PID CONTROL

Roberto Martin-Martin

Assistant Professor of Computer Science.

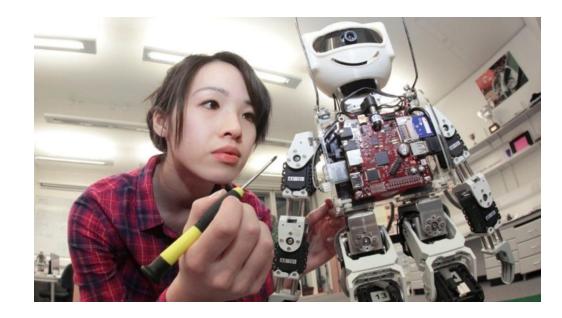
Slides based on Peter Stone's and Ben Kuipers'

Big Recap – How to Build our Robots?

- Statics, Friction, Grasping
 - Newton, FBD, wrenches, stiction, kinetic friction, viscous friction
- Physics of Materials
 - Physics of deformable bodies, strain-stress diagrams
- Articulations
 - Types of joints, Grueber's Formula
- Analog Electronics
 - Current, Voltage, R, C, L, Kirchoff's laws, power
- Digital Electronics
 - Transistors, gates, truth tables, AND, OR, ... Boolean algebra
- State Machines
 - DFA, Deterministic/Stochastic DFAs, Petri Nets, Hybrid Automata
- Mechatronics
 - Types of actuators, motors, torque/speed curve, encoders

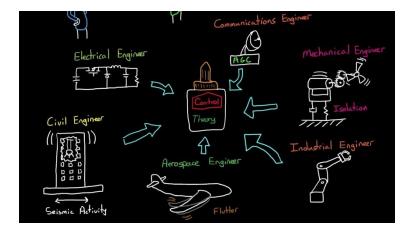
Everything to build a robot

But how do we move it?



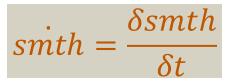
What will you learn today?

- What is control and what is it for?
- Simple controllers
 - Bang-Bang control
 - Proportional control (P)
 - Integral control (I)
 - Derivative control (D)
- PD Controller behavior (over/under/critically damped)
- Type of controller (feedback vs. feedforward)



What is control and what is it for?

- Control deals with <u>commanding a dynamical</u> <u>system</u>, a system that changes its state over time
- With control, we influence those changes, ideally towards our desires
- Control is a mechanism to produce <u>inputs</u> to the dynamical system to try to guide its <u>state</u> towards a desired state
- Of course, we are assuming that the control has an effect in the state: $\frac{\delta F}{\delta u} \neq 0$



$$\dot{x} = F(x, u)$$
$$y = G(x)$$

$$u = H_i(y)$$

 $\dot{x} = F(x, H_i(G(x)))$

A very special case: Linear Dynamics

- Many systems in robotics can be assumed to have linear dynamics
- Many others can be assumed to be "linearizable"
- If the system is linear, we can use matrix algebra:

$$\dot{x} = F(x, u) = Ax + Bu$$

• If the relationship between the state and the observation is also linear, we can do the same here:

$$y = G(x) = Gx$$

Important: Discrete time system

- Our controller is going to act <u>at discrete time</u>
 <u>steps</u>
- In most cases in robotics we assume a discrete system because:
 - We have a sensor that provides signals at discrete time steps
 - Camera providing images at N fps
 - We compute the controller response in a computer (discrete time!)
- Controller frequency: $f_{controller} = \frac{1}{T_{controller}}$

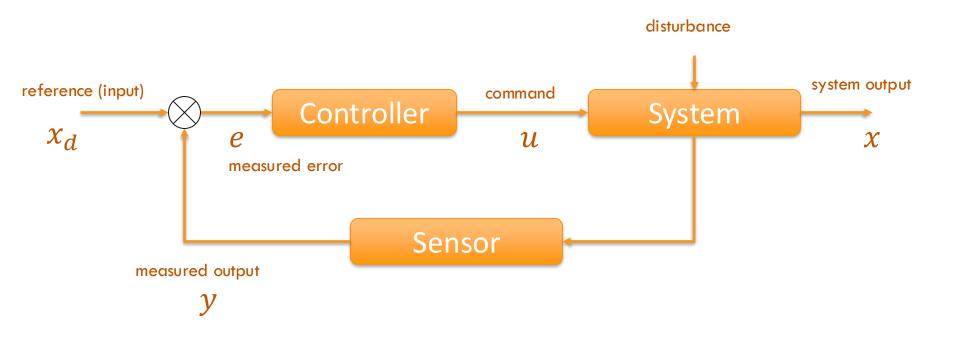
 $x_{t+1} = F(x_t, u_t)$ $y_t = G(x_t)$ $u_t = H_i(y_t)$

