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Current multi-agent learning paradigms are not flexible enough.

• Cooperative Multi-Agent 

Reinforcement Learning[1] (C-

MARL) assumes all agents are 

under control of learning 

algorithm 

• Ad Hoc Teamwork[2] (AHT) & 

Zero Shot Coordination[3] (ZSC): 

assumes a single agent under 

control of learning algorithm

How can sets of agents coordinate 

with each other?
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Problem Statement

N-agent ad hoc teamwork (NAHT):

To create a set of autonomous agents that are able to efficiently and 

robustly collaborate with previously unknown teammates on tasks to 

which they are all individually capable of contributing as team members.

6
[1] Stone et al., Ad Hoc Autonomous Agent Teams: Collaboration without Pre-Coordination, AAAI 2018.
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Dec-POMDP

N-agent Ad Hoc Teamwork (NAHT)
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N-agent Ad Hoc 

Teamwork

C(𝜃) - set of controlled agents, 

parameterized by 𝜃

U - set of non-controlled agents

X - team sampling procedure

Objective: 

Challenges:

1) Generalization: Coordinating with non-controlled and potentially unknown teammates

2) Openness: coping with an unknown number of controlled teammates 8
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Policy Optimization with Agent Modeling (POAM)

Key Ideas 

• Independent PPO with 

parameter sharing

• Training critic with 

data from controlled 

and noncontrolled 

agents

• Teammate modelling

9
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Policy Optimization with Agent Modelling (POAM)
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Teammate modelling via recurrent encoder-decoder architecture
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Policy Optimization with Agent Modelling (POAM)

Independent PPO with parameter sharing

enables dealing with a changing number of teammates during training

11
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Policy Optimization with Agent Modelling (POAM)

Training critic with data from controlled and uncontrolled agents
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Experiments

• Domains: 

– StarCraft II Multi-Agent Challenge[1] : 5v6, 8v9, 3s5z, 10v11 

– Multi-agent particle environment[2] : Predator-prey task (MPE-

PP)

• Uncontrolled teammates: IPPO, QMIX, VDN, IQL, MAPPO

• Baseline: IPPO-NAHT

14
[1] Samvelyan et al., The StarCraft Multi-Agent Challenge, AAMAS 2019.

[2] Lowe et al., Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments, NeurIPS 2017.
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Generalization to Unseen Agents

15*Pictured: mean and 95% confidence intervals, computed over 5 trials
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Thanks for listening!

Peter 
Stone

Ishan 
Durugkar

Elad 
Liebman

Arrasy 
Rahman
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