shopping
request identification problem, an underlying state is composed of an
item, a room and a person. The robot can ask polar questions such
as ‘‘Is this delivery for Alice?’’, and wh-questions such as ‘‘Who is this
delivery for?’’. The robot expects observations of ‘‘yes’’ or ‘‘no’’ after
polar questions and an element from the sets of items, rooms, or persons
after wh-questions. Once the robot becomes confident in the request
estimation, it can take a delivery action that deterministically leads to
a terminating state. Each delivery action specifies a shopping task.

•  ∶ 𝑖 × 𝑟 × 𝑝 ∪ term is the state set. It includes a Cartesian
product of the set of items 𝑖, the set of rooms 𝑟, and the set of
persons 𝑝, and a terminal state term.

•  ∶ 𝑤 ∪ 𝑝 ∪ 𝑑 is the action set. 𝑤 = {𝑎𝑖𝑤, 𝑎
𝑟
𝑤, 𝑎

𝑝
𝑤} includes

actions of asking wh-questions. 𝑝 = 𝑖
𝑝∪

𝑟
𝑝∪

𝑝
𝑝 includes actions

of asking polar questions, where 𝑖
𝑝, 𝑟

𝑝 and 𝑝
𝑝 are the sets of

actions of asking about items, rooms and persons respectively. 𝑑
includes the set of delivery actions. For 𝑎 ∈ 𝑑 , we use 𝑠 ⊙ 𝑎 to
represent that the delivery of 𝑎 matches the underlying state 𝑠
(i.e., a correct delivery) and use 𝑠 ⊘ 𝑎 otherwise.

• 𝑇 ∶  ×  ×  → [0, 1] is the state transition function. Action
𝑎 ∈ 𝑤 ∪𝑝 does not change the state and action 𝑎 ∈ 𝑑 results
in the terminal state term deterministically.

• 𝑍 ∶ 𝑍𝑖 ∪ 𝑍𝑟 ∪ 𝑍𝑝 ∪ {𝑧+, 𝑧−} is the set of observations, where 𝑍𝑖,
𝑍𝑟 and 𝑍𝑝 include observations of action 𝑖𝑡𝑒𝑚, 𝑟𝑜𝑜𝑚 and 𝑝𝑒𝑟𝑠𝑜𝑛
respectively. 𝑧+ and 𝑧− are the positive and negative observations
after polar questions.

• 𝑂 ∶ ××𝑍 → [0, 1] is the observation function. The probabilities
of 𝑂 are empirically hand-coded, e.g., 𝑧+ and 𝑧− are more reliable
than other observations. Learning the probabilities is beyond the
scope of this article.

• 𝑅 ∶  × → R is the reward function. In our case:

𝑅(𝑠, 𝑎) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝑟𝑝, 𝐢𝐟 𝑠 ∈  , 𝑎 ∈ 𝑝

−𝑟𝑤, 𝐢𝐟 𝑠 ∈  , 𝑎 ∈ 𝑤

−𝑟−𝑑 , 𝐢𝐟 𝑠 ∈  , 𝑎 ∈ 𝑑 , 𝑠 ⊘ 𝑎
𝑟+𝑑 , 𝐢𝐟 𝑠 ∈  , 𝑎 ∈ 𝑑 , 𝑠 ⊙ 𝑎

(4)

where we use 𝑟𝑤 and 𝑟𝑝 to specify the costs of asking wh- and
polar questions. 𝑟−𝑑 is a big cost for an incorrect delivery and 𝑟+𝑑 is
a big reward for a correct one. Unless otherwise specified, 𝑟𝑤 = 1,
𝑟𝑝 = 2, 𝑟−𝑑 = 100, and 𝑟+𝑑 = 50.

