

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Presenter: Elvin Yang

2022-09-06

Background: Novel View Synthesis

** The process of using images of a scene and their camera poses to synthesize new images of the scene at arbitrary camera poses.

v Subset of *Neural Rendering*, "deep image or video generation approaches that enable explicit or implicit control of scene properties". (Ayush Tewari et. al.)

E.g. illumination, camera parameters, pose, geometry, appearance, and semantic structure

Applications in Robotics

- ❖ Visual Forward Models
	- \cdot If a robot can predict what it will be looking at, it can plan more effective actions and paths
	- ❖ Motion Planning
	- ❖ Visual Navigation
- ❖ Camera Pose Estimation
	- v "Inverted" Neural Radiance Fields
- ❖ Improving Object Recognition

Image: "Vision-Only Robot Navigation in a Neural Radiance World" (Adamkiewicz, Chen, et al., 2022) Image: "Dex-NeRF: Using a Neural Radiance Field to Grasp Transparent Objects" (Ichnowski, Avigal, et al, 2021)

Related Work

- **V** Neural Volumes (NV), 2019
	- v Deep 3D convolutional network architecture
	- \triangle Predicts a fixed-size discretized voxel grid
	- v Limitation: discrete voxel grids do not scale well and lose fine detail at high resolutions
	- \clubsuit Limitation: requires a bounded volume and knowledge of the background
- v Scene Representation Networks (SRN), 2019
	- v Uses a recurrent neural network to model a rendering function
	- \cdot Limited to simple shapes with low geometric complexity
- **Ex** Local Light Field Fusion (LLFF), 2019
	- **❖** 3D convolutional network architecture
	- \cdot Predicts multiplane images and fuses them to create new views
	- Fast to train (<10 minutes) at the cost of large storage requirements (~GB for each scene)

NeRF: Key Insights

- **EXA Represent static scenes in a continuous** space.
- **Encode a continuous radiance field within the parameters** of a fully-connected neural network.
- ***** Regress directly from viewing location and direction to color and transparency

Problem Setting

- v Given a dataset containing RGB images of a static scene, their corresponding camera poses, and intrinsic parameters,
- $\cdot \cdot$ Predict the color and volume density for every viewing location and direction

NeRF: Volume Rendering

❖ Generating a view from NeRF requires rendering all rays that pass through each pixel of the desired virtual camera

$$
C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t), \mathbf{d})dt, \text{ where } T(t) = \exp\left(-\int_{t_n}^{t} \sigma(\mathbf{r}(s))ds\right)
$$

Expected color of
a camera ray
Density
Density

 \lozenge Numerically estimated using quadrature and stratified sampling

$$
\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i, \text{ where } T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)
$$

The relative contribution
of this segment
Color
blocked the ray up to this point

 \triangle Differentiable: allows optimization using gradient descent

NeRF: Hierarchical Sampling

- ◆ Problem: It is inefficient to integrate over empty and occluded spaces in a scene
- ◆ Solution: Allocate samples proportionally to their expected effect on the final rendering.
- \cdot Evaluate a "coarse" network on a set of N_c locations along a ray to produce a PDF along the ray
- $\mathbf{\hat{P}}$ Evaluate a "fine" network on N_c and a second a set of N_f locations sampled from the PDF

NeRF: Positional Encoding

◆ Map individual components of position and direction vectors to a higher dimensional space

$$
\gamma(p)=\big(\sin\!\big(2^0\pi p\big),\cos\!\big(2^0\pi p\big),\cdots,\sin\!\big(2^{L-1}\pi p\big),\cos\!\big(2^{L-1}\pi p\big)\,\big)
$$

- ◆ Similar concept as positional encoding in Transformer Architectures
- ❖ Empirically improves the preservation of high-frequency geometry and texture
- ❖ Surprising result, explored further in a follow-up work by the same authors
	- v "Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains" (Tancik, Srinivasan, Mildenhall, et al., 2020)

Network Architecture

Training Summary

- \div Sample a batch of camera rays from the dataset (bs=4096)
- \div Use hierarchical sampling to query coarse and fine points
- \div Use the volume rendering equation to calculate the color of the ray
- ❖ Compute the squared error between rendered and true pixel colors

$$
\mathcal{L} = \sum_{\mathbf{r} \in \mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]
$$

❖ Optimize network parameters using Adam

Experimental Setup

 \clubsuit NeRF is compared against 3 state-of-the art techniques:

Neural Volumes, Scene Representation Networks, Light Local Field Fusion

3 Datasets:

- v "Diffuse Synthetic 360º" (DeepVoxels): 4 objects with simple geometry
- v "Realistic Synthetic 360º": 8 objects with complex geometry and reflections
- v "Real Forward-Facing": Phone camera images of 8 real-world scenes Metrics:
- ◆ Peak Signal-to-Noise Ratio (PSNR), higher is better
- v Structural Similarity Index Measure (SSIM), higher is better
- v Learned Perceptual Image Patch Similarity (LPIPS), lower is better

Experimental Results

❖ Outperforms existing works in nearly every tested metric

- \clubsuit NeRF preserves fine details much better than other algorithms
- $\bullet\bullet$ NeRF is able to render partially occluded regions
- $\cdot \cdot$ The trained MLP has relatively low storage requirements: about 5MB

Qualitative Results: Realistic Synthetic Objects

Qualitative Results: Real-world scenes

Animated Results

Video: https://www.matthewtancik.com/nerf

Limitations

- $\cdot \cdot \cdot$ NeRF only works with static scenes
- **EXA trained NeRF model does not generalize to more than one scene**
- * Computationally expensive: 1-2 days to train each individual scene on a modern GPU
- \cdot Inference is slow: each pixel in a synthesized image requires volume rendering

Future Works and Extended Readings

- ❖ Survey Papers
	- v "State of the Art on Neural Rendering." Tewari et al., 2020
	- v "Neural Volume Rendering: NeRF And Beyond." Dellaert et al., 2020
- **❖** Improving Speed
	- v "DeRF: Decomposed Radiance Fields." Rebain et al., 2020
	- v "Plenoxels: Radiance Fields without Neural Networks." Yu et al., 2021
- ***** Improving Generalizability
	- * "TöRF: Time-of-Flight Radiance Fields for Dynamic Scene View Synthesis." Attal et al.
	- v "NeRF in the Dark." Mildenhall et al., 2021
- * Many more papers here: https://github.com/yenchenlin/awesome-NeRF

Summary

- Novel view synthesis generates images of scenes at previously unseen viewpoints.
- \clubsuit Novel view synthesis can improve robot planning and object recognition.
- * Prior works are limited to simple shapes and do not scale well to high-resolution images
- \clubsuit NeRF encodes a static scene within the parameters of a feedforward neural network.
- * The authors show very impressive qualitative results and show state-of-the-art performance with quantitative metrics and different scene types.