
Concurrency
Welcome to cs378

Chris Rossbach

Outline for Today

• Questions?
• Administrivia
• Course Overview
• Course Details and Logistics
• Concurrency & Parallelism Basics

Acknowledgments: some materials in this lecture borrowed from:
• Emmett Witchel, who borrowed them from: Kathryn McKinley, Ron Rockhold, Tom Anderson, John Carter, Mike Dahlin, Jim Kurose, Hank Levy, Harrick Vin, Thomas Narten, and Emery Berger

• Mark Silberstein, who borrowed them from: Blaise Barney, Kunle Olukoton, Gupta

Course Details
Course Name: CS378 – Concurrency
Unique Number: 53015

Lectures: M-W 9:30-11:00AM Zoom and/or UTC 1.144
Class Web Page: http://www.cs.utexas.edu/users/rossbach/cs378
Instructor: Chris Rossbach
TA: Carter Chu
Text: Principles of Parallel Programming (ISBN-10: 0321487907)

Please read the syllabus!

…More on this shortly…

http://www.cs.utexas.edu/users/rossbach
https://www.universitycoop.com/search?keywords=Lin%20Snyder%20Parallel%20Programming

Why you should take this course

• Concurrency is super-cool, and super-important
• You’ll learn important concepts and background
• Have fun programming cool systems
• GPUs! (optionally) FGPAs!
• Modern Programming languages: Go! Rust!
• Interesting synchronization primitives (not just boring old locks)
• Programming tools people use to program super-computers (ooh…)

Two perspectives:
• The “just eat your kale and quinoa” argument
• The “it’s going to be fun” argument

My first computer

Wires +
gobble-dy-gook

(sp?)

CPU

Storage

screen

Tape drive!
(also good for playing heavy metal music)

My current computer

Too boring…

Another of my current computers

GPU

Image DSP

Crypto

CPU

…

CPU
A lot has changed but…

the common theme is…??

Modern Technology Stack

driver driver driver

CPU I/O dev DISK NIC

process files pipes

LIBC/CLR

process files pipes

Applications

user
kernel

OS-level
abstractions

HAL

user-mode
Runtimes/libs

Vendor-specific

driver

GPU

ioctl

Runtime

device
APIs

Applications

user
kernel

HW

Runtime
supportmmap

FPGA ASIC

DSPNVM CRYPT

Runtime

device
APIs

Runtime

device
APIs

Runtime

device
APIs

Concurrency and Parallelism are Everywhere

driver driver driver

CPU DISK

Applications

Vendor-specific

driver

GPU

ioctl

Runtime

device
APIs

Applications

mmap

FPGA

ASIC

DSPNVM CRYPT

Runtime

device
APIs

Runtime

device
APIs

Runtime

device
APIs

driver driver driver

vCPU vDISK

Applications

Vendor-specific

d r i v e r

vGPU

ioctl

Runtime

device
APIs

Applications

mmap

vFPGA

vASIC

vDSPvNVM vCRPT

Runtime

device
APIs

Runtime

device
APIs

Runtime

device
APIs

CPU DISKGPU

FPGA

ASIC

DSPNVM CRYPT

HYPERVISORWait!
• What’s concurrency?
• What’s parallelism?