Consider an example where 𝑖 = {𝑐𝑜𝑓𝑓𝑒𝑒, 𝑠𝑎𝑛𝑑𝑤𝑖𝑐ℎ}, 𝑟 = {𝑙𝑎𝑏},
and 𝑝 = {𝑎𝑙𝑖𝑐𝑒, 𝑏𝑜𝑏}. The state set will be specified as:  =
{𝑐𝑜𝑓𝑓𝑒𝑒_𝑙𝑎𝑏_𝑎𝑙𝑖𝑐𝑒,… , 𝑡𝑒𝑟𝑚} with totally five states, where each state
corresponds to a possible world specified by a set of literals (a 𝚝𝚊𝚜𝚔

in our case), and 𝑡𝑒𝑟𝑚 corresponds to the possible world with no 𝚝𝚊𝚜𝚔.
The corresponding action set  will have 12 actions with |𝑤| = 3,
|𝑝| = 5, and |𝑑 | = 4. Observation set 𝑍 will be of size |𝑍| = 7
including 𝑧+ and 𝑧− for polar questions.

Given a POMDP, we calculate a policy using state-of-the-art POMDP
solvers, e.g., APPL [63]. The policy maps a POMDP belief to an ac-
tion toward maximizing the long-term rewards. Specifically, the policy
enables the robot to take a delivery action only if it is confident
enough about the shopping request that the cost of asking additional
questions is not worth the expected increase in confidence. The policy
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also decides what, to whom and where to deliver. There are attributes
that contribute to calculating the POMDP priors but are irrelevant to
the optimal policy given the prior. The reasoning components shield
such attributes, e.g., 𝚌𝚞𝚛𝚛_𝚝𝚒𝚖𝚎, from the POMDPs.

iCORPP enables the dialog manager (for identifying shopping re-
quests) to combine commonsense reasoning with probabilistic plan-
ning. For instance, reasoning with the commonsense rule of ‘‘people
usually buy coffee in the morning’’ and the fact of current time being
morning, our robot prefers ‘‘Would you want to buy coffee?’’ to a wh-
question such as ‘‘What item do you want?’’ in initiating a conversation.
At the same time, the POMDP-based planner ensures the robustness to
speech recognition errors.

5.3.2. Experiments using spoken dialog systems
We first define three straightforward policies that gather informa-

tion in a pre-defined way. They serve as comparison points representing
easy-to-define hand-coded policies.

• Defined-1 allows the robot to take actions from 𝑤;
• Defined-2 allows actions from 𝑝; and
• Defined-3 allows actions from 𝑤 ∪𝑝.

We further define a 𝑟𝑜𝑢𝑛𝑑 as taking all allowed actions, once for
each. In the end of a trial, the robot finds the shopping request
(corresponding to state 𝑠) that it is most certain about and then takes
action 𝑎 ∈ 𝑑 to maximize the probability of 𝑠 ⊙ 𝑎. The robot does
not necessarily have full and/or accurate probabilistic commonsense
knowledge. We distinguish the probabilistic knowledge provided to the
robot based on its availability and accuracy. Each data point in the
figures in this section is the average of at least 10,000 simulated trials.

• All: the robot can get access to the knowledge described in
Section 5.3 in a complete and accurate way;

• Limited: the accessibility to the knowledge is the same as ‘‘All’’
except that current time is hidden from the robot.

• Inaccurate: the accessibility to the knowledge is the same as
‘‘All’’ except that the value of current time is always wrong.

We compared the POMDP-based probabilistic planner against the
three defined information gathering policies. All start with uniform 𝛼
meaning that all worlds are equally probable. The defined policies can
gather information by taking multiple rounds of actions. The results are
shown as the hollow markers in Fig. 10. The POMDP-based controller
enables the delivery requests to be correctly identified in more than
90% of the trials with costs of about 14.3 units on average (black
hollow square) with the imperfect sensing ability. In contrast, the
defined policies need more cost (e.g., about 44 units for Defined-2) to
achieve comparable accuracy (red hollow circle). Therefore, POMDP-
based planning enables efficient and accurate information gathering
and behavior in identifying delivery requests.

In the following figures, we use LR, PR, and PP to represent logical
reasoning, probabilistic reasoning, and probabilistic planning respec-
tively.

