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Abstract

While existing vision and multi-modal foundation models

can handle multiple computer vision tasks, they often suf-

fer from significant limitations, including huge demand for

data and computational resources during training and in-

consistent performance across vision tasks at deployment

time. To address these challenges, we introduce Argus1
,

a compact and versatile vision foundation model designed

to support a wide range of vision tasks through a unified

multitask architecture. Argus employs a two-stage train-

ing strategy: (i) multitask pretraining over core vision tasks

with a shared backbone that includes a lightweight adapter

to inject task-specific inductive biases, and (ii) scalable and

efficient adaptation to new tasks by fine-tuning only the

task-specific decoders. Extensive evaluations demonstrate

that Argus, despite its relatively compact and training-

efficient design of merely 100M backbone parameters (only

13.6% of which are trained using 1.6M images), competes

with and even surpasses much larger models. Compared to

state-of-the-art foundation models, Argus not only covers

a broader set of vision tasks but also matches or outper-

forms the models with similar sizes on 12 tasks. We expect

that Argus will accelerate the real-world adoption of vi-

sion foundation models in resource-constrained scenarios.

1. Introduction
Vision foundation models (VFMs) [28, 85] have emerged as
powerful models for tackling a broad range of vision tasks,
such as image classification, object detection, segmenta-
tion, and more. To achieve exceptional transferability, early
VFMs [7, 29, 57] focus on learning universal visual fea-
ture representations via supervised or self-supervised learn-
ing on large-scale datasets, allowing them to generalize
well across tasks without requiring extensive customization.
However, the substantial costs in task modeling through

*corresponding author; {weiming.zhuang, lingjuan.lv}@sony.com
1The name comes from Argus Panoptes – a hundred-eyed giant with

“all-seeing” capability in Greek mythology.
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tasks, outperforming existing foundation models such as Florence-
2 [75], GLID [43], and Uniperceiver v2 [36]. Adapted DI-
NOv2 [57] refers to DINOv2 plus the same decoders as ours (de-
tails in Sec. 3.3). Numbers indicate Argus’s performance. * de-
notes tasks with metrics where the lower is better, for which we
reversed the axis direction to align with other tasks for illustration.

end-to-end fine-tuning limit the practicality of such repre-
sentation learning methods in meeting the rapidly growing
demands of real-world vision applications [36].

Beyond the remarkable success achieved by large lan-
guage models on individual tasks [6, 19], recent studies of
VFMs emphasize task unification, which reformulates sev-
eral vision tasks to share a common input-output structure
handled by a unified model [36, 43, 50, 51, 75]. This ap-
proach aims to reduce model redundancy and to facilitate
task collaboration [58]. Motivated by sequence-to-sequence
modeling [9, 10, 68], transformer encoders are used to en-
code images and other visual modalities into patch tokens,
which are then processed and parsed into specific vision
outputs by transformer decoders. However, they are not ver-
satile with new tasks, as they require substantial data and
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Figure 2. An overview of the 12 computer vision tasks supported by Argus. These figures are the prediction results of Argus. More
examples are presented in Appendix E.

computational resources to retrain or fine-tune, due to the
lack of task-specific inductive biases in their decoder de-
sign [45]. Alternatively, an intuitive yet relatively under-
studied approach to handling more tasks in VFM is to adopt
a multitasking architecture [15, 88]. This technique incor-
porates multiple tasks’ knowledge into one model, poten-
tially enhancing performance across various vision tasks.

In this work, we introduce Argus, a compact and versa-
tile VFM that combines the strengths of the representation
learning and task unification paradigms through a multitask
architecture, extending the support to a diverse set of vision
tasks shown in Fig. 2. To address the challenge of task in-
terference—where tasks compete and hinder the learning of
shared structures, we propose a two-stage training strategy
(as depicted in Fig. 3):

(i) Multitask Pretraining: Argus is pretrained on a core
set of vision tasks, spanning image-level, region-level, and
pixel-level perceptions, using a shared backbone and multi-
ple task-specific decoders. Instead of training from scratch,
Argus is trained efficiently by leveraging strong represen-
tations from a pretrained ViT (e.g., DINOv2 [57]) and only
trains a tailored adapter, whose parameters comprise just
13.6% of the backbone. The adapter injects task-specific
visual knowledge missing in the pretrained ViT and learns
a unified representation that supports diverse tasks.

