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Current multi-agent learning paradigms are not flexible enough.

« Cooperative Multi-Agent
Reinforcement Learning!!! (C-
MARL) assumes all agents are
under control of learning @ *°° @? @ @9
algorithm

« Ad Hoc Teamwork!2l (AHT) &
Zero Shot Coordinationt3! (ZSC):

assumes a single agent under
control of learning algorithm

How can sets of agents coordinate
with each other?
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Problem Statement

N-agent ad hoc teamwork (NAHT):

To create a sel of autonomous agents that are able to efficiently and
robustly collaborate with previously unknown teammates on tasks to
which they are all individually capable of contributing as team members.
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N-agent Ad Hoc Teamwork (NAHT)

Dec-POMDP

team
size joint state space joint per-agent transition cooperative horizon
action  observation function task reward

S = 81 X+ XSM space  function
(C,U, X)
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N-agent Ad Hoc ) v

Teamwork / @ @\ & &
C(0) - set of controlled agents, \ @ / @ @

parameterized by 6

U - set of non-controlled agents
X - team sampling procedure
Obiective:

wirs Eranoxw,co) Z vy

Ve _ \/ ™
R O R
\- l'l )
Challenges:

1) Generalization: Coordinating with non-controlled and potentially unknown teammates
2) Openness: coping with an unknown number of controlled teammates
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Iniversity of Texas at Austin

Policy Optimization with Agent Modeling (POAM)

POAM

Key IdeaS / Agent Modeling Network \
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Policy Optimization with Agent Modelling (POAM)

Teammate modelling via recurrent encoder-decoder architecture

Agent Modeling Network \

¢ 11 target
0;) ;1= encoder decoder

\ Policy Network Value Network /
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Policy Optimization with Agent Modelling (POAM)

Independent PPO with parameter sharing
enables dealing with a changing number of teammates during training
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Policy Optimization with Agent Modelling (POAM)

Training critic with data from controlled and uncontrolled agents
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Experiments

 Domains:
— StarCraft Il Multi-Agent Challengel!l: 5v6, 8v9, 3s5z, 10v11
— Multi-agent particle environmentl?l: Predator-prey task (MPE-
PP)

« Uncontrolled teammates: IPPO, QMIX, VDN, IQL, MAPPO
 Baseline: IPPO-NAHT
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Generalization to Unseen Agents

Predator Prey
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