To evaluate Hypothesis-I (integrated POMDP-based probabilistic
planning with logical reasoning), the POMDP-based controller and the
three defined policies are next combined with logical reasoning. Here,
logical reasoning is realized using logical rules, defaults, and facts, and
results are shown as the solid markers in Fig. 10. Without probabilistic
knowledge, we can only assume all logically possible worlds to be
equally probable in calculating the prior 𝛼. We can see the combina-
tion of logical reasoning and POMDP-based planning performs better
than the combination of LR and the three defined planning policies—
see the solid markers. Furthermore, comparing to the corresponding
hollow markers, we can see adding logical knowledge improves the
performance of both probabilistic planning and the defined policies.
Specifically, logical reasoning enables the POMDP-based planner to re-
duce the average cost to about 10.5 units without hurting the accuracy.

Logical reasoning reduces the number of possible worlds (from 40 to 24



Robotics and Autonomous Systems 174 (2024) 104613S. Zhang et al.

r
h

b
o
r
r
t
n
v

t
o
i
o
t
a
r

F
t
g
r
a
o
t
t
l
r
a

c
n
a
t
i
f

Fig. 10. POMDP-based probabilistic planner performs better than the defined baseline
policies in efficiency and accuracy; and combining PP with logical reasoner further
improves the performance (Hypothesis-I). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

in our case), which enables POMDP solvers to calculate more accurate
action policies in reasonable time (an hour in our case) and reduces the
uncertainty in state estimation.

Next, we focus on evaluating Hypothesis-II: integrated logical-
probabilistic reasoning and probabilistic planning (referred to as
LR+PR+PP) performs better than ‘‘planning only’’ (referred to as PP)
and ‘‘integrated logical reasoning and probabilistic planning’’ (referred
to as LR+PP). We provide the probabilistic commonsense knowledge to
the robot at different completeness and accuracy levels—learning the
probabilities is beyond the scope of this article. Experimental results are
shown in Fig. 11.6 Each set of experiments has three data points because
we assigned different penalties to incorrect identifications in PP (𝑟−𝑑
equals 10, 60 and 100). Generally, a larger penalty requires the robot
to ask more questions before taking a delivery action. POMDP-based
probabilistic planning without commonsense reasoning (blue rightward
triangle) produced the worst results. Combining logical reasoning with
probabilistic planning (magenta leftward triangle) improves the perfor-
mance by reducing the number of possible worlds. Adding inaccurate
probabilistic commonsense (green upward triangle) hurts the accuracy
significantly when the penalty of incorrect identifications is small.
Reasoning with limited probabilistic commonsense requires much less
cost and results in higher (or at least similar) accuracy on average, com-
pared to planning without probabilistic reasoning. Finally, the proposed
algorithm, iCORPP, produced the best performance in both efficiency
and accuracy. We also find that the POMDP-based PP enables the
robot to recover from inaccurate knowledge by actively gathering more
information—compare the right ends of the ‘‘limited’’ and ‘‘inaccurate’’
curves.

For completeness, we evaluated the performance of pure logical-
probabilistic reasoning (about 𝑆 ), where information gathering ac-
tions are not allowed. The robot uses all knowledge to determine the
most likely delivery request (in case of a tie, it randomly chooses one
from the most likely ones). The reasoning takes essentially no time and
the average accuracy is only 0.193, which is significantly lower than
strategies that involve POMDP-based active information gathering.

In the next experiment, we aim at evaluating Hypothesis-III, i.e.,
iCORPP enables to fine-tune agent behaviors at a level, where a com-
parable hand-coded controller requires a prohibitively large number of
parameters. The spoken dialog system includes four items, three rooms
and two persons, resulting in a relatively small state space. We give the
robot the ontology of items, as shown in Fig. 9. The hidden shopping
request was randomly selected in each trial. Speech recognition errors
are modeled, e.g., 0.8 accuracy in recognizing answers of confirming

6 A part of Fig. 11 appeared in a previous article that focused on a
obot software architecture, called Building Wide Intelligence (BWI), for
uman–robot interaction in general [5].
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Fig. 11. iCORPP performs better than the other approaches in both efficiency and ac-
curacy (Hypothesis-II). iCORPP with complete and accurate knowledge, corresponding
to the curve with circle markers, produces the best performance, while the agent is
able to recover from ‘‘inaccurate’’ knowledge by asking more clarification questions
(corresponding to the higher identification cost). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

questions and a lower accuracy for general questions (depending on
the number of that sort’s objects).

