
Synchronization:
Implementing Barriers

Promises + Futures
Chris Rossbach

CS378

Today

• Questions?
• Administrivia
• Lab 2 due sooner than you’d like

• Material for the day
• Barrier implementation
• Promises & Futures

• Acknowledgements
• Thanks to Gadi Taubenfield: I borrowed from some of his slides on barriers

Faux Quiz (answer any N, 5 min)

• How are promises and futures related? Since there is disagreement
on the nomenclature, don’t worry about which is which—just
describe what the different objects are and how they function.

Barriers

5

abegin b c d e f

aend a+b a+b+c a+b+c+d a+b+c
+d+e

a+b+c
+d+e+f

time

Prefix Sum

6

abegin b c d e f

a a+b c d e f

a a+b a+b+c a+b+c+d e f

aend a+b a+b+c a+b+c+d a+b+c
+d+e

a+b+c
+d+e+f

a a+b a+b+c d e f

a a+b a+b+c a+b+c+d a+b+c+d+e f

time

Prefix Sum

Parallel Prefix Sum

7

abegin b c d e f

a a+b b+c c+d d+e e+f

a a+b a+b+c a+b+c+d b+c+d+e c+d+e+f

aend a+b a+b+c a+b+c+d a+b+c
+d+e

a+b+c
+d+e+f

Chapter 5

time

Pthreads Parallel Prefix Sum

Will this
work?

Pthreads Parallel Prefix Sum

fixed?

10

abegin b c d e f

a a+b b+c c+d d+e e+f

a a+b a+b+c a+b+c+d b+c+d+e c+d+e+f

aend a+b a+b+c a+b+c+d a+b+c
+d+e

a+b+c
+d+e+f

barrier

barrier

Chapter 5

time

Parallel Prefix Sum

Barrier Basics

11

Ba
rr

ie
r

P1

P2

P3

P4

Ba
rr

ie
r

P1

P2

P3

P4

P1

P2

P3

P4

time

Ba
rr

ie
r

four threads
approach the
barrier

all except
P4 arrive

Once all
arrive, they
continue

Ø Coordination mechanism
Ø participants wait until all reach same point.
Ø Once all reach it, all can pass.
Ø Workhorse of BSP programming models

Fundamental
primitive in many
parallel models

Can you make a
lock with a
barrier?

Barriers: Goals

12

Desirable barrier properties:
• Low shared memory space complexity
• Low contention on shared objects
• Low shared memory references per process
• No need for shared memory initialization
• Symmetric: same amount of work for all
• Algorithm simplicity
• Simple basic primitive
• Minimal propagation time
• Reusability of the barrier (must!)

13

• Conditions
• Semaphores
• Atomic Bit
• Atomic Register
• Fetch-and-increment register
• Test and set bits
• Read-Modify-Write register

Barrier Building Blocks

Barrier with Semaphores

Barrier using Semaphores
Algorithm for N threads

15

shared sem_t arrival = 1; // sem_init(&arrival, NULL, 1)
sem_t departure = 0; // sem_init(&departure, NULL, 0)
atomic int counter = 0; // (gcc intrinsics are verbose)

sem_wait(arrival);
if(++counter < N)

sem_post(arrival);

else
sem_post(departure);

sem_wait(departure);
if(--counter > 0)

sem_post(departure)

else
sem_post(arrival)

1
2
3

4
5
6
7
8

9
10

First N-1 threads post on
arrival, wait on departure

Phase I

Phase II

Nth thread post on
departure, releasing
threads into phase II

(what is value of arrival?)

First N-1 threads post on
departure, last posts arrival

Semaphore Barrier Action Zone
N == 3

16

shared sem_t arrival = 1;
sem_t departure = 0;
atomic int counter = 0;

sem_wait(arrival);
if(++counter < N)

sem_post(arrival);

else
sem_post(departure);

sem_wait(departure);
if(--counter > 0)

sem_post(departure)

else
sem_post(arrival)

sem_wait(arrival);
if(++counter < N)

sem_post(arrival);

else
sem_post(departure);

sem_wait(departure);
if(--counter > 0)

sem_post(departure)

else
sem_post(arrival)

sem_wait(arrival);
if(++counter < N)

sem_post(arrival);

else
sem_post(departure);

sem_wait(departure);
if(--counter > 0)

sem_post(departure)

else
sem_post(arrival)

CPU 0 CPU 1 CPU 2

1
0
01

0
0

1

23

0
110
0

0
1

1
1
2

Do we need two
phases?

