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Background: Novel View Synthesis

v The process of using images of a scene and their camera poses to synthesize new images of the 

scene at arbitrary camera poses.

v Subset of Neural Rendering, “deep image or video generation approaches that enable explicit or 

implicit control of scene properties”. (Ayush Tewari et. al.)
v E.g. illumination, camera parameters, pose, geometry, appearance, and semantic structure

Image: “Multi-view to Novel View: Synthesizing Novel Views with Self-Learned Confidence” (Sun et al., 2018)
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Applications in Robotics

v Visual Forward Models

v If a robot can predict what it will be looking at,

it can plan more effective actions and paths

v Motion Planning

v Visual Navigation

v Camera Pose Estimation

v “Inverted” Neural Radiance Fields

v Improving Object Recognition

Image: “Vision-Only Robot Navigation in a Neural Radiance World” (Adamkiewicz, Chen, et al., 2022)
Image: “Dex-NeRF: Using a Neural Radiance Field to Grasp Transparent Objects” (Ichnowski, Avigal, et al, 2021)
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Related Work

v Neural Volumes (NV), 2019
v Deep 3D convolutional network architecture

v Predicts a fixed-size discretized voxel grid 

v Limitation: discrete voxel grids do not scale well and lose fine detail at high resolutions

v Limitation: requires a bounded volume and knowledge of the background

v Scene Representation Networks (SRN), 2019
v Uses a recurrent neural network to model a rendering function

v Limited to simple shapes with low geometric complexity

v Local Light Field Fusion (LLFF), 2019
v 3D convolutional network architecture

v Predicts multiplane images and fuses them to create new views

v Fast to train (<10 minutes) at the cost of large storage requirements (~GB for each scene)
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NeRF: Key Insights

v Represent static scenes in a continuous space.

v Encode a continuous radiance field within the parameters of a fully-connected neural 

network.

v Regress directly from viewing location and direction to color and transparency
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Problem Setting

v Given a dataset containing RGB images of a static scene, their 

corresponding camera poses, and intrinsic parameters,

v Predict the color and volume density for every viewing location 

and direction

Inputs:
v x, y, z Target position of the camera

v 𝜃, 𝜙 Target orientation of the camera

Outputs:

v c = (R, G, B)  Color 

v 𝜎 Volume density
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NeRF: Volume Rendering
v Generating a view from NeRF requires rendering all rays that pass through each pixel 

of the desired virtual camera

v Numerically estimated using quadrature and stratified sampling

v Differentiable: allows optimization using gradient descent

Expected color of 
a camera ray

Predicted 
Volume 
Density

Predicted 
Color

Probability that nothing has 
blocked the ray up to this point

Predicted 
Color Probability that nothing has 

blocked the ray up to this point
The relative contribution 
of this segment
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NeRF: Hierarchical Sampling
v Problem: It is inefficient to integrate over empty and occluded spaces in a scene
v Solution: Allocate samples proportionally to their expected effect on the final rendering.

v Evaluate a “coarse” network on a set of Nc locations along a ray
to produce a PDF along the ray

v Evaluate a “fine” network on Nc and a second a set
of Nf locations sampled from the PDF

Image: Jonathan Barron
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NeRF: Positional Encoding

v Map individual components of position and direction vectors to a higher 
dimensional space

v Similar concept as positional encoding in Transformer Architectures
v Empirically improves the preservation of high-frequency geometry and texture
v Surprising result, explored further in a follow-up work by the same authors

v “Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains” (Tancik, Srinivasan, 
Mildenhall, et al., 2020)
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Network Architecture

Skip connection

ReLU No Activation

Sigmoid
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Training Summary

v Sample a batch of camera rays from the dataset (bs=4096)
v Use hierarchical sampling to query coarse and fine points
v Use the volume rendering equation to calculate the color of the ray
v Compute the squared error between rendered and true pixel colors

v Optimize network parameters using Adam
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Experimental Setup

v NeRF is compared against 3 state-of-the art techniques: 

Neural Volumes, Scene Representation Networks, Light Local Field Fusion

3 Datasets:

v “Diffuse Synthetic 360º” (DeepVoxels): 4 objects with simple geometry

v “Realistic Synthetic 360º”: 8 objects with complex geometry and reflections

v “Real Forward-Facing”: Phone camera images of 8 real-world scenes

Metrics:

v Peak Signal-to-Noise Ratio (PSNR), higher is better

v Structural Similarity Index Measure (SSIM), higher is better

v Learned Perceptual Image Patch Similarity (LPIPS), lower is better
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Experimental Results

v Outperforms existing works in nearly every tested metric

v NeRF preserves fine details much better than other algorithms

v NeRF is able to render partially occluded regions

v The trained MLP has relatively low storage requirements: about 5MB
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Qualitative Results: Realistic Synthetic Objects
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Qualitative Results: Real-world scenes
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Animated Results

Video: https://www.matthewtancik.com/nerf
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Limitations

v NeRF only works with static scenes

v A trained NeRF model does not generalize to more than one scene

v Computationally expensive: 1-2 days to train each individual scene on a modern GPU

v Inference is slow: each pixel in a synthesized image requires volume rendering
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Future Works and Extended Readings

v Survey Papers

v “State of the Art on Neural Rendering.” Tewari et al., 2020

v ”Neural Volume Rendering: NeRF And Beyond.” Dellaert et al., 2020

v Improving Speed

v “DeRF: Decomposed Radiance Fields.” Rebain et al., 2020

v “Plenoxels: Radiance Fields without Neural Networks.” Yu et al., 2021

v Improving Generalizability

v “TöRF: Time-of-Flight Radiance Fields for Dynamic Scene View Synthesis.” Attal et al., 2021

v “NeRF in the Dark.” Mildenhall et al., 2021

v Many more papers here: https://github.com/yenchenlin/awesome-NeRF

https://github.com/yenchenlin/awesome-NeRF
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Summary

v Novel view synthesis generates images of scenes at previously unseen viewpoints.

v Novel view synthesis can improve robot planning and object recognition.

v Prior works are limited to simple shapes and do not scale well to high-resolution images

v NeRF encodes a static scene within the parameters of a feedforward neural network.

v The authors show very impressive qualitative results and show state-of-the-art performance with 

quantitative metrics and different scene types.