Fig. 12 shows the numbers of mistakes made by the robot. In the
default and cautious versions of iCORPP, the values of [𝑅+, 𝑅−] are
[20,−20] and [30,−30] respectively. The first observation is that the
baseline method that builds on a stationary POMDP-based policy makes
no difference in either item (Left) or room (Right), because it does
not reason about the reward system—incorrect deliveries are not dif-
ferentiated and all receive the same penalty. In contrast, both versions
of iCORPP enable the robot to behave in such a way that the robot
makes the fewest mistakes in cookie (Left) and room r2 (Right). Such
ehaviors match our expectations: cookie is ‘‘very different’’ from the
ther three items and r2 has the greatest distance from the shop, so the
obot should make effort to avoid delivering cookie (or delivering to
2) when that is not requested. Without iCORPP, to achieve such fine-
uned behaviors, there will be 600 parameters in the reward function
eed to be handcoded, which is impossible from a practical point of
iew, which supports Hypothesis III.

The second (side) observation from Fig. 12 is that one can adjust
he robot’s ‘‘cautious level’’ (overall success rate) by tuning the values
f [𝑅+, 𝑅−]. Comparing the default versions of stationary policy and
CORPP, we see the default iCORPP producing more mistakes, because
ur implementation of iCORPP gave partial credits to less severe mis-
akes. To avoid introducing extra mistakes, one can adjust [𝑅+, 𝑅−],
s was done in our previous work [14], or instead give extra bonus
ewards to mistake-free trials.

To better understand the robot’s behavior (specifically, the Right of
ig. 12), we manually remove the uncertainties in item and person in
he initial belief, and visualize which action the POMDP policy suggests
iven different initial beliefs in room. In the Right of Fig. 13, we see the
obot is relatively more cautious in delivering to r1 and r2 (the green
nd yellow areas in the top and left corners are smaller than the red
ne in the right), because rooms r1 and r2 are relatively far away from
he shop, as shown in Fig. 5(a). It is very difficult to achieve such fine-
uned behaviors from hand-coded models, because of the prohibitively
arge number of parameters in the reward system. In contrast, iCORPP
easons with logical-probabilistic knowledge to construct the transition
nd reward systems (Section 5.3.1).

Fig. 14 shows the results of the shopping task when exogenous
hanges are added: items can be temporarily unavailable. iCORPP dy-
amically constructs POMDPs: when items are known to be unavail-
ble, states of these items being requested and actions of delivering
hese items are removed from the POMDP. For instance, when three
tems are unavailable, the numbers of states and actions are reduced
rom (37, 50) to (18, 29). As a result, iCORPP performs better in both

accuracy and overall reward (y-axes in Fig. 14) when more items are
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Fig. 12. iCORPP enables the robot to fine-tune its behavior in delivering different items to different rooms. The 𝑥-axis and 𝑦-axis correspond to the incorrect deliveries and the
umber of mistakes (over 100𝑘 trials). It should be noted that reducing the number of mistakes is not the goal in this experiment, as it can be easily achieved by increasing the
enalty of failures in dialog [14].
Fig. 13. A visualization of a POMDP-based policy where all wrong deliveries are equally penalized (baseline), and the iCORPP policy where the reward function is computed via
ogical-probabilistic reasoning. In this experiment, the person wants to deliver to one of the three rooms. Each point in the two subfigures corresponds to a belief. Each color
orresponds to an action: white corresponds to the general question of ‘‘which room to deliver’’; the colors in the corners correspond to delivery actions; and the remaining three
olors correspond to confirming questions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. iCORPP performs increasingly well in accuracy and overall reward in the shopping task when more items are known to be unavailable: the baseline (stationary model)
corresponds to the left ends of the two curves, where the baseline model has to include all items.
known to be unavailable (x-axes in Fig. 14). In contrast, the base-
line, using a static POMDP, must include all items (assuming no item
unavailable), because it cannot adapt to exogenous changes. So the
baseline’s performance corresponds to the left ends of the two curves.
Results shown in Fig. 14 support that iCORPP enables the robot to
adapt to exogenous domain changes, whereas stationary policies do not
(Hypothesis-IV). A demo video is available at this link: http://youtu.be/
2UJG4-ejVww.