(ii) Task-Specific Adaptation: this stage fine-tunes only
new decoders while keeping the backbone frozen for all
tasks. This approach enables Argus to progressively ex-
pand its capabilities to new tasks and remain compatible
with the advancements in task-specific techniques, such as
the latest decoders, simply by appending the decoders to our
pretrained backbone, as illustrated in Fig. 3b.

We conduct extensive experiments across 12 vision
tasks (Fig. 2) and compare Argus with the latest vision
and multi-modal foundation models, including Florence-
1&2 [75, 85], Unified-IO 1&2 [50, 51], Uni-Perceiver
v2 [36], 4M [53], and more. Argus not only demonstrates

a wider task coverage (as shown in Fig. 1), it also deliv-
ers stronger performance, achieving the top spot on 10 vi-
sion tasks out of 12 and ranking second on object detec-
tion and classification. Notably, Argus surpasses methods
that use significantly larger models. With around 100M pa-
rameters, Argus achieves 56.5% mIoU on the challenging
ADE20K semantic segmentation dataset [91, 92], outper-
forming models like Florence-2 Base with 232M parame-
ters. Compared with huge models, such as Unified-IO XL
with 2.9 billion parameters and Unified-IO 2 with 1.1 billion
parameters, Argus excels in performance on classification,
object detection, and depth estimation. We summarize our
main contributions as follows:
• We introduce Argus, a new VFM trained via multitask

learning and scalable task-specific adaptation. Argus

is highly extensible, allowing efficient adaptation to new
tasks by leveraging advanced, task-specific decoders.

• We improve the adapter design that enables ViTs to per-
form multitask learning effectively, achieving compelling
performance while making pretrained ViTs scalable and
adaptable to various vision tasks efficiently.

• We conduct extensive experiments on 12 representative
computer vision tasks. Argus outperforms existing
VFMs and multimodal FMs on most tasks, demonstrat-
ing its scalability and effectiveness.

2. Related Work
2.1. Large-scale Foundation Models
The Vision Transformer (ViT) [18] has emerged as a leading
model architecture for vision foundation models (VFMs)
as it scales effectively with large datasets and computa-
tional resources. These models are normally trained on
large amounts of data to learn generic feature representa-
tions. For example, DINO (DIstillation with NO labels) [7]
and DINOv2 [16, 57] learn powerful visual representations
through self-supervised learning without any labeled data.



Such generic pretrained models are usually adapted to
downstream tasks by fine-tuning into task-specific special-

ist models. This approach is widely adopted in existing
VFMs, such as Florence [85], InternImage [73], BEiT [72],
Eva[20], and AM-RADIO [60]. For instance, Florence [85]
first pretrains on 900M privately curated image-text pairs
and then further pretrains its object detection model on a
large-scale detection dataset (FLOD-9M). Although such
specialist models can achieve strong performance, the costs
of adapting them to other tasks and managing distinct back-
bone parameters for different tasks can escalate signifi-
cantly as demands for downstream applications grow.

To address these limitations, recent works focus on de-
veloping generalist models that handle various tasks within
a single model. For example, Uni-Perceiver [94] and its
successor, Uni-Perceiver v2 [36], use a unified transformer
architecture but still lack support for important industrial
tasks like depth and pose estimation. Models such as
4M [53], Unified-IO 1&2 [50, 51], and Florence-2 [75]
adopt transformer-based encoder-decoder architectures to
learn across tasks or modalities, but require vast training
datasets (e.g., Unified-IO 2 with 1 billion image-text pairs,
Florence-2 with 126M images and 5 billion annotations)
and often underperform on key vision tasks like object de-
tection. The recent GLID model [43] addresses adaptability
with small linear heads but faces flexibility issues due to its
shared transformer decoder, limiting its compatibility with
the latest task-optimized decoders.

In this work, we aim to offer a compact, training-
efficient, scalable and well-performing VFM to better serve
various real-world vision applications. Existing VFMs,
however, have yet to fully meet these requirements.

2.2. Multitask Learning
Multitask learning (MTL) has become a popular method for
generalizing models to handle multiple tasks [8, 15, 69, 71,
88]. By leveraging shared information across tasks, MTL
enhances learning through added context and eliminates the
need of separate models for different tasks, which results in
a more robust and versatile systems [22, 66, 71].