$$x_{t+1} = F(x_t, H_i(G(u_t)))$$

VIP: Linear Dynamics in Discrete-Time Systems

$$x_{t+1} = F(x_t, u_t) = Ax_t + Bu_t$$
$$y_t = G(x_t) = Gx_t$$

Diagram of the System and Controller



The intuition behind control

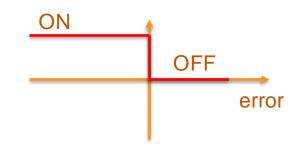
- Use action u to "push back" toward error e = 0
 - error e depends on state x (via sensors y)
- What does pushing back do?
 - Depends on the structure of the system: what can we control
 - For example, position vs. velocity vs. acceleration vs. force/torque control
- How much should we "push back"?
 - What does the magnitude of u depend on?
 - This defines different types of control implementation

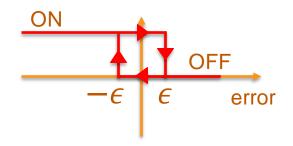
How much should we "push back"?

- How do we set the value of u?
- Some options:
 - Bang-Bang control
 - Proportional control
 - Integral control
 - Derivative control

Bang-Bang Control

- Push back, against the direction of the error
 - with constant action u
- Error is $e = x x_d$
 - if e < 0 then $u = ON \rightarrow \dot{x} = F(x, u) > 0$
 - if e > 0 then $u = OFF \rightarrow \dot{x} = F(x, u) < 0$
- Problem: <u>chatter</u> around $e = 0 \rightarrow$ constant switch ON/OFF \rightarrow Bad for the system!
 - We add some hysteresis
 - if $e < -\epsilon$ then $u = ON \rightarrow \dot{x} = F(x, u) > 0$
 - if $e > +\epsilon$ then $u = OFF \rightarrow \dot{x} = F(x, u) < 0$
 - If $-\epsilon < e < \epsilon$ then u depends on "history" (where do I come from?)

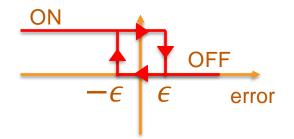




https://pollev.com/robertomartinmartin739

Exercise: Bang-Bang Control

- HVAC system
 - -x = temperature
 - $f_{controller} = 2Hz$
 - u = HVAC ON/OFF
 - ON $\rightarrow x_{t+1} = x_t 2$
 - OFF $\rightarrow x_{t+1} = x_t + 2$
 - We observe directly the temperature (y=x)
 - With/without hysteresis
- Starting state: $x_0 = 90F$
- Desired state: $x_d = 75F$



Bang-Bang Control

- Pro: Super simple!
 - Easy computation
 - Easy implementation
- Cons:
 - Does not "converge"
 - It keeps oscillating around the desired value
 - That can be bad for the system
 - Not very efficient:
 - No matter the "magnitude" of e, our response is the same

Proportional Control

- Why not making u proportional to the "amount" of error?
- Proportional control:
 - Push back, proportional to the error

$$u = -k_p e + u_b = -k_p (x - x_d) + u_b$$

- Set u_b so that $\dot{x} = F(x_d, u_b) = 0$
- Example: driving. You (the controller) "converge" to pushing the pedal some amount (u_b) so that your velocity is constant at your desired value

https://pollev.com/robertomartinmartin739

Exercise

- We want to control a robot arm holding an object
- We control the velocity of the robot's joint
- The state of the robot is given by its joint position and velocity
- Because of the weight of the object, the arm drops at 1 rad/s
- q is the vector of joint values
- Frequency of the system is 1Hz