6. Conclusions and future work

This article introduces a novel algorithm called iCORPP that uses
ommonsense reasoning to dynamically construct (PO)MDPs for scal-
ble, adaptive robot planning. iCORPP uses declarative language P-log
or logical-probabilistic knowledge representation and reasoning, and
15
uses probabilistic graphical models, such as (PO)MDPs, for probabilistic
planning. This article, for the first time, enables robot behaviors to
adapt to exogenous domain changes without including these exogenous
attributes in probabilistic planning models. iCORPP has been evaluated
both in simulation and on a real robot. We observed significant im-
provements comparing to competitive baselines (including hand-coded
action policies), based on experiments using problems of mobile robot
navigation and spoken dialog systems in an office environment.

Applicability of iCORPP:
iCORPP decomposes a problem of sequential decision-making un-

der uncertainty into two subproblems of commonsense reasoning and
probabilistic planning that respectively focus on the ‘‘curse of dimen-
sionality’’ and the ‘‘curse of history’’ – as elaborated in [9]. In this

process, commonsense reasoning aims to understand the current state

http://youtu.be/2UJG4-ejVww
http://youtu.be/2UJG4-ejVww
http://youtu.be/2UJG4-ejVww
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and dynamics of the world, and probabilistic planning focuses on task-
oriented action selection toward goal achievement. Therefore, iCORPP
significantly reduces the complexity of (PO)MDP planning compared
to its one-shot solution, while enabling robot behaviors to adapt to
exogenous changes.

Consider a mobile robot navigation domain from Section 5.2 that
includes only thirty positions, five weather conditions, and three times.
There are human walkers who can probabilistically disrupt the robot’s
navigation actions. One can naively enumerate all combinations of
attribute values [60]. The enumeration produces a large number of
states,

𝑁 = |𝐿𝑜𝑐| ⋅ 22×|𝐿𝑜𝑐| ⋅ |𝑊 𝑒𝑎𝑡ℎ𝑒𝑟| ⋅ |𝑇 𝑖𝑚𝑒| ⋅ |𝑇 𝑒𝑟𝑚|

where 𝐿𝑜𝑐, 𝑊 𝑒𝑎𝑡ℎ𝑒𝑟, and 𝑇 𝑖𝑚𝑒 are sets of locations, weathers, and
times respectively. The value of |𝑇 𝑒𝑟𝑚| is 2, where 𝑡𝑒𝑟𝑚 ∈ 𝑇 𝑒𝑟𝑚 can
be true or false, used for identifying the end of an episode. Back to
this small domain, naive enumeration produces more than 2ˆ69 states,

aking it impossible to produce a meaningful policy in a reasonable
mount of time. In comparison, the MDP constructed by iCORPP in-
ludes only 60 states (|𝐿𝑜𝑐| ⋅ |𝑇 𝑒𝑟𝑚|), and can be readily handled using
ff-the-shelf planning systems.

efault reasoning. We use defaults when a complete world model is un-
vailable or reasoning with such models requires prohibitive computing
esources. Continuing the above-mentioned navigation example, it is
ossible that the Weather variable’s value could not be observed in the
nvironment for reasons such as sensor failures. In that case, the robot
as at least the two options: (1) reasoning with defaults (e.g., assuming
he weather is sunny), and (2) inferring the weather based on fully
bservable evidence. For instance, people holding an umbrella and
et ground can be evidence of rainy days. However, the introduction
f new domain variables and their interdependencies increases the
omplexity of at least the reasoning subproblem. For practical reasons,
CORPP practitioners might want to assign default values to avoid the
‘curse of dimensionality’’ in reasoning, where the defaults can be ‘‘de-
eated’’ when their corresponding values can be extracted from the real
orld. Generally, there is the trade-off between model completeness
nd computational tractability, and default reasoning (well supported
y P-log) provides a realization of such trade-offs.