As the main challenge in MTL is managing task interfer-
ence, where tasks compete for shared resources, hindering
optimal learning, research on MTL generally follows two
main approaches. The first approach focuses on balancing
tasks via loss balancing or gradient balancing. Loss balanc-
ing adjusts the contribution of each task to the overall objec-
tive function, ensuring that individual task losses are prop-
erly weighted [14, 31, 39, 44]. Gradient balancing, on the
other hand, equalizes the influence of each task on model
updates by adjusting gradients, regardless of differences in
task scale or complexity [11, 21, 41, 42, 56, 63, 64, 74, 84].

The second approach focuses on tailoring the network
architecture to accommodate diverse tasks while minimiz-
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(b) Stage 2: Scalable and Efficient Task-specific Adaptation

Figure 3. Overview of the training process of Argus. The mul-
titask pretraining in stage 1 derives a strong backbone, enabling
scalable adaptation to new tasks in stage 2 with frozen backbone.

ing negative transfer among them [30, 69, 89]. It encom-
passes two main directions: encoder-focused and decoder-
focused techniques. The former customizes the shared
backbone structure [5, 24, 25, 44, 52, 80, 81], whereas the
latter adopts customized task decoders to address task con-
flict [4, 54, 67, 70, 78, 80, 82, 93].

We follow the encoder-focused approach, leveraging a
customized shared backbone with multiple standalone task-
specific decoders. It is extensible to new tasks and compat-
ible with new advanced task-specific decoders. Built on the
robust and general-purpose features of DINOv2 [57], this
setup transforms the originally task-agnostic backbone into
a task-aware architecture that enhances performance across
various downstream tasks, while maintaining flexibility and
simplicity in handling diverse objectives.

3. Methodology

We present Argus, designed to be compact and efficient in
training and capable of performing a variety of vision tasks
with a unified multitask architecture. Fig. 3 depicts the two-
stage training approach of Argus. In the first stage, we
pretrain the model using multitask learning across a set of
core tasks, with a backbone consisting of a frozen ViT and a
lightweight trainable adapter (only 13.6% of the backbone).
This approach produces a strong backbone capable of gen-
erating high-quality features for diverse vision tasks. In the
second stage, we freeze the entire backbone and expand the
model’s capability to new tasks with scalable task-specific
decoder adaptations. In the following, we describe this two-
stage training approach in detail.
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Figure 4. Overview of the Argus model architecture. The backbone consists of a Vision Transformer (ViT) and an adapter. The adapter
includes a spatial prior module for spatial feature extraction, injector and extractor modules for interacting features with the ViT blocks,
and a projection module for final feature aggregation and normalization. Key recipes for effective multitask learning are highlighted: (a)
freezing the pretrained ViT and training only the adapter and decoders in multitask pretraining; (b) replacing all the batch normalization
layers with group normalization (GN) layers in the adapter; (c) scaling ViT features before interactions between ViT blocks and the adapter.

3.1. Multitask Pretraining (Stage 1)
Multitask Formulation. Let T > 1 be the number of
core tasks and ωt(ε) denote the loss of task t given model
parameter ε. The goal of multitask pretraining is to mini-
mize the weighted average loss across all core tasks,

ε→ = argmin
ω

{
ωMTL(ε) :=

T∑

t=1

ϑt ωt(ε)

}
, (1)

where ϑt is the weighting factor for task t.
We conduct multitask pretraining across a selected set of

core tasks: object detection, instance segmentation, seman-
tic segmentation, pose estimation, and classification. These
tasks cover diverse data formats, decoding paradigms, and
output densities, spanning image-level classification for
capturing high-level semantics (classification), region-level
understanding for object and entity localization (object de-
tection, instance segmentation and pose estimation), and
pixel-level perception for fine-grained image analysis (seg-
mentation). This diversity enables the model to learn robust
and versatile features, allowing it to adapt to a broader range
of tasks. We ablate the choice of core tasks in Sec. 4.3.

Model. Fig. 4 depicts the model architecture of Argus.
The backbone is shared with all the tasks, while each task
has its own decoder. The backbone of Argus consists of a
ViT initialized with DINOv2 weights [16] and a randomly
initialized adapter [12]. Leveraging DINOv2’s powerful
representations for both image-level and pixel-level tasks,
the adapter enhances the capability by introducing vision-
specific inductive biases such as the multiscale features that
strengthen performance in region-based tasks, e.g., object
detection, as shown in Fig. 1.

