Peter Stone's Selected Publications

Classified by TopicClassified by Publication TypeSorted by DateSorted by First Author Last NameClassified by Funding Source


Using Decision Tree Confidence Factors for Multiagent Control

Using Decision Tree Confidence Factors for Multiagent Control.
Peter Stone and Manuela Veloso.
In Hiroaki Kitano, editors, RoboCup-97: Robot Soccer World Cup I, Lecture Notes in Artificial Intelligence, pp. 99–111, Springer Verlag, Berlin, 1998.
HTML version.
Official version from Publisher's Webpage© Springer-Verlag

Download

[PDF]157.2kB  [postscript]128.0kB  

Abstract

Although Decision Trees are widely used for classification tasks, they are typically not used for agent control. This paper presents a novel technique for agent control in a complex multiagent domain based on the confidence factors provided by the C4.5 Decision Tree algorithm. Using Robotic Soccer as an example of such a domain, this paper incorporates a previously-trained Decision Tree into a full multiagent behavior that is capable of controlling agents throughout an entire game. Along with using Decision Trees for control, this behavior also makes use of the ability to reason about action-execution time to eliminate options that would not have adequate time to be executed successfully. This multiagent behavior represents a bridge between low-level and high-level learning in the Layered Learning paradigm. The newly created behavior is tested empirically in game situations.

BibTeX Entry

@InCollection(LNAI97-dt, 
        Author="Peter Stone and Manuela Veloso",
        Title="Using Decision Tree Confidence Factors for Multiagent Control",
        booktitle= "{R}obo{C}up-97: Robot Soccer World Cup {I}",
        Editor="Hiroaki Kitano",
        Publisher="Springer Verlag",address="Berlin",year="1998",
        series="Lecture Notes in Artificial Intelligence",      
	volume="1395",
        pages="99--111",
        annote="Also in {\em Proceedings of the Second International
Conference on Autonomous Agents}, 1998",
        abstract={
                  Although Decision Trees are widely used for
                  classification tasks, they are typically not used
                  for agent control.  This paper presents a novel
                  technique for agent control in a complex multiagent
                  domain based on the confidence factors provided by
                  the C4.5 Decision Tree algorithm.  Using Robotic
                  Soccer as an example of such a domain, this paper
                  incorporates a previously-trained Decision Tree into
                  a full multiagent behavior that is capable of
                  controlling agents throughout an entire game.  Along
                  with using Decision Trees for control, this behavior
                  also makes use of the ability to reason about
                  action-execution time to eliminate options that
                  would not have adequate time to be executed
                  successfully.  This multiagent behavior represents a
                  bridge between low-level and high-level learning in
                  the Layered Learning paradigm.  The newly created
                  behavior is tested empirically in game situations.
        },
        wwwnote={<a href="http://www.cs.utexas.edu/~pstone/Papers/97springer/dt-paper/dt-paper.html">HTML version</a>.<br>
Official version from <a href="http://dx.doi.org/10.1007/3-540-64473-3_52">Publisher's Webpage</a>&copy Springer-Verlag},
)

Generated by bib2html.pl (written by Patrick Riley ) on Tue Nov 19, 2024 10:24:40