• Classified by Topic • Classified by Publication Type • Sorted by Date • Sorted by First Author Last Name • Classified by Funding Source •
State Aggregation through Reasoning in Answer Set Programming.
Ginevra Gaudioso, Matteo
Leonetti, and Peter Stone.
In Proceedings of the IJCAI Workshop on
Autonomous Mobile Service Robots (WSR 16), July 2016.
For service robots gathering increasing amounts of information, the ability to realize which bits are relevant and which are not for each task is going to be crucial. Abstraction is, indeed, a fundamental characteristic of human intelligence, while it is still a challenge for AI. Abstraction through machine learning can inevitably only work in hindsight: the agent can infer whether some information was pertinent from experience. However, service robots are required to be functional and effective quickly, and their users often cannot let the robot explore the environment long enough. We propose a method to perform state aggregation through reasoning in answer set programming, which allows the robot to determine if a piece of information is irrelevant for the task at hand before taking the first action. We demonstrate our method on a simulated mobile service robot, carrying out tasks in an office environment.
@InProceedings{IJCAI-WSR-gaudioso, author = {Ginevra Gaudioso and Matteo Leonetti and Peter Stone}, title = {State Aggregation through Reasoning in Answer Set Programming}, booktitle = {Proceedings of the IJCAI Workshop on Autonomous Mobile Service Robots (WSR 16)}, location = {New York City, NY, USA}, month = {July}, year = {2016}, abstract = {For service robots gathering increasing amounts of information, the ability to realize which bits are relevant and which are not for each task is going to be crucial. Abstraction is, indeed, a fundamental characteristic of human intelligence, while it is still a challenge for AI. Abstraction through machine learning can inevitably only work in hindsight: the agent can infer whether some information was pertinent from experience. However, service robots are required to be functional and effective quickly, and their users often cannot let the robot explore the environment long enough. We propose a method to perform state aggregation through reasoning in answer set programming, which allows the robot to determine if a piece of information is irrelevant for the task at hand before taking the first action. We demonstrate our method on a simulated mobile service robot, carrying out tasks in an office environment.}, }
Generated by bib2html.pl (written by Patrick Riley ) on Sun Nov 24, 2024 20:24:57