Our adapter design enhances ViT-Adapter [12], with
modifications tailored specifically for MTL. The adapter
contains a convolutional spatial prior module (SPM) that
introduces multiscale features, along with N interaction
blocks, each containing an injector and an extractor to inter-
act the multiscale adapter features bidirectionally with the
single-scale ViT features Fvit via cross-attentions. To be
specific, the multiscale spatial feature Fsp is formed by flat-
tening and concatenating the outputs {F1,F2,F3} of SPM,
which have resolutions at 1

8 , 1
16 , and 1

32 of the input image
size, respectively. In addition, SPM also produces F0 at
1
4 resolution, which is sent to output without participating
in interaction blocks. The ViT’s output patch tokens, with
the resolution 1

16 , are added to the multiscale adapter fea-
tures {F0,FN

1 ,FN
2 ,FN

3 } after spatial interpolation. This
approach fully leverages the strong DINOv2 features, re-
quiring the adapter to learn only the residuals necessary to
enhance the feature quality. We provide more details about
the adapter in Appendix A.1.

Recipes for Improved Adapter Design in MTL. The
original ViT-Adapter [12] struggles in MTL setting, suffer-
ing from the negative transfer across tasks. To address this
issue, we introduce several key architectural modifications
that improve the performance as follows.

(a) Freezing the ViT. Unlike the standard practice in ViT-
Adapter that trains all parameters, we empirically found that
freezing the ViT accelerates convergence and improves gen-
eralization. By retaining the pretrained DINOv2 weights,
we prevent catastrophic forgetting—the loss of previously
learned knowledge [32]—and significantly reduce the train-
able parameters (down to 13.6%). Thence the model can
leverage the full representational power of DINOv2 during
training, rather than using it merely as initialization.



(b) Replacing Batch Normalization (BN) With Group

Normalization (GN). We observed that using BN led to sub-
optimal performance, as different tasks share the same set
of BN statistics during inference, but they are conflicting
across tasks. To resolve this, we replace all BN layers in the
adapter with GN layers, leading to consistent performance
improvements across all tasks.

(c) Scaling ViT Features Before Interaction. The to-
ken norms in ViT increase progressively after each layer,
causing the adapter to interact with tokens of varying norm
scales. To counter this, we scale the ViT tokens per image
before interaction by a factor of

→
d/↑x↑2, where d is the

feature dimension and ↑x↑2 is the average L2 norm of to-
kens. After passing through the injector module, we unscale
the tokens to their original scale. This approach enables the
adapter to interact with tokens that have a stable norm.

3.2. Scalable Task-Specific Adaptation (Stage 2)
Following the multitask pretraining, we efficiently extend
Argus to various vision tasks by freezing the entire back-
bone and only fine-tuning task-specific decoders. All tasks
leverage the shared backbone while using their individual
decoders. Unlike other FMs that either produce a special-
ist model after fine-tuning [85] or require extensive retrain-
ing to cover new tasks [36, 50, 51, 94], Argus naturally
evolves as a versatile model, easily adaptable to additional
tasks by adding new decoders.

In this work, we scale Argus to support 12 important
vision tasks, as shown in Fig. 2. For tasks requiring mul-
tiscale features, like object detection, the decoders forward
these features from the backbone directly. For tasks that
do not need multiscale features, such as classification, we
flatten and concatenate the features from the backbone be-
fore passing them to the decoder. We then train the task-
specific decoders using their corresponding loss functions
with backbone frozen.

3.3. Implementation Details
Training Procedure of MTL. Our MTL implements a
multi-input paradigm [38], where each task utilizes its own
dedicated dataset. The total loss is computed as a weighted
sum of task-specific losses, where each loss is scaled by
its task weight. To improve training efficiency, we devel-
oped a new MTL framework and implemented automatic
mixed-precision training, enabling all core MTL tasks to fit
within a single GPU’s memory. This optimization allows us
to leverage Distributed Data Parallel (DDP) for multi-GPU
training. More details can be found in Appendix A.2.

Preserving the ViT Structure. ViT-Adapter [12] modi-
fies the ViT structure by replacing self-attention with win-
dow attention [1] to reduce time and memory. Instead, we
retain the original ViT structure as we aim to preserve the

DINOv2’s pretrained knowledge. To improve efficiency
without altering the architecture, we leverage the efficient
attention library from xFormers [34]. Furthermore, ViT-
Adapter changes DINOv2’s patch embedding from 14↓14
to 16↓16 to align with the adapter’s patch size. Instead
of modifying the embedding weights, we rescale the image
resolution by 14/16. Finally, we keep the class token and
register tokens intact while ViT-Adapter discards them.

