Fall 2023-24

PHYSICS OF MATERIALS, TYPES OF MECHANISMS

Roberto Martin-Martin

Assistant Professor of Computer Science.

Recapping last class

- Three Newton's Laws
 - $-\sum F = 0$
 - $-\sum F = m \cdot a$
 - − Action \leftarrow →Reaction
- Forces + Torques = Wrenches
- Friction
 - Coulomb (Stiction + Kinetic Friction)
 - Viscous
 - Rolling
- Grasping

What will you learn today?

- "Rigid" bodies is an assumption from Physics 101 we must move away from.
 - Bodies are deformable
 - Bodies can break, stretch, or fatigues (stress/strain)
 - Bodies can be connected by joints.

Why does this matter?

Preliminaries: Force/Displacement Relationship in Deformable Bodies

- Until now we assumed perfectly rigid bodies
 - Not true! All bodies deform
- Physics of deformation
 - Linear (Hooke's Law)
 - Non-linear (d=f(F))
 - Elastic vs non-elastic
 - Fatigue

Analysis of Forces in the Piston (Hooke's Law)

Exercise

- Initial position of the piston: 20cm
- Mass of piston: 10 Kg
- k = 500 N/m
- What is the final position of the piston?

Connecting to Deformable Bodies

- Deformable bodies are like pistons
 - When supporting a mass, they deform until the "reactive force" equals the weight of the object
 - Harder objects have large K, soft objects lower K
- Until the deformation required to counteract the mass is too large → break!

table deforms until book weight is compensated (or table breaks)

Stress-Strain Relationship

- Why?
 - Choosing materials for robot components
 - Choosing gripper material
 - Task dependent: go from A to B, apply force F with sufficient positional tolerance.
 - We want lightweight robots
 - Low energy
 - Cheap
 - Safe

Stress-Strain Relationship

Mechanical engineers and material scientists use **stress and strain** for defining mechanical properties of materials

Stress

- Stress: imagine that for a rod made of certain material that we are considering for our robot pulling force (tensile) is applied from both sides
- The <u>mechanical stress</u> is defined as the force divided by the cross-section area
- $\sigma = F/A_0$

Strain

- Strain: now imagine that with this pulling force, our rod stretches a bit (Δl)
 - <u>Strain</u>: the ratio of change in length by the length when no force is applied
- $\epsilon = \frac{\Delta l}{l_0}$
- Understanding the relationship between strain and stress, we can decide what material is best for our robot

Stress-Strain Relationship

Ductile (e.g., steel, aluminium)

6

Stress-Strain Relationship

Characterizing Materials

- StrengthDuctility
- Toughness

Stress-Strain Relationship

- Let's consider two materials:
 - One is ductile (a silicon rod)
 - One is brittle (a coffee stirrer)
- At low pulling forces, stress-strain have a linear relationship for both
- $\sigma = E\epsilon \rightarrow$ Hook's Law
- The slope is called the Youngs modulus (E)
 - Units of pressure
 - Pa
 - Pounds per square inch (PSI)

Material	E
Steel	30e6 psi
Rubber	150 psi
Acrylic	0.5e6 psi

Stress-Strain Relationship

- The linear portion of the stress-strain curve is also called the <u>elastic regime</u>
 - The material will bounce back (recover its original shape) if the load is removed
- The second portion of the curve is the <u>plastic regime</u>
 - More load leads to yield permanent change of shape
- Ultimately, the end of the curve is when the part breaks
- We need to design our robots to avoid 1) plastic regime, or worse, 2) breaking point!
- We can change
 - the material (make parts harder and stronger) or
 - the geometry (same force, more area, make parts "thicker")

Shear Force and Bending Moment

- When a beam is loaded, there are internal forces that appear to maintain equilibrium
 - Forces parallel to the beam section
 - Forces perpendicular to the beam section (along the beam)
- Shear force → Force parallel to the cross section of the beam
- Bending moment → Caused by unequal forces along the beam creating a Torque/Moment

Shear Force and Bending Moment Diagram

- 1. Analyze the loads acting on the beam
- 2. Localize the supports and their types:
 - 1. pinned support
 - 2. roller support
 - 3. fixed support
- 3. Draw the free body diagram
 - 1. Acting forces/moments
 - 2. Reacting forces/moments
- 4. Determine internal shear forces and bending moments

Example Shear Force and Bending Moment Diagram

- Convention
 - Positive:

- High shear force and bending moment will cause material failure!
- How do we know if it breaks?
 - Sheer force → Sheer stress (proportional to SheerForce/Section)
 - Bending moment → Strain at rod surface

Exercise

- Industrial robot
- Sheer force and bending moment diagram given
- Q1: What is the most probable breaking point if the material does not allow large sheer force?
- Q2: What shouldn't you do to prevent failure due to sheer force?
- Q3: What is the most probable breaking point if the material does not allow large bending moment?
- Q4: What shouldn't you do to prevent failure due to bending moment?