Increasing gain

1500

Proportional Control

- We make our control proportional to the error:
- For a(n) Imear system, we get exponential convergence

which with our conticiter \overline{e}_{a} disto $\overline{e}_{a}^{\alpha t} + x_{d}$ $\alpha = k_p b - a$ (if SISO system all real numbers)

Derivation (we will call it k_p instead of k_1 and we call it x_d instead of x_{set}):

$$\begin{array}{rcl} e &=& x - x_{set} & & & & & \\ \hline u &=& -k_1 e + u_b & & \\ \hline \dot{x} &=& ax + bu &=& ax + b(-k_1 e + u_b) & & \\ &=& ax + b(-k_1(x - x_{set}) + u_b) & & & \\ &=& -(k_1 b - a)x + (k_1 x_{set} + u_b)b & & \\ &=& -\alpha x + \beta & & \\ \end{array}$$

$$\begin{array}{rcl} & & & & & \\ & & & \\ \hline & & & \\ & &$$

180

170

160

150

140

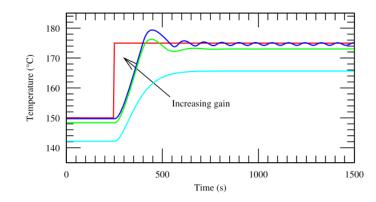
Temperature (°C)

Proportional Control

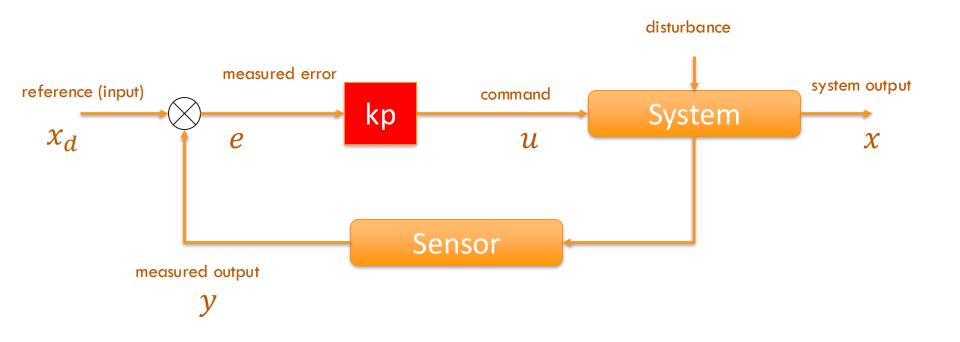
• For a linear system, we get exponential convergence

 $x(t) = Ce^{-\alpha t} + x_d$

• The controller gain k_p determines how quickly the system responds to error



Proportional Control: Diagram



Proportional Control: Issues

- Relatively simple control but
 - May have a steady-state error if the system has disturbances
 - Depending on k_p may not reach the desired configuration, need a very long time, or overshoot and oscillate (VIP: different behaviors of a controller)

Steady-State Error

- Cause: Disturbances
 - What are disturbances? Unmodeled dynamics

$$\dot{x} = F(x, u) + d$$

- Our controller was designed to lead to $\dot{x} = 0$ at the desired point (e = 0), but due the disturbances, at the desired point:

$$\dot{x} = F(x_d, u_b) + d = d \neq 0$$

- We need to adapt u_b to different disturbances d

Solution: Adaptive control

• We need controllers at different time scales

$$u = -k_p e + u_{bv}$$
$$\dot{u}_{bv} = f(e) = -k_I e$$
$$with k_I \ll k_p$$

- This eliminates the steady-state error because the slower controller adapts u_{bv}

Proportional-Integral Control

• The adaptive controller $\dot{u}_b = -k_I e$ means that:

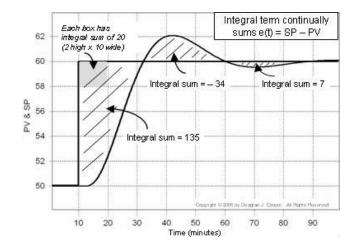
$$u_{bv} = -k_I \int_0^t e \, dt + u_b$$

• And then the control law is:

$$u = -k_p e - k_I \int_0^t e \, dt + u_b$$

• This is called PI control

Examples



When do we use this in robotics To overcome stiction!