Task-Specific Decoders. In the multitask pretraining
stage, we use the Mask DINO [35] as the decoder for
object detection and instance segmentation, an attentional
pooler [83] followed by a linear layer for classification,
UperNet [76] for semantic segmentation, and DPT [59] for
heatmap regression of pose keypoints. In the task-specific
adaptation, we use Mask2Former [13] for instance and
panoptic segmentation; UperNet [76] for human parsing,
object boundary detection and surface normal; DPT [59]
for saliency detection and depth estimation. The detailed
description of these tasks are provided in Appendix B.

Model Configuration. By default, we use the ViT-Base
and adapter with N = 4 interaction blocks as the backbone,
which has ↔100M parameters in total, including 13.6M
trainable parameters of the adapter. Multitask pretraining
on 5 core tasks for 300K iterations takes ↔4 days on 8
NVIDIA H100 GPUs. Subsequent task-specific adaptations
to the other 7 tasks can be completed within 12 hours un-
der the same hardware setting. We provide ablations with a
larger backbone size in Sec. 4.3.

4. Experiments
In this section, we begin with the experiment setup, and then
compare the performance of Argus with other FMs. We
ablate design choices and discuss the results subsequently.

4.1. Experiment Setup

Datasets. In the multitask pretraining stage, we use the
COCO dataset [40] for object detection, instance segmen-
tation, and pose estimation, the ADE20K dataset [91, 92]
for semantic segmentation, and the ImageNet dataset [17]
for classification. In the task-specific adaptation stage, we
extend to instance and panoptic segmentation using the
ADE20K dataset [92]. Depth estimation, object boundary
detection, and surface normal estimation are adapted using
the NYUv2 [65] dataset. PASCAL-Context [55] is used for
human parsing and saliency detection. Anomaly detection
is adapted using a random subset of MVTecAD [2]: transis-
tor, metal nut, screw, and leather (referred to as MVTecAD-
4). We use the standard splits for model training and eval-
uation, which are entirely distinct without data leakage.



Methods #
Params

Semantic
Segmentation

Object
Detection

Instance
Segmentation

Panoptic
Segmentation

Image
Classification

ADE20K
mIoU ↗

NYUv2
mIoU ↗

COCO
APb ↗

COCO
APm ↗

ADE20K
APm ↗

ADE20K
PQ ↗

ImageNet
Top-1 Acc. ↗

MAE-B [28] 86M 46.1 - 48.3 39.9 - - 84.2
4M-B [53] 86M 50.1 - 49.7 42.7 - - 84.2

DINOv2 (ViT-B) [57] 86M 52.5 61.4 55.1 47.8 31.4 43.4 84.6
InterImage-B [73] 97M 51.3 - 50.3 44.8 - - 84.9

GLID (Swin-B) [43] 126M 52.7 - 51.2 - 30.9 44.7 -
Florence [85] 893M - - 62.4 - - - 90.0

Florence-2-B→ [75] 232M - - 41.4 - - - -
Florence-2-B (fine-tuned) [75] 232M 54.9 - 53.6 46.4 - - -

Uni-perceiver v2-B→ [36] 308M - - 58.6 50.6 - - 86.3
Unified-IO XL→ [50] 2.9B - - - - - - 79.1

Unified-IO 2→ [51] 1.1B - - 47.2 - - - -
Argus 100M 56.5 64.7 58.6 51.8 37.5 45.1 86.3

Table 1. Performance comparison of Argus with recent FMs over 5 vision tasks on COCO [40], ADE20K [91, 92], NYUD-v2 [65], and
ImageNet [17] datasets. “-” means the model did not cover the task. “*” denotes the models with a unified decoder for multiple tasks. Best
results are in bold, the second-best results are underlined. Unlike other FMs that only cover few tasks, Argus supports all the vision tasks
in the table. Note that for fair comparison, we only compare to foundation models that can support multiple vision tasks covered in Fig. 2.