napplicability. iCORPP is inapplicable when reasoning or planning is
nnecessary. In the extreme, when there are no exogenous variables,
easoning becomes unnecessary; when there are no endogenous vari-
bles, planning becomes unnecessary. There is also a ‘‘gray area’’,
here iCORPP can be less effective. For instance, when the provided
nowledge is generally useful but less relevant to the current task, the
easoning results from iCORPP will not be useful for action selections in
he planning steps. The evaluation of iCORPP’s effectiveness in general
s difficult, but case-by-case analyses can be conducted by iCORPP
ractitioners.

losed-world assumption (CWA). There is usually a CWA in logical
easoning, which we adopt in Algorithm 1 (Line 4), meaning that what
s not currently known to be true is believed false. CWA ensures that
very variable (exogenous or endogenous) has a value in each possible
orld. More precisely, under CWA, each entry in 𝑤𝑐𝑝𝑙𝑡 ∶= [𝑣𝑒𝑛0 , 𝑣𝑒𝑛1 ,…]

n Line 4 of Algorithm 1 has a value. Without CWA, it becomes an open
uestion how to deal with statements on variables that are neither true
or false, making it very hard to specify the state space. The default
easoning capability of ASP facilitates our implementation of CWA, and
he default values can be easily defeated by facts when available. The
eneral applicability of iCORPP under Open-World Assumption (OWA)
s beyond the scope of this article.
16
Future work:
There are a number of ways to make further progress in this line

of research. First, learning is not incorporated into iCORPP. We are
currently investigating improving iCORPP by using supervised learning
to help estimate the current world state [70] and using model-based
reinforcement learning to update declaratively-represented world dy-
namics [52]. The logical-probabilistic knowledge base is manually
encoded, whereas data mining algorithms [71] and publicly available
knowledge bases, such as Open Mind Common Sense (OMCS) [72] and
ConceptNet [73], can be used to augment the knowledge base. Second,
other reasoning and planning paradigms can be used to further improve
the system performance. For instance, Markov Logic Networks [2]
and Probabilistic Soft Logic [23] have well maintained systems that
can potentially improve the reasoning component of iCORPP. Third,
iCORPP assumes the current world state is either fully observable or
all variables are partially observable. There is the potential of applying
iCORPP to domains with more complex observabilities, e.g., mixed
observability as investigated in our recent research [74]. Given that
robots’ long-term autonomy capabilities continue to improve, we can
conduct more experiments to evaluate the performance of iCORPP
under different conditions. For instance, robots with relatively weak
perception capabilities can better benefit from iCORPP’s reasoning ca-
pability, whereas iCORPP’s planning capability (for active perception)
is relatively more important in highly dynamic environments. Such
hypotheses can be evaluated using real robots in the future.

The recent advances in pretrained large language models (LLMs),
e.g., GPT-3 [75], ChatGPT [76], and LLaMA [77], have reshaped the
landscape of AI. iCORPP assumes that the domain knowledge is pro-
vided by a human, and the goals are provided in a rule-based formal
way. LLMs have made it possible to remove those assumptions. For
instance, our recent work has demonstrated that LLMs allow the plan-
ning goals to be specified in natural language [78], and knowledge can
be extracted from LLMs to assist classical planning [79,80]. Whether
stand-alone LLMs can be used for planning is still an open question.
While there are successes on LLM-based planning demonstrated in
recent literature, e.g., [81,82], there are many domains where LLM-
based planning systems do not perform well [83]. Instead of directly
addressing the long-horizon challenge, iCORPP provides one way of
decomposing sequential decision-making tasks into the two subtasks of
reasoning and planning. In this article, the decomposition strategy is
manually defined, but LLMs can potentially introduce new approaches
for generating more manageable subtasks [84], which may lead to very
interesting future research.
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