- robot controlled by torques in motors $u = k_p e = \tau$

- e is small $\rightarrow u = k_p e = \tau$ small \rightarrow not enough to overcome stiction ($\tau < \tau_{stiction}$) - steady-state error

Proportional Control

- Why not making u proportional to the "amount" of error?
- Proportional control:
 - Push back, proportional to the error

$$u = -k_p e + u_b = -k_p (x - x_d) + u_b$$

- Set u_b so that $\dot{x} = F(x_d, u_b) = 0$
- Example: driving. You (the controller) "converge" to pushing the pedal some amount (u_b) so that your velocity is constant at your desired value

Steady-State Error

- Cause: Disturbances
 - What are disturbances? Unmodeled dynamics

$$\dot{x} = F(x, u) + d$$

- Our controller was designed to lead to $\dot{x} = 0$ at the desired point (e = 0), but due the disturbances, at the desired point:

$$\dot{x} = F(x_d, u_b) + d = d \neq 0$$

- We need to adapt u_b to different disturbances d

Proportional-Integral Control

• The adaptive controller $\dot{u}_b = -k_I e$ means that:

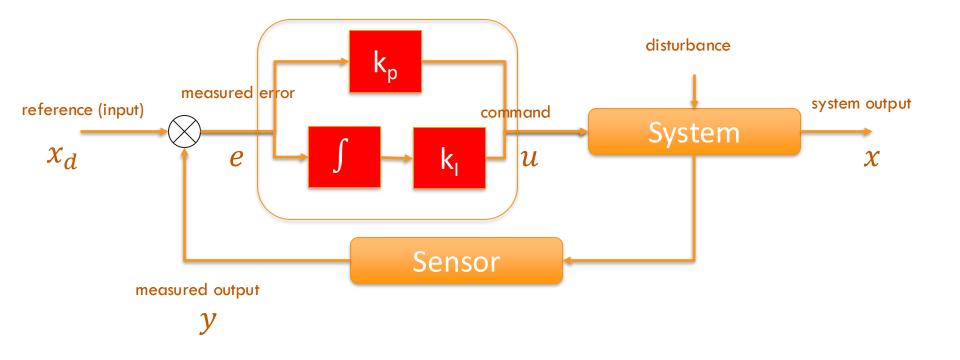
$$u_{bv} = -k_I \int_0^t e \, dt + u_b$$

• And then the control law is:

$$u = -k_p e - k_I \int_0^t e \, dt + u_b$$

• This is called PI control

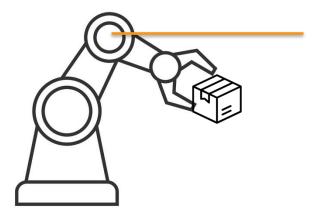
Proportional-Integral Control: Diagram



PollEv.com/robertomartinmartin739

Exercise

- Robot joint trying to reach a desired configuration $q_d = 0$
- Holding something in the hand → disturbance!
- Mass of arm: $m_{arm} = 20kg$
- COM of arm: 50cm from joint
- Mass of box: $m_{box} = 5kg$
- COM of box: 70cm from joint
- Controlled by torque
- Range $[-\pi, \pi]$



Derivative Control

- Remember viscous (damping) friction?
 - Force opposing motion, proportional to velocity
 - $F_{viscous} = -\mu_{viscous}v$
- We are going to include a term in our controller that acts as viscous friction (inverse and proportional to the velocity of the error)