Still correct if
counter is not

atomic?

// why two phases:
for(…) {

do_something();

wait();

}

Barrier using Semaphores
Properties

• Pros:
• Very Simple
• Space complexity O(1)
• Symmetric

• Cons:
• Required a strong object

• Requires some central manager
• High contention on the semaphores

• Propagation delay O(n)

• Pros:

• Cons:

Barriers based on counters

19

Fetch-and-Increment register

• A shared register that supports a F&I operation:

• Input: register r
• Atomic operation:

• r is incremented by 1
• the old value of r is returned

Counter Barrier Ingredients

function fetch-and-increment (r : register)
orig_r := r;
r:= r + 1;

return (orig_r);
end-function

Await

• For brevity, we use the await macro

• Not an operation of an object
• This is just “spinning”

macro await (condition : boolean condition)
repeat

cond = eval(condition);

until (cond)
end-macro

20

1 local.go := go

2 local.counter := fetch-and-increment (counter)

3 if local.counter + 1 = n then

4 counter := 0

5 go := 1 - go

6 else await(local.go ≠ go)

shared counter: fetch and increment reg. – {0,..n}, initially = 0
go: atomic bit, initial value does not matter

local local.go: a bit, initial value does not matter

local.counter: register

Simple Barrier Using an Atomic Counter

Pros/Cons?

• There is high memory contention on go bit
• Reducing the contention:

• Replace the go bit with n bits:
go[1],…,go[n]

• Process pi may spin only on the bit go[i]

shared counter: fetch and increment reg. – {0,..n}, initially = 0
go[1..n]: array of atomic bits, initial values are immaterial

local local.go: a bit, initial value is immaterial

local.counter: register

A Local Spinning Counter Barrier
Program of a Thread i

1 local.go := go[i]
2 local.counter := fetch-and-increment (counter)
3 if local.counter + 1 = n then

4 counter := 0
5 for j=1 to n { go[j] := 1 – go[j] }
6 else await(local.go ≠ go[i])

SM

A Local Spinning Counter Barrier
Example Run for n=3 Threads

24

0 ?counter go ? ?

1 local.go := go[i]
2 local.counter := fetch-and-increment (counter)
3 if local.counter + 1 = n then

4 counter := 0
5 for j=1 to n { go[j] := 1 – go[j] }
6 else await(local.go ≠ go[i])

P1
?loc.go

?loc.counter
P2

?loc.go

?loc.counter
P3

?loc.go

?loc.counter

0 0 0

P2

0

1

0

0+1≠3

P1

P1 Busy wait

0

2

1

1+1≠3

P1,P2 Busy wait

P3

0

3

2

2+1=3

0 1 1 1

Pros/Cons?
Does this
actually reduce
contention?

Comparison of counter-based Barriers

Simple Barrier Simple Barrier with go array

25

• Pros:

• Cons:

• Pros:

• Cons:

Simple Barrier Simple Barrier with go array

26

• Pros:
• Very Simple
• Shared memory: O(log n) bits
• Takes O(1) until last waiting p is

awaken

• Cons:
• High contention on the go bit
• Contention on the counter

register (*)

• Pros:
• Low contention on the go array
• In some models:

• spinning is done on local
memory

• remote mem. ref.: O(1)

• Cons:
• Shared memory: O(n)
• Still contention on the counter

register (*)
• Takes O(n) until last waiting p is

awaken

Comparison of counter-based Barriers

Tree Barriers

A Tree-based Barrier

28

• Threads are organized in a binary tree

• Each node is owned by a predetermined thread

• Each thread waits until its 2 children arrive
• combines results
• passes them on to its parent