Applications

driver driver driver

vCP
U

vDIS
K

Vendor-specific

d r i v e r
vGP
U

ioctl

Runti
me

dev
ice
API
s

mma
p

vFP
GA

vASI
C

vDS
P

vNV
M

vCR
PT

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

CPU DISKGPU
FPG

A

ASIC

DSPNVM
CRY
PT

HYPERVISOR

driver driver driver

vCP
U

vDIS
K

Vendor-specific

d r i v e r
vGP
U

ioctl

Runti
me

dev
ice
API
s

mma
p

vFP
GA

vASI
C

vDS
P

vNV
M

vCR
PT

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

CPU DISKGPU
FPG

A

ASIC

DSPNVM
CRY
PT

HYPERVISOR

driver driver driver

vCP
U

vDIS
K

Vendor-specific

d r i v e r
vGP
U

ioctl

Runti
me

dev
ice
API
s

mma
p

vFP
GA

vASI
C

vDS
P

vNV
M

vCR
PT

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

CPU DISKGPU
FPG

A

ASIC

DSPNVM
CRY
PT

HYPERVISOR

driver driver driver

vCP
U

vDIS
K

Vendor-specific

d r i v e r
vGP
U

ioctl

Runti
me

dev
ice
API
s

mma
p

vFP
GA

vASI
C

vDS
P

vNV
M

vCR
PT

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

CPU DISKGPU
FPG

A

ASIC

DSPNVM
CRY
PT

HYPERVISOR

driver driver driver

vCP
U

vDIS
K

Vendor-specific

d r i v e r
vGP
U

ioctl

Runti
me

dev
ice
API
s

mma
p

vFP
GA

vASI
C

vDS
P

vNV
M

vCR
PT

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

CPU DISKGPU
FPG

A

ASIC

DSPNVM
CRY
PT

HYPERVISOR

driver driver driver

vCP
U

vDIS
K

Vendor-specific

d r i v e r
vGP
U

ioctl

Runti
me

dev
ice
API
s

mma
p

vFP
GA

vASI
C

vDS
P

vNV
M

vCR
PT

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

CPU DISKGPU
FPG

A

ASIC

DSPNVM
CRY
PT

HYPERVISOR

driver driver driver

vCP
U

vDIS
K

Vendor-specific

d r i v e r
vGP
U

ioctl

Runti
me

dev
ice
API
s

mma
p

vFP
GA

vASI
C

vDS
P

vNV
M

vCR
PT

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

CPU DISKGPU
FPG

A

ASIC

DSPNVM
CRY
PT

HYPERVISOR

driver driver driver

vCP
U

vDIS
K

Vendor-specific

d r i v e r
vGP
U

ioctl

Runti
me

dev
ice
API
s

mma
p

vFP
GA

vASI
C

vDS
P

vNV
M

vCR
PT

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

CPU DISKGPU
FPG

A

ASIC

DSPNVM
CRY
PT

HYPERVISOR

driver driver driver

vCP
U

vDIS
K

Vendor-specific

d r i v e r
vGP
U

ioctl

Runti
me

dev
ice
API
s

mma
p

vFP
GA

vASI
C

vDS
P

vNV
M

vCR
PT

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

CPU DISKGPU
FPG

A

ASIC

DSPNVM
CRY
PT

HYPERVISOR

driver driver driver

vCP
U

vDIS
K

Vendor-specific

d r i v e r
vGP
U

ioctl

Runti
me

dev
ice
API
s

mma
p

vFP
GA

vASI
C

vDS
P

vNV
M

vCR
PT

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

CPU DISKGPU
FPG

A

ASIC

DSPNVM
CRY
PT

HYPERVISOR

driver driver driver

vCP
U

vDIS
K

Vendor-specific

d r i v e r
vGP
U

ioctl

Runti
me

dev
ice
API
s

mma
p

vFP
GA

vASI
C

vDS
P

vNV
M

vCR
PT

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

CPU DISKGPU
FPG

A

ASIC

DSPNVM
CRY
PT

HYPERVISOR

driver driver driver

vCP
U

vDIS
K

Vendor-specific

d r i v e r
vGP
U

ioctl

Runti
me

dev
ice
API
s

mma
p

vFP
GA

vASI
C

vDS
P

vNV
M

vCR
PT

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

CPU DISKGPU
FPG

A

ASIC

DSPNVM
CRY
PT

HYPERVISOR

driver driver driver

vCP
U

vDIS
K

Vendor-specific

d r i v e r
vGP
U

ioctl

Runti
me

dev
ice
API
s

mma
p

vFP
GA

vASI
C

vDS
P

vNV
M

vCR
PT

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

CPU DISKGPU
FPG

A

ASIC

DSPNVM
CRY
PT

HYPERVISOR

driver driver driver

vCP
U

vDIS
K

Vendor-specific

d r i v e r
vGP
U

ioctl

Runti
me

dev
ice
API
s

mma
p

vFP
GA

vASI
C

vDS
P

vNV
M

vCR
PT

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

CPU DISKGPU
FPG

A

ASIC

DSPNVM
CRY
PT

HYPERVISOR

driver driver driver

vCP
U

vDIS
K

Vendor-specific

d r i v e r
vGP
U

ioctl

Runti
me

dev
ice
API
s

mma
p

vFP
GA

vASI
C

vDS
P

vNV
M

vCR
PT

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

CPU DISKGPU
FPG

A

ASIC

DSPNVM
CRY
PT

HYPERVISOR

driver driver driver