And things can get really complicated.

- 3D Printing means complicated shapes
- But very unique benefits
 - Partial infill (lighter)
 - Connects built into links.
- Consider stresses
 - during operation
 - during fabrication

Summary

- Last Lecture:
 - How do we find the forces applied to (or applied by) a system.
 - Static, quasistatic, dynamic, friction (in all its forms)
- This Lecture:
 - How do real-world materials react to forces?
- The super crash course to understand why we must consider realistic applications and why we can't just make our robots out of cooked (or raw) spaghetti.

Joints

- Why?
 - A robot is just a structure of links (rigid parts) and joints connecting them
- In general, two free bodies can move in SIX dimensions with respect to each other (three displacement, three rotation)
- A joint will constraint the relative motion between two rigid bodies to <6 degrees of freedom

What will you learn today?

- "Rigid" bodies is an assumption from Physics 101 we must move away from.
 - Bodies can be connected by joints.
 - Joint can be actuated (active) or passive.

Help me find the active and passive joints.

Joints

- Two *free bodies* can move in 6dimensions with respect to each other.
 - x, y, z, roll, pitch, yaw
- A *joint* constrains the relative motion between two rigid bodies.
- The *degrees of freedom (DOF)* is the dimension of unconstrained free movements afforded by a joint.

What is a Degree of Freedom?

• the number of independent parameters that can fully define the Configuration Space (c) of an object.

• What is the DOF of each system above?

Technically there are lots of joint types.

Degrees of freedom	Free	Free translations	Name	Kinematic pair	
				Form closure	Force closure
5	3	2	Sphere-plane	B	\langle
4	3	1	Sphere-groove	B	Ì
	2	2	Cylinder-plane	Ø	E.
з	3	0	Spheric	D	Ś
	2	1	Sphere-slotted cylinder	-	Ś
	1	2	Planar	Ð	Ì
2	2	0	Slotted spheric	Ð	
	2	0	Toric	6	
	1	1	Cylindric	D	and the second s
	1	1	Slotted cylinder	D	B
1	1	0	Revolute	đ	3
	0	1	Prismatic	D	Ì

Types of (Lower) Joints

Grübler's Formula to "count" Degrees of Freedom

- General idea: DOF of mechanism = Link DOFs Joint Constraints
- $M = k(n-1) \sum_{i=1}^{j} (k-f_i) = k(n-1) \sum_{i=1}^{j} c_i = k(n-1-j) + \sum_{i=1}^{j} f_i$
 - M: number of degrees of freedom of a mechanism
 - k: dofs of a link (3 for planar mechanisms, 6 for unconstrained)
 - n: number of links (include ground as a link!)
 - j: number of joints
 - f_i : degrees of freedom of joint i
 - c_i : degrees of freedom of joint i

What is a Degree of Freedom?

 the number of independent parameters that can fully define the Configuration Space (c) of an object.

• What is the DOF of each system above?

- 3 pelvis
- 1 neck

Active vs. Passive Degrees of Freedom

- Active DoF: its state can be directly controlled
- Passive DoF: its state is a result of active DoFs and other constraints

Fully Actuated vs. Underactuated System

- Fully actuated system: all DoF are active
- Underactuated system: there are more DoFs than active DoFs (= some DoFs are passive)

Extreme Underactuation

Morphological Computation: certain processes are performed by the body that otherwise would have to be performed by the brain.

Fully Actuated vs. Underactuated System

A Formal Definition

- State of the system: positions () and velocities ()
- Control signal to the system (we create this!):
- Dynamics of the system: $\ddot{q} = f(q, \dot{q}, u, t)$
- Fully actuated:
 - The system is fully actuated at time t and state (q, \dot{q}) if we are able to obtain an instantaneous acceleration \ddot{q} in any direction using u
- Underactuated
 - The system is underactuated at time t and state (q, \dot{q}) if we cannot generate any instantaneous acceleration \ddot{q} using u

Human Motion (Walking)

 Is our walking actuated or underactuated?

Summary

- In a robot rigid bodies are connected by joints.
- The number and type of joints determine the system's *Degrees of Freedom (DoF of DOF)*
- Joints can be active or passive.
- Not every joint maps to a motion in the *Configuration Space*
 - Some just improve the *function* of the robot.