• Root learns that its 2 children have arrivedàtells children they can go

• The signal propagates down the tree until all the threads get the message

7654

32

1

29

1098 11 12 13 14 15

7654

32

1

Assume 𝑛
= 2! − 1

arrive

go

2 3 4 5 6 7 8 9 10 11 12 13 14 15

2𝑖
+1

𝑖

2𝑖

A Tree-based Barrier: indexing

Indexing starts from 2
Root à 1, doesn’t need wait objects

Step 1: label numerically
with depth-first traveral

A Tree-based Barrier
program of thread i

30

shared arrive[2..n]: array of atomic bits, initial values = 0
go[2..n]: array of atomic bits, initial values = 0

1 if i=1 then // root
2 await(arrive[2] = 1); arrive[2] := 0
3 await(arrive[3] = 1); arrive[3] := 0

4 go[2] = 1; go[3] = 1
5 else if i ≤ (n-1)/2 then // internal node
6 await(arrive[2i] = 1); arrive[2i] := 0
7 await(arrive[2i+1] = 1); arrive[2i+1] := 0
8 arrive[i] := 1

9 await(go[i] = 1); go[i] := 0
10 go[2i] = 1; go[2i+1] := 1
11 else // leaf
12 arrive[i] := 1
13 await(go[i] = 1); go[i] := 0 fi

14 fi

Root

Internal

Leaf

Root:
• Wait for arriving children
• Tell children to go

Internal:
• Wait for arriving children
• Tell parent about it
• Wait for parent go signal
• Tell children to go

Child:
• arrive
• Wait for parent go signal

7654

32

1

A Tree-based Barrier
Example Run for n=7 threads

31

arrive

go

2 3 4 5 6 7

11 1

7654

32

1

7654

32

1

7654

32

1

7654

32

1

7654

32

1

Waiting for
p4 to arrive

Waiting for
go[5]

Waiting for
go[4]

7654

32

1

Waiting for
go[2]

0 0

7654

32

1

1 0 0 1

7654

32

1

Waiting for
go[6]

7654

32

1
Waiting for
p3 to arrive

arrive[2]=1
?

P2 zeros
arrive[4,5]

Arrive[2]=1
?

7654

32

1

7654

32

1

Waiting for
go[7]

7654

32

1

P3 zeros
arrive[6,7]

1 0 01 0 0 1

P1 zeros
arrive[2]

0 0 0 10 0 0 1 10 0 0 0 00 1 0 0 0 0

Waiting for
go[3]

7654

32

1

P1 zeros
arrive[3]

0 0 0 0 0 0

7654

32

1

0 0 0 0 0 0

1 1

0 0 0 0 0 0

1 1 1 1 1 1

Finished!!

At this point
all non-root
threads in some
await(go) case

32

• Pros:
• Low shared memory contention

• No wait object is shared by more than 2 processes
• Good for larger n

• Fast – information from the root propagates after log(n) steps
• Can use only atomic primitives (no special objects)
• On some models:

• each process spins on a locally accessible bit
• # (remote memory ref.) = O(1) per process

• Cons:
• Shared memory space complexity – O(n)
• Asymmetric –all the processes don’t the same amount of work
• Corner cases for n != 2^k-1

Tree Barrier Tradeoffs

Butterfly Barrier

• When would this be preferable?

Hardware Supported Barriers

CPU

GPU

• When would this be useful?

Barriers Summary

35

Seen:
• Semaphore-based barrier
• Simple barrier

• Based on atomic fetch-and-increment counter

• Local spinning barrier
• Based on atomic fetch-and-increment counter and go array

• Tree-based barrier
Not seen:
• Test-and-Set barriers

• Based on test-and-test-and-set objects
• One version without memory initialization

• See-Saw barrier
• Book has condition barriers

Asynchronous Programming
Events, Promises, and Futures

Programming Models for Concurrency

• Hardware execution model:
• CPU(s) execute instructions sequentially

• Programming model dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Techniques/primitives
• Message passing vs shared memory
• Preemption vs Non-preemption

• Dimensions/techniques not always orthogonal

co
m
m
un

ic
at
io
n

com
put

ati
on

coordination

Futures &
Promises
touch all
three
dimension

Futures & Promises

• Values that will eventually become available
• Time-dependent states:
• Completed/determined

• Computation complete, value concrete
• Incomplete/undetermined

• Computation not complete yet

• Construct (future X)
• immediately returns value
• concurrently executes X

Java Example

• CompletableFuture is a container for Future object type

• cf is an instance

• runAsync() accepts
• Lambda expression
• Anonymous function
• Functor

• runAsync() immediately returns a waitable object (cf)

• Where (on what thread) does the lambda expression run?