$$u = -k_p e - k_d \dot{e}$$

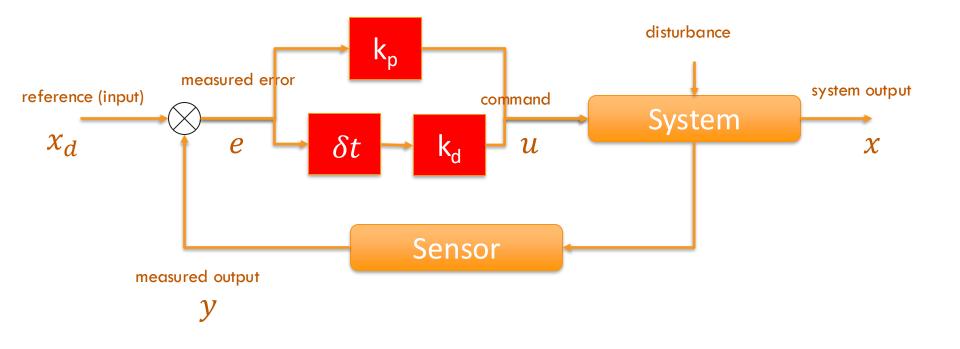
• [Practical issue: computing derivative from measurements can be fragile and amplify noise!]

Derivative Control in Action

Damping fights oscillation and overshoot

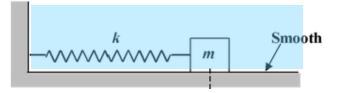


Proportional-Derivative Control: Diagram



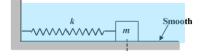
- <u>A controller creates a behavior that resembles the</u> <u>behavior of a mass attached to a spring, immersed in</u> <u>some fluid</u>
- Mass: m
- Fluid viscous friction: μ_{vf} $F_{vf} = -F_N \mu_{vf} v = -k_{vf} \dot{x}$
- Spring constant: k_{spring}
 - Hooke's law: $F_{spring} = -k_{spring}(x x_{eq}) = -k_{spring}x$
- 2nd Newton's law:

 $\Sigma F = m \cdot a = m\ddot{x} = -k_{spring}x - k_{vf}\dot{x}$



• Rearranging and renaming:

 $\ddot{x} + b\dot{x} + cx = 0$ $b = \frac{k_{vf}}{m}$ $c = \frac{k_{spring}}{m}$



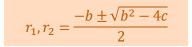
• Simple 2nd order differential equation. Solution of the form: $x(t) = Ae^{r_1 t} + Be^{r_2 t}$

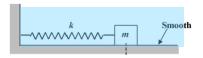
with r_1 and r_2 the roots of the equation $\ddot{x} + b\dot{x} + cx = 0$

$$r_1, r_2 = \frac{-b \pm \sqrt{b^2 - 4a}}{2}$$

- The behavior of the system+controller depends on the nature of the roots r_1 and r_2 , which depend on the parameters b and c (k and k_{vf})
- The system converges to x=0 if its velocity at that point is also 0: $(x, \dot{x}) = (0,0)$
- For the system to converge, both roots must have negative real parts. This requires both c>0 and b>0
 - − c>0 \rightarrow k_{spring}>0, Hooke's law "in the normal way".
 - If c<0 (\check{k}_{spring} <0) it would work as an anti-spring: increasing force in the same direction than the displacement, pushing the mass to the infinite
 - − b>0 \rightarrow k_{vf}>0, Damping "in the normal way": opposing velocity.
 - If b<0 (k_{vf}<0) the damping would increase velocity in the same direction of motion, making the system to diverge

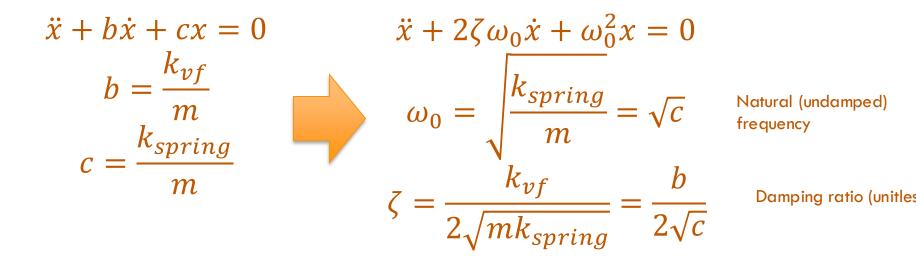
- c>0, b>0. What is the behavior of the system?
 - Depends on the discriminant $D = b^2 4c$
 - − *b* small (k_{vf} small) \rightarrow *D* < 0 \rightarrow System is <u>underdamped</u>
 - System oscillates with decreasing amplitude
 - It may converge, depending if r_1 and r_2 imaginary parts
 - − *b* large (k_{vf} large) \rightarrow *D* > 0 \rightarrow System is <u>overdamped</u>
 - System moves slowly towards convergence, eventually reaching it
 - $D = b^2 4c = 0 \rightarrow b = 2\sqrt{c}$. System is <u>critically damped</u>:
 - Moves as quickly as possible to the resting (desired) position without overshooting
- To tune a PD controller to the optimal behavior, we model it as a spring-mass damped system and find the parameters so that the system is critically damped