Methods #
Params

Pose
Estimation

Depth
Estimation

Boundary
Detection

Surface
Normal

Human
Parsing

Saliency
Detection

Anomaly
Detection

COCO NYUv2 NYUv2 NYUv2 PASCAL-C PASCAL-C MVTecAD-4
APk ↗ AR ↗ RMSE ↘ odsF ↗ mErr ↘ mIoU ↗ maxF ↗ I-AUROC ↗

DINOv2 (ViT-B) [57] 86M 57.2 62.2 0.307 71.5 19.3 76.7 97.1 98.3
GLID (Swin-B) [43] 126M 76.7 - 0.293 - - - - -
Unified-IO XL→ [50] 2.9B - - 0.385 - - - - -
Unified-IO 2→ [51] 1.1B - - 0.423 - - - - -

Argus 100M 77.0 81.8 0.290 76.7 18.6 77.8 97.2 99.3

Table 2. Continuation of Tab. 1: Performance comparison of Argus with recent FMs over the other 7 vision tasks on COCO [40],
NYUv2 [33], PASCAL-C [55] and MVTecAD-4 [2] datasets. We exclude methods listed in Tab. 1 that do not support these tasks.

Summary statistics of these datasets are presented in Ap-
pendix C. In total, we use approximately 1.6 million images
to train Argus.

Metrics. For object detection, we use COCO with mean
Average Precision (APb) across IoU thresholds. Pose es-
timation on COCO uses Average Precision (APk) and Av-
erage Recall (AR). Semantic segmentation is evaluated on
ADE20K and NYUv2 using mean Intersection over Union
(mIoU). Panoptic segmentation on ADE20K uses Panoptic
Quality scores (PQ). Instance segmentation on COCO and
ADE20K use mean Average Precision (APm). Depth esti-
mation, object boundary detection, and surface normal pre-
diction are assessed on NYUv2 with Root Mean Square Er-
ror (RMSE), optimal-dataset-scale F-measure (odsF), and
mean angular error (mErr), respectively. Human parsing
and saliency detection on PASCAL-Context uses mIoU and
maximal F-measure (maxF). Classification is measured by

Top-1 accuracy (Top-1) on ImageNet [17]. Anomaly de-
tection is evaluated on MVTecAD-4 with Area Under the
Receiver Operating Characteristic Curve (I-AUROC). More
experiment setups are shown in Appendix A.4.

4.2. Performance Comparison
We compare the performance of Argus with both the
state-of-the-art VFMs and multi-modal FMs that support
multiple vision tasks covered in Fig. 2, including Flo-
rence [85] and Florence-2 [75], Uni-perceiver v2 [36],
4M [53], MAE [28], Unified-IO [50] and Unified-IO 2 [51],
DINOv2 [57], and GLID [43]. Since DINOv2 itself does
not support any tasks, its results are obtained by training
the same decoders as in Argus (refer to Sec. 3.3). We also
provide extra comparison with some MTL models and task-
specific models in Appendix D.3.

Tabs. 1 and 2 compare the performance of Argus

against the aforementioned baselines across 12 vision tasks



Freeze Norm Scale EMA Iter. COCO ADE20K ImageNet
ViT APb APm APk mIoU Top-1

↓ GN ↭ ↓ 200k 55.3 49.0 74.9 51.3 82.8
↭ BN ↭ ↓ 200k 56.7 50.2 74.3 55.0 84.7
↭ GN ↓ ↓ 200k 57.8 51.1 74.7 55.5 85.2
↭ GN ↭ ↓ 200k 57.7 51.1 75.2 55.6 85.1

↭ GN ↭ ↭ 200k 57.9 51.3 75.6 56.9 85.0
↭ GN ↭ ↭ 300k 58.6 51.8 77.0 56.5 86.3

Table 3. Ablation studies on multitask pretraining recipe. Based
on row 4, we modify the ingredients of (a) freeze ViT, (b) norm,
and (c) scale, each shown in the first three rows. In the last two
rows, we add the EMA and increase the training iterations. Key
modifications in each row are highlighted in blue.

