• Classified by Topic • Classified by Publication Type • Sorted by Date • Sorted by First Author Last Name • Classified by Funding Source •
Keepaway Soccer: From Machine Learning Testbed to Benchmark.
Peter Stone,
Gregory Kuhlmann, Matthew E. Taylor,
and Yaxin Liu.
In Itsuki
Noda, Adam Jacoff, Ansgar Bredenfeld, and Yasutake Takahashi, editors, RoboCup-2005: Robot Soccer World Cup IX,
pp. 93–105, Springer Verlag, Berlin, 2006.
Some simulations
of keepaway referenced in the paper and keepaway software.
Official version from Publisher's
Webpage© Springer-Verlag
[PDF]567.7kB [postscript]2.3MB
Keepaway soccer has been previously put forth as a testbed for machine learning. Although multiple researchers have used it successfully for machine learning experiments, doing so has required a good deal of domain expertise. This paper introduces a set of programs, tools, and resources designed to make the domain easily usable for experimentation without any prior knowledge of RoboCup or the Soccer Server. In addition, we report on new experiments in the Keepaway domain, along with performance results designed to be directly comparable with future experimental results. Combined, the new infrastructure and our concrete demonstration of its use in comparative experiments elevate the domain to a machine learning benchmark, suitable for use by researchers across the field.
@incollection(LNAI2005-keepaway, author="Peter Stone and Gregory Kuhlmann and Matthew E.\ Taylor and Yaxin Liu", title="Keepaway Soccer: From Machine Learning Testbed to Benchmark", booktitle= "{R}obo{C}up-2005: Robot Soccer World Cup {IX}", Editor="Itsuki Noda and Adam Jacoff and Ansgar Bredenfeld and Yasutake Takahashi", Publisher="Springer Verlag",address="Berlin",year="2006", volume="4020", pages="93--105", abstract={ Keepaway soccer has been previously put forth as a \emph{testbed} for machine learning. Although multiple researchers have used it successfully for machine learning experiments, doing so has required a good deal of domain expertise. This paper introduces a set of programs, tools, and resources designed to make the domain easily usable for experimentation without any prior knowledge of RoboCup or the Soccer Server. In addition, we report on new experiments in the Keepaway domain, along with performance results designed to be directly comparable with future experimental results. Combined, the new infrastructure and our concrete demonstration of its use in comparative experiments elevate the domain to a machine learning \emph{benchmark}, suitable for use by researchers across the field. }, wwwnote={Some <a href="http://www.cs.utexas.edu/users/AustinVilla/sim/keepaway/">simulations of keepaway</a> referenced in the paper and keepaway software.<br>Official version from <a href="http://dx.doi.org/10.1007/11780519_9">Publisher's Webpage</a>© Springer-Verlag}, )
Generated by bib2html.pl (written by Patrick Riley ) on Sun Nov 24, 2024 20:24:52