Study: PD-Control and the Mass-Spring-Damper Model

• Some extra definitions:



Study: PD-Control and the Mass-Spring-Damper Model

• Some extra definitions:

$$\omega_{0} = \sqrt{\frac{k_{spring}}{m}}$$

$$\zeta = \frac{k_{vf}}{2\sqrt{mk_{spring}}}$$

$$b = 2\zeta\omega_{0}$$

$$c = \omega_{0}^{2}$$

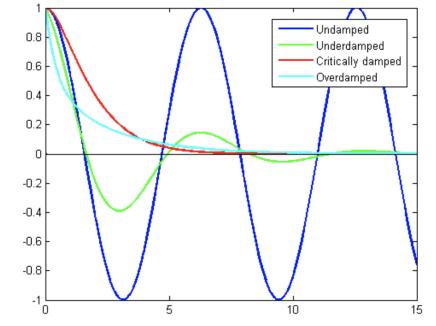
$$\ddot{x} + 2\zeta\omega_0\dot{x} + \omega_0^2x = 0$$

$$D = b^2 - 4c = \frac{k_{vf}^2}{m^2} - \frac{4k_{spring}}{m}$$
$$D = 0 \rightarrow \frac{k_{vf}^2}{m^2} = \frac{4k_{spring}}{m} \rightarrow \frac{k_{vf}^2}{4mk_{spring}} = 1 \rightarrow \frac{k_{vf}}{2\sqrt{mk_{spring}}} = 1$$

- Critically damped: ζ =1
- Overdamped: $\zeta > 1$
- Underdamped: $\zeta < 1$

How does this look like?

- Critically Damped (D=0, ζ =1) $x(t) = (A + Bt)e^{-\omega_0 t}$
- Overdamped (D>0, ζ >1) $x(t) = Ae^{\gamma_{+}t} + Be^{\gamma_{-}t}$ $\gamma_{\pm} = \omega_{0}(-\zeta \pm \sqrt{\zeta^{2} - 1})$



• Underdamped (D<0, ζ <1) $x(t) = e^{-\zeta \omega_0 t} (A \cos(\omega_d t) + B \sin(\omega_d t))$ $\omega_d = \omega_0 \sqrt{1 - \zeta^2}$

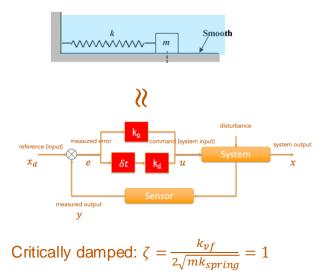
- Critically damped: ζ =1
- Overdamped: $\zeta > 1$
- Underdamped: $\zeta < 1$

Recap

- What is a dynamical system?
 - a system that changes its state (x) over time $\dot{x} = F(x, u) \neq 0$ or $x_{t+1} = F(x_t, u_t) \neq 0$
- What is the goal of control?
 - Control is a mechanism to produce inputs (u) to the dynamical system to try to guide its state towards a desired state
 - Our goal is that $e = x x_d = 0$
- Types of control \rightarrow What "u" we generate depending on "e"
 - Bang-bang: depending on the sign of "e" we output one of two possible "u"s
 - Proportional: $u = -k_p e + u_b$
 - Proportional-Integral: $u = -k_p e k_I \int e \, dt + u_b$
 - Proportional-Derivative: $u = -k_p e k_d \dot{e} + u_b$

Why do we look at a spring-damped mass?

- The behavior of the spring-damped mass is equivalent to the behavior of our controller:
 - In a PD controller, we have control over the stiffness of the spring and the viscosity of the damping
 - With these two values, we can vary the behavior of the system: from oscillating to converging fast and without overshoot, to converging too slow.
 - Our ideal case: critically damped!