MTL Algorithm on 5 Tasks COCO ADE20K ImageNet
APb APm APk mIoU Top-1

FAMO [42] 57.4 50.9 75.0 55.6 84.6
GradNorm [11] 57.2 50.9 74.6 55.0 85.9
Empirical Task Weighting 57.7 51.1 75.2 55.6 85.1

Table 4. Comparison of empirical task weighting with MTL algo-
rithms, including the loss-balancing algorithm FAMO [42] and the
gradient-balancing algorithm GradNorm [11].

on the datasets listed in Sec. 4.1. These results demon-
strate that Argus is the most versatile VFM for perception
tasks, support all the 12 vision tasks, whereas others only
support a limited subset. Argus is also among the top-
performing VFM, surpassing comparable models on 10 out
of 12 tasks. Florence [85] achieves higher performance in
object detection and image classification, but it has approxi-
mately 8↓ more parameters and is trained on a significantly
larger detection dataset. Notably, Argus achieves 56.5%
mIoU on ADE20K semantic segmentation with only 100M
parameters, while Florence-2-B [75] achieves 54.9% with
232M parameters—more than double the size of Argus.
Compared with Uni-perceiver v2, Argus matches its per-
formance in object detection and image classification and
surpasses it on instance segmentation. Argus also consis-
tently outperforms DINOv2 across all tasks. In addition to
the aforementioned results, we discuss the fairness of the
comparison in Appendix D and complement our quantita-
tive analysis with qualitative results in Appendix E.

4.3. Ablation Studies
Multitask Pretraining Recipe. Tab. 3 shows the effects
of the ingredients in our MTL training recipe in Sec. 3.1.
The key observations are as follows. (a) Comparing row 1
to row 4 reveals that freezing ViT is crucial, as training the
entire model does not converge well (validation curves in
Appendix D.5 ). (b) Comparing row 2 to row 4 shows that
replacing BN with GN in the adapter boosts performance on
all tasks and alleviates negative transfer issues in MTL (val-

MTL Tasks COCO ADE20K ImageNet
APb APm APk mIoU Top-1

All 5 Tasks 57.7 51.1 75.2 55.6 85.1

w/o Det. & Instance Seg. 54.2 48.1 75.1 55.6 85.3
w/o Pose Estimation 57.5 51.0 74.4 55.5 85.2
w/o Semantic Seg. 57.9 51.1 75.6 54.2 85.2
w/o Classification 57.8 50.9 75.6 55.6 83.3

Table 5. Multitask pretraining with fewer tasks. Tasks marked in
blue means the tasks removed from MTL pretraining (stage 1 in
Fig. 3) and only covered in the task-specific adaptation (stage 2).

Models Mask R-CNN Mask DINO CO-DETR
APb APm APb APm APb

DINOv2 [57] 19.2 13.3 55.1 47.8 56.6
Argus 53.0 47.3 58.8 52.0 60.5

Table 6. Performance of Argus using different decoders for ob-
ject detection and instance segmentation on the COCO dataset.

Models # COCO ADE20K ImageNet
Params APb APm APk mIoU Top-1

Argus-Base 100M 58.6 51.8 77.0 55.6 86.3
Argus-Large 327M 60.2 53.1 78.0 58.6 87.1

Table 7. Ablation of backbone sizes. Increasing backbone size
leads to better performance across all tasks.

Models Person Cam. Sec. Pascal Person Det. Cars
AP50:95 AP50 AP50:95 AP50 AP50:95 AP50

4M-B [53] 18.1 34.5 28.7 43.7 51.8 56.6
Florence-2-B [75] 43.8 73.7 39.1 51.6 39.5 42.4

Argus 56.6 97.7 68.5 83.7 79.1 81.8

Table 8. Comparison of object detection performance on unseen
data. AP50:95 and AP50 are used as the evaluation metric.

idation curves in Appendix D.5). (c) Comparing row 3 to
row 4 indicates that scaling ViT features before interaction
improves the pose estimation from 74.7% to 75.2% while
maintaining the performance of other tasks.

Based on the configurations in row 4, we further improve
the overall performance by keeping an exponential moving
average (EMA) of the weights (row 5 vs. row 4) and in-
creasing the training iterations (row 6 vs. row 5). Finally,
the setting in row 6 is adopted in Argus.