vCP
U

vDIS
K

Vendor-specific

d r i v e r
vGP
U

ioctl

Runti
me

dev
ice
API
s

mma
p

vFP
GA

vASI
C

vDS
P

vNV
M

vCR
PT

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

Runti
me

dev
ice
API
s

CPU DISKGPU
FPG

A

ASIC

DSPNVM
CRY
PT

HYPERVISOR

Cluster OS

driver driver driver

vCPU vDISK

Applications

Vendor-specific

d r i v e r

vGPU

ioctl

Runtime

device
APIs

Applications

mmap

vFPGA

vASIC

vDSPvNVM vCRPT

Runtime

device
APIs

Runtime

device
APIs

Runtime

device
APIs

CPU DISKGPU

FPGA

ASIC

DSPNVM CRYPT

HYPERVISOR

Concurrency and Parallelism are Everywhere

Concurrency and Parallelism are everywhere

GPU

Image DSP

Crypto

CPU(s)

…

GPU
Crypto

FPGADSP

How much parallel and concurrent programming
have you learned so far?
• Concurrency/parallelism can’t be avoided

anymore (want a job?)
• A program or two playing with locks and threads

isn’t enough
• I’ve worked in industry a lot—I know

Course goal is to expose you to lots of ways of
programming systems like these
…So “you should take this course because it’s good for you” (eat your #$(*& kale!)

Goal: Make Concurrency Your Close Friend
Method: Use Many Different Approaches to Concurrency
Abstract Concrete
Locks and Shared Memory Synchronization Prefix Sum with pthreads

Language Support Go lab: condition variables, channels, go routines
Rust lab: 2PC

Parallel Architectures GPU Programming Lab
(Optional) FPGA Programming Lab

HPC Optional MPI lab

Distributed Computing / Big Data Rust 2PC / MPI labs

Modern/Advanced Topics
• Specialized Runtimes / Programming Models
• Auto-parallelization
• Race Detection

Whatever Interests YOU Project

Logistics Reprise
Course Name: CS378 – Concurrency
Unique Number: 53015

Lectures: MW 9:30-11:00AM UTC 144 and/or zoom

Class Web Page: http://www.cs.utexas.edu/users/rossbach/cs378
Instructor: Chris Rossbach
TA: Carter Chu
Text: Principles of Parallel Programming (ISBN-10: 0321487907)

Seriously, read the syllabus!
Also, start Lab 1!

http://www.cs.utexas.edu/users/rossbach/cs378
http://www.cs.utexas.edu/users/rossbach
https://www.universitycoop.com/search?keywords=Lin%20Snyder%20Parallel%20Programming

Two Super-Serious Notes

• Inclusivity and respect are absolute musts

• Don’t make your repos public or look at other people’s public repos
• Don’t make your repos public or look at other people’s public repos
• Don’t make your repos public or look at other people’s public repos
• Don’t make your repos public or look at other people’s public repos
• Don’t make your repos public or look at other people’s public repos

Serial vs. Parallel Program
Key concerns:
• Programming model
• Execution Model
• Performance/Efficiency
• Exposing parallelism

15CS378h

Flynn’s Taxonomy

SISD SIMD
MISD MIMD

Execution Models: Flynn’s Taxonomy
Normal Serial program

Uncommon architecture:
Fault – tolerance
Pipeline parallelism

Our main focus

19

• Example: vector operations (e.g., Intel SSE/AVX, GPU)

SIMD

MIMD

• Example: multi-core CPU

Problem Partitioning

• Decomposition: Domain v. Functional
• Domain Decomposition

• SPMD
• Input domain
• Output Domain
• Both

• Functional Decomposition
• MPMD
• Independent Tasks
• Pipelining

Game of Life

• Given a 2D Grid:

What model fits “best”?

Domain decomposition

• Each CPU gets part of the input

CPU 0

CPU 1

Issues?
• Accessing Data

• Can we access v(i+1, j) from CPU 0
• …as in a “normal” serial program?
• Shared memory? Distributed?

• Time to access v(i+1,j) == Time to access v(i-1,j) ?
• Scalability vs Latency

• Control
• Can we assign one vertex per CPU?
• Can we assign one vertex per process/logical task?
• Task Management Overhead

• Load Balance
• Correctness

• order of reads and writes is non-deterministic
• synchronization is required to enforce the order
• locks, semaphores, barriers, conditionals….How could we do a functional decomposition?