Futures and Promises:
Why two kinds of objects?

Promise: “thing to be done”

Future: encapsulation
(something to give caller)

Promise to do something in the future

Futures vs Promises

• Future: read-only reference to uncompleted value
• Promise: single-assignment variable that the future refers to
• Promises complete the future with:
• Result with success/failure
• Exception

Language Promise Future

Algol Thunk Address of async result

Java Future<T> CompletableFuture<T>

C#/.NET TaskCompletionSource<T> Task<T>

JavaScript Deferred Promise

C++ std::promise std::future

Mnemonic:
Promise to do something

Make a promise for the future

Putting Futures in Context
My unvarnished opinion

Futures:
• abstraction for concurrent work supported by

• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative/sequential
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Programming Model between:
• Event-based programming
• Thread-based programming Events vs. Threads!

GUI Programming

GUI Programming

GUI programming
void OnMove() { … }
void OnSize() { … }

void OnPaint() { … }

Over 1000 last
time I checked!

GUI Programming Distilled

Pros
• Simple imperative programming
• Good fit for uni-processor

Cons
• Awkward/verbose
• Obscures available parallelism

GUI Programming Distilled
How can we
parallelize

this?

Parallel GUI Implementation 1

Parallel GUI Implementation 1

Pros:
• Encapsulates parallel work
Cons:
• Obliterates original code structure
• How to assign handlersàCPUs?
• Load balance?!?
• Utilization

DoThisProc

DoThatProc

OtherThing

Pros/cons?

Parallel GUI Implementation 2
Pros:
• Preserves programming model
• Can recover some parallelism
Cons:
• Workers still have same problem
• How to load balance?
• Shared mutable state a problem

Extremely difficult to solve
without changing the whole

programming model…so
change it

Pros/cons?

Event-based Programming: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments
• Load balancing/assignment brittle
• Shared state requires locks à

• Priority inversion
• Deadlock
• Incorrect synchronization

• …

• Events: restructure programming model to have no threads!

Event Programming Model Basics

• Programmer only writes events
• Event: an object queued for a module (think future/promise)
• Basic primitives
• create_event_queue(handler) à event_q
• enqueue_event(event_q, event-object)

• Invokes handler (eventually)

• Scheduler decides which event to execute next
• E.g. based on priority, CPU usage, etc.

Event-based programming
Runtime

Is the problem solved?

Another Event-based Program

Blocks!Burns CPU!Uses Other Handlers!
(call OnPaint?)

No problem!
Just use more events/handlers, right?

Continuations, BTW

Stack-Ripping

Stack-based state out-of-scope!
Requests must carry state

Threads vs Events
• Thread Pros
• Overlap I/O and computation

• While looking sequential
• Intermediate state on stack
• Control flow naturally expressed

• Thread Cons
• Synchronization required
• Overflowable stack
• Stack memory pressure

• Event Pros
• Easier to create well-conditioned system
• Easier to express dynamic change in level of

parallelism

• Event Cons
• Difficult to program
• Control flow between callbacks obscure
• When to deallocate memory
• Incomplete language/tool/debugger support
• Difficult to exploit concurrent hardware

Language-level
Futures: the
sweet spot?

Thread Pool Implementation

Cool project
idea: build a
thread pool!

Thread Pool Implementation

ThreadPool Implementation

Redux: Futures in Context

Futures:
• abstraction for concurrent work supported by

• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Model:
• Event-based programming
• Thread-based programming
Currently: 2nd renaissance IMHO

Questions?