Multitask Learning Algorithm. Tab. 4 compares the
representative loss-balancing algorithm FAMO [42] and
the gradient-balancing algorithm GradNorm [11] with our
naive empirical task weighting. Detailed configurations of
these MTL algorithms and our task weights are provided
in Appendix A.3. The results show that FAMO has the



Freeze COCO ImageNet ADE20K NYUv2 PASCAL-Context
Adapter APb APm APk Top-1 mIoU APm PQ RMSE ↘ odsF mIoU mErr ↘ mIoU maxF

↭ 58.6 51.8 77.0 86.3 56.5 37.5 45.1 0.290 75.8 64.7 18.6 77.8 97.2
↓ 58.8 52.0 77.4 86.4 56.7 37.6 45.7 0.281 76.5 65.3 17.6 79.0 97.7

Table 9. Performance of Argus with and without freezing the adapter in the task-specific adaptation (stage 2 in Fig. 3).

lowest classification top-1 accuracy, while GradNorm un-
derperforms on pose estimation and semantic segmentation.
In contrast, our empirical task weighting achieves the best
performance on four out of five tasks. We hypothesize that
the combination of drastically different task types and the
multi-input training paradigm presents a unique challenge
for existing MTL algorithms. We leave the systematic study
of MTL algorithms for future work.

Choosing Core Tasks. We conduct ablation studies on
the core task selection for multitask pretraining in Tabs. 5
and 13. In Tab. 5, we find that excluding one task can lead
to minor improvement (under 0.5%) on some of the other
tasks, likely due to reduced task interference. However, the
excluded task experiences a substantial drop in performance
when finetuning the decoder with a frozen backbone. We
also examine an alternative set of 5 tasks (row 4 of Tab. 13),
but observe lower performance on almost all tasks, presum-
ably due to limitations in task diversity and data quantity.
Additionally, we experiment with expanding core tasks to
8 and 11 in Tab. 13 in the Appendix. While our MTL
framework can support diverse task combinations, these ex-
panded tasks often lead to overfitting on the additional tasks
due to their limited data. Although training losses decrease
over the course of training, the validation performance of
these new tasks decline in later iterations (Appendix D.5).
These results indicate that our current 5 core tasks in pre-
training strikes a good balance between the effective multi-
task pretraining and new task adaptations.

Decoder Flexibility. Unlike models with a single shared
decoder [36, 43, 75], Argus can easily support new task-
specific decoders. For example, as shown in Tab. 6, Argus
can leverage high-performing decoders like CO-DETR [95]
for higher performance or opt for traditional decoders like
Mask R-CNN [27] in resource-constrained scenarios. This
flexibility in Argus is beneficial in real-world applications
where specialized decoders are preferred for specific sce-
narios, such as Iter-Deformable-DETR [90] for crowded
scenes and SCRFD [23] for face detection.

Backbone Sizes. We conduct an ablation with a larger
backbone, Argus-Large, using ViT-Large with 303M pa-
rameters and a slightly larger adapter with 23.7M parame-
ters. Tab. 7 shows that increasing the backbone size leads

to performance improvements across all tasks, highlight-
ing the potential of scaling the backbone for further per-
formance improvement.

Generalization on the Unseen Datasets. We further
compare the performance of Argus with 4M [53] and
Florence-2 [75] on unseen data. We use Pascal VOC
2012 Person, Person Camera Security and Detecting Cars
datasets from Roboflow Universe for evaluation, where all
models are not trained on these datasets. We evaluate
performance using two metrics: average precision calcu-
lated over multiple IoUs thresholds ranging from 0.5 to
0.95 (AP50:95), and average precision at IoU threshold 0.5
(AP50). Tab. 8 shows that Argus achieves substantially
better performance. We provide dataset sources and evalu-
ate on more unseen public datasets for image classification
in Appendix D.4.

Fine-tuning Adapter in Task-specific Adaptation. We
perform an ablation study to examine the impact of adapter
during task-specific adaptation. As shown in Tab. 9, fine-
tuning the adapter yields consistent performance gains
across all tasks. While these improvements are relatively
modest—under 0.5% for core tasks and under 1.5% for
other tasks—they highlight the strong representational ca-
pability of the multitask-pretrained adapter in effectively
transferring to diverse vision tasks.

5. Conclusion
In this work, we introduce Argus, a compact, well-
performing, training-efficient and scalable vision founda-
tion model (VFM) for a diverse range of vision tasks. Ex-
tensive experiment results on 12 vision tasks demonstrate
that Argus achieves compelling performance compared to
existing VFMs or multi-modal FMs. Moving forward, our
model’s inherent flexibility opens up exciting possibilities
for more vision tasks such as OCR, low-level vision tasks,
etc. We envision that our VFM and proposed approaches
can accelerate the practical, real-world adaptation of VFMs
in resource-constrained applications.
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