Load Balancing

• Slowest task determines performance

25

Task 0
Task 1

Task 2
Task 3

wait
work

time

Granularity
• Fine-grain parallelism

• G is small
• Good load balancing
• Potentially high overhead
• Hard to get correct

• Coarse-grain parallelism
• G is large
• Load balancing is tough
• Low overhead
• Easier to get correct

Performance: Amdahl’s law

Amdahl’s law

What makes something “serial” vs. parallelizable?

Serial Parallelizable

X/2 seconds X/2 seconds

my task

X seconds

Amdahl’s law

Serial Parallelizable
Parallelizable

Parallelizable

X/2 seconds X/2 seconds

End to end time: X seconds

X/4 seconds

End to end time: (X/2 + X/4) = (3/4)X seconds

What is the “speedup” in this case?

2 CPUs

Speedup exercise

Serial Parallelizable

X/4 seconds
3 * X/4 seconds

End to end time: X seconds

What is the “speedup” in this case?

8 CPUs

P P P P P P P P

P
P
P
P
P
P
P
P

(3X/4)/8 seconds

Amdahl Action Zone

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64
128

256
512

1024
2048

4096
8192

16384

SP
EE

DU
P

NUMBER OF CPUS

50% PARALLEL

Amdahl Action Zone

0

1

2

3

4

5

1 2 4 8 16 32 64
128

256
512

1024
2048

4096
8192

16384

SP
EE

DU
P

NUMBER OF CPUS

50% 75%

Amdahl Action Zone

0
20
40
60
80

100
120

1 2 4 8 16 32 64
128

256
512

1024
2048

4096
8192

16384

SP
EE

DU
P

NUMBER OF CPUS

50% 75% 90% 95% 99%

Strong Scaling vs Weak Scaling
• Amdahl vs. Gustafson

• Amdahl: strong scaling à fixed work
• Gustafson: scaling à add more work and more processors

• Given work W on n CPUs, with α serial
• Incremental work W’ on (n+1) CPUs:

Wʹ=αW+(1−α)nW

• Speedup based on case where (1-α) scales perfectly:

S(n)=α+(1−α)n

CPUs

Super-linear speedup

• Possible due to cache
• But usually just poor methodology
• Baseline: *best* serial algorithm
• Example:

Concurrency and Correctness
If two threads execute this program concurrently,

how many different final values of X are there?
Initially, X == 0.

void increment() {
int temp = X;
temp = temp + 1;
X = temp;

}

void increment() {
int temp = X;
temp = temp + 1;
X = temp;

}

Thread 1 Thread 2

Answer:
A. 0
B. 1
C. 2
D. More than 2

Schedules/Interleavings
Model of concurrent execution
• Interleave statements from each thread into a single thread
• If any interleaving yields incorrect results, synchronization is needed

tmp1 = X;
tmp1 = tmp1 + 1;
X = tmp1;

tmp2 = X;
tmp2 = tmp2 + 1;
X = tmp2;

Thread 1 Thread 2
tmp1 = X;
tmp2 = X;
tmp2 = tmp2 + 1;
tmp1 = tmp1 + 1;
X = tmp1;
X = tmp2;

If X==0 initially, X == 1 at the end. WRONG result!

Locks fix this with Mutual Exclusion

Mutual exclusion ensures only safe interleavings
• But it limits concurrency, and hence scalability/performance

void increment() {
lock.acquire();
int temp = X;
temp = temp + 1;
X = temp;
lock.release();

}

Is mutual exclusion a good abstraction?

• Fine-grain locks
• Greater concurrency
• Greater code complexity
• Potential deadlocks

• Not composable
• Potential data races

• Which lock to lock?

Why Locks are Hard

// WITH FINE-GRAIN LOCKS
void move(T s, T d, Obj key){
LOCK(s);
LOCK(d);
tmp = s.remove(key);
d.insert(key, tmp);
UNLOCK(d);
UNLOCK(s);

}

DEADLOCK!

move(a, b, key1);

move(b, a, key2);

Thread 0 Thread 1

• Coarse-grain locks
• Simple to develop
• Easy to avoid deadlock
• Few data races
• Limited concurrency

The correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region
• Even if other thread takes forever in non-critical region

• Bounded waiting
• A thread that enters the entry section enters the critical section within some

bounded number of operations.

• Failure atomicity
• It is OK for a thread to die in the critical region
• Many techniques do not provide failure atomicity

while(1) {
Entry section
Critical section
Exit section
Non-critical section

}

Read-Modify-Write (RMW)
Implement locks using read-modify-write instructions
• As an atomic and isolated action

1. read a memory location into a register, AND
2. write a new value to the location

• Implementing RMW is tricky in multi-processors
! Requires cache coherence hardware. Caches snoop the memory bus.