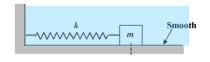


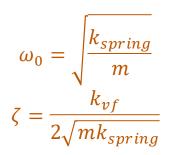
 $k_{vf} = 2\sqrt{mk_{spring}}$

https://pollev.com/robertomartinmartin739

Exercise

- We have an existing mass-spring-damper system (uncontrollable!)
- Unit mass m=1
- $k_{spring} = 10000, k_{vf} = 10$
- What is ω_0 , ζ and the behavior of the system?
- We connect the mass-spring-damper system to a PD controller (we control it!)
- What should be the gains of the controller to change the frequency to 200 rad/s and make it critically damped?
 - The gains of the combined system result from adding the natural system and the PD gains





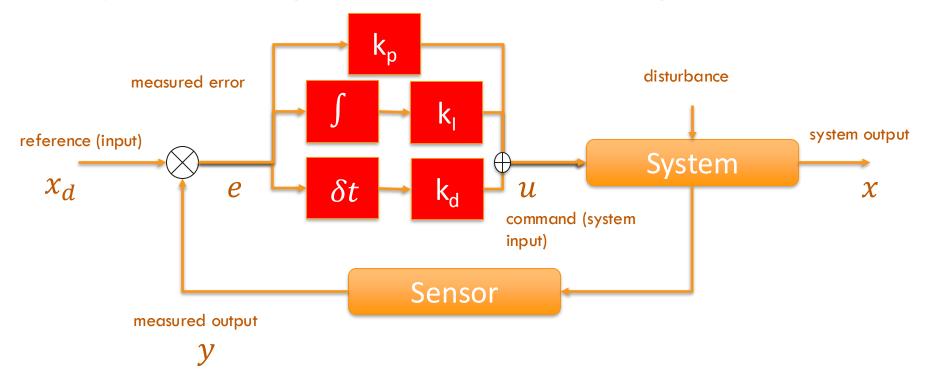
• https://www.matthewpeterkelly.com/tutorials/pdControl/index.html

We can put all together: Proportional-Integral-Derivative (PID) Control

$$u = \frac{-k_p e}{-k_I} \int_0^t e \, dt - k_d \dot{x}$$

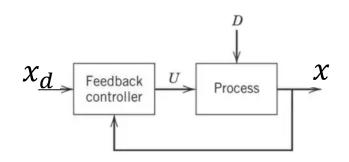
- PD and PID are the most used types of controller everywhere!
 - Industry
 - Research
- Tuning the values of the parameters becomes "an art"
 - Some principled strategies
 - Tends to be trial and error

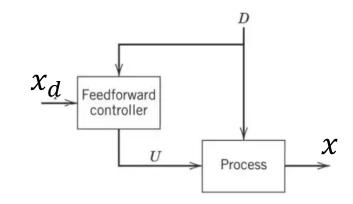
Proportional-Integral-Derivative Control: Diagram



Feedback vs. Feedforward Control

- Feedback control (closed loop):
 - Sense error (due to disturbances), then determine control
 - Reactive
 - Problem: it always goes "behind" the error
- Feedforward control (open loop):
 - Sense directly the disturbance
 - Consider the response from the system (model!) to plan the best signal "u" to compensate the disturbance
 - Problem: Independent of the outcome from the system (does not closes the loop)
- Combined feedforward and feedback
 - We predict the response from the system and compute "u" accordingly but we also compensate for disturbances based on observations





Example of Feedforward

- Autonomous car
- Controls steering
- Feedback controller:
 - If error (for example, distance to middle line) changes, change the steering
 - Reactive (we will move away from the line)
- Feedforward controller:
 - Measure disturbance (for example, the inclination of the road)
 - Compute how much to steer the wheel to compensate for the deviation
 - If well done, we do not need to move away from the line!

Final Recap

- What is control and what is it for?
- Inputs/Outputs
- Types of control: SISO/MIMO
- Open loop vs. closed loop
- State-Space Representation
- Simple controllers
 - Bang-Bang control
 - Proportional control (P)
 - Integral control (I)
 - Derivative control (D)
- PD Controller behavior (over/under/critically damped)
- Type of controller (feedback vs. feedforward)