Examples:
• Test&set instructions (most architectures)

! Reads a value from memory
! Write “1” back to memory location

• Compare & swap (68000)
! Test the value against some constant
! If the test returns true, set value in memory to different value
! Report the result of the test in a flag
! if [addr] == r1 then [addr] = r2;

• Exchange, locked increment, locked decrement (x86)
• Load linked/store conditional (PowerPC,Alpha, MIPS)

Implementing Locks with Test&set
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (test&set(lock) == 1)

; //spin
}

Lock::Release() {
*lock = 0;

}

What is the problem with this?
Ø A. CPU usage B. Memory usage C. Lock::Acquire() latency
Ø D. Memory bus usage E. Does not work

(test & set ~ CAS ~ LLSC)

Test & Set with Memory Hierarchies

0xF0 lock: 1
0xF4 …

lock: 1
…

lock: 1
…

CPU A
while(test&set(lock));
// in critical region

L1

L2

Main Memory

…

…

L1

L2

CPU B
while(test&set(lock));

Initially, lock already held by some other CPU—A, B busy-waiting
What happens to lock variable’s cache line when different cpu’s contend?

Load
can
stall

• With bus-locking, lock
prefix blocks *everyone*

• With CAS, LL-SC, cache line
cache line “ping pongs”
amongst contenders

• More on this next time…

Programming and Machines: a mental model

Parallel Machines: a mental model

Processes and Threads

• Abstractions
• Containers
• State

• Where is shared state?
• How is it accessed?
• Is it mutable?

Processes & Virtual Memory

• Virtual Memory: Goals…what are they again?
• Abstraction: contiguous, isolated memory

• Remember overlays?

• Prevent illegal operations
• Access to others/OS memory
• Fail fast (e.g. segv on *(NULL))
• Prevent exploits that try to execute program data

• Sharing mechanism/IPC substrate

ustack (1)

Process Address Space

kernel
kernel
kernel
kernel

ucode (1)

kcode
kdata
kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
G

B
1

G
B

used

free

user (1)
user (1)

udata (1)

user (1)
user (2)
user (2)
user (2)

access possible in user mode

access requires kernel mode

P1

52

Processes
The Process Model

• Multiprogramming of four programs
• Conceptual model of 4 independent, sequential processes
• Only one program active at any instant

53

Implementation of Processes

Fields of a process table entry

54

Threads
The Thread Model (1)

(a) Three processes each with one thread
(b) One process with three threads

55

The Thread Model

• Items shared by all threads in a process
• Items private to each thread

56

The Thread Model

Each thread has its own stack

57

Using threads
Ex. How might we use threads in a word processor program?

58

Thread Usage

A multithreaded Web server

(a) Dispatcher thread
(b) Worker thread

59

Thread Usage

Three ways to construct a server

60

Implementing Threads in User Space

A user-level threads package

61

Implementing Threads in the Kernel

A threads package managed by the kernel

Pthreads

• POSIX standard thread model,
• Specifies the API and call semantics.
• Popular – most thread libraries are Pthreads-compatible

Preliminaries

• Include pthread.h in the main file
• Compile program with –lpthread

• gcc –o test test.c –lpthread
• may not report compilation errors otherwise but calls will fail

• Good idea to check return values on common functions

Thread creation
• Types: pthread_t – type of a thread
• Some calls:

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr,
void * (*start_routine)(void *),
void *arg);

int pthread_join(pthread_t thread, void **status);
int pthread_detach();
void pthread_exit();

• No explicit parent/child model, except main thread holds process info
• Call pthread_exit in main, don’t just fall through;
• Most likely you wouldn’t need pthread_join

• status = exit value returned by joinable thread
• Detached threads are those which cannot be joined (can also set this at creation)

Creating multiple threads

Can you find the bug here?

Pthread Mutexes

• Type: pthread_mutex_t

int pthread_mutex_init(pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);

• Attributes: for shared mutexes/condition vars among processes, for priority
inheritance, etc.

• use defaults
• Important: Mutex scope must be visible to all threads!

Spinlock vs Mutex

Lab #1

• Basic synchronization
• http://www.cs.utexas.edu/~rossbach/cs378/lab/lab0.html

• Start early!!!

http://www.cs.utexas.edu/~rossbach/cs378/lab/lab0.html

Questions?

