
Asynchronous Programming
Promises + Futures

Consistency
Chris Rossbach

Today

• Questions?

• Administrivia

• Material for the day
• Events / Asynchronous programming

• Promises & Futures

• Bonus: memory consistency models

• Acknowledgements

• Consistency slides borrow some materials from Kevin Boos. Thanks!

Asynchronous Programming
Events, Promises, and Futures

Asynchronous Programming
Events, Promises, and Futures

Programming Models for Concurrency

Programming Models for Concurrency

• Hardware execution model:

Programming Models for Concurrency

• Hardware execution model:
• CPU(s) execute instructions sequentially

Programming Models for Concurrency

• Hardware execution model:
• CPU(s) execute instructions sequentially

• Programming model dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

Programming Models for Concurrency

• Hardware execution model:
• CPU(s) execute instructions sequentially

• Programming model dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Techniques/primitives
• Message passing vs shared memory
• Preemption vs Non-preemption

Programming Models for Concurrency

• Hardware execution model:
• CPU(s) execute instructions sequentially

• Programming model dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Techniques/primitives
• Message passing vs shared memory
• Preemption vs Non-preemption

• Dimensions/techniques not always orthogonal

Programming Models for Concurrency

• Hardware execution model:
• CPU(s) execute instructions sequentially

• Programming model dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Techniques/primitives
• Message passing vs shared memory
• Preemption vs Non-preemption

• Dimensions/techniques not always orthogonal

Futures &
Promises
touch all
three
dimension

Futures & Promises

Futures & Promises

• Values that will eventually become available

Futures & Promises

• Values that will eventually become available

• Time-dependent states:
• Completed/determined

• Computation complete, value concrete

• Incomplete/undetermined
• Computation not complete yet

Futures & Promises

• Values that will eventually become available

• Time-dependent states:
• Completed/determined

• Computation complete, value concrete

• Incomplete/undetermined
• Computation not complete yet

• Construct (future X)
• immediately returns value

• concurrently executes X

Java Example

Java Example

Java Example

• CompletableFuture is a container for Future object type

Java Example

• CompletableFuture is a container for Future object type

• cf is an instance

Java Example

• CompletableFuture is a container for Future object type

• cf is an instance

• runAsync() accepts

• Lambda expression

• Anonymous function

• Functor

Java Example

• CompletableFuture is a container for Future object type

• cf is an instance

• runAsync() accepts

• Lambda expression

• Anonymous function

• Functor

• runAsync() immediately returns a waitable object (cf)

Java Example

• CompletableFuture is a container for Future object type

• cf is an instance

• runAsync() accepts

• Lambda expression

• Anonymous function

• Functor

• runAsync() immediately returns a waitable object (cf)

• Where (on what thread) does the lambda expression run?

Futures and Promises:
Why two kinds of objects?

Futures and Promises:
Why two kinds of objects?

Promise: “thing to be done”

Futures and Promises:
Why two kinds of objects?

Promise: “thing to be done”

Future: encapsulation
(something to give caller)

Futures and Promises:
Why two kinds of objects?

Promise: “thing to be done”

Future: encapsulation
(something to give caller)

Promise to do something in the future

Futures vs Promises

• Future: read-only reference to uncompleted value

• Promise: single-assignment variable that the future refers to

• Promises complete the future with:
• Result with success/failure

• Exception

Futures vs Promises

• Future: read-only reference to uncompleted value

• Promise: single-assignment variable that the future refers to

• Promises complete the future with:
• Result with success/failure

• Exception
Language Promise Future

Algol Thunk Address of async result

Java Future<T> CompletableFuture<T>

C#/.NET TaskCompletionSource<T> Task<T>

JavaScript Deferred Promise

C++ std::promise std::future

Futures vs Promises

• Future: read-only reference to uncompleted value

• Promise: single-assignment variable that the future refers to

• Promises complete the future with:
• Result with success/failure

• Exception
Language Promise Future

Algol Thunk Address of async result

Java Future<T> CompletableFuture<T>

C#/.NET TaskCompletionSource<T> Task<T>

JavaScript Deferred Promise

C++ std::promise std::future

Futures vs Promises

• Future: read-only reference to uncompleted value

• Promise: single-assignment variable that the future refers to

• Promises complete the future with:
• Result with success/failure

• Exception
Language Promise Future

Algol Thunk Address of async result

Java Future<T> CompletableFuture<T>

C#/.NET TaskCompletionSource<T> Task<T>

JavaScript Deferred Promise

C++ std::promise std::future

Mnemonic:
Promise to do something

Make a promise for the future

GUI Programming Distilled

GUI Programming Distilled
How can we
parallelize

this?

Parallel GUI Implementation 1

Parallel GUI Implementation 1

Parallel GUI Implementation 1

Parallel GUI Implementation 1

Parallel GUI Implementation 1

DoThisProc

DoThatProc

OtherThing

Parallel GUI Implementation 1

DoThisProc

DoThatProc

OtherThing

Pros/cons?

Parallel GUI Implementation 1

Pros:
• Encapsulates parallel work
Cons:
• Obliterates original code structure
• How to assign handlers→CPUs?
• Load balance?!?
• Utilization

DoThisProc

DoThatProc

OtherThing

Pros/cons?

Parallel GUI Implementation 2

Parallel GUI Implementation 2
Pros/cons?

Parallel GUI Implementation 2
Pros:
• Preserves programming model
• Can recover some parallelism
Cons:
• Workers still have same problem
• How to load balance?
• Shared mutable state a problem

Pros/cons?

Parallel GUI Implementation 2
Pros:
• Preserves programming model
• Can recover some parallelism
Cons:
• Workers still have same problem
• How to load balance?
• Shared mutable state a problem

Extremely difficult to solve
without changing the whole

programming model…so

change it

Pros/cons?

Event-based Programming: Motivation

Event-based Programming: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments

• Load balancing/assignment brittle

• Shared state requires locks →
• Priority inversion

• Deadlock

• Incorrect synchronization

• …

Event-based Programming: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments

• Load balancing/assignment brittle

• Shared state requires locks →
• Priority inversion

• Deadlock

• Incorrect synchronization

• …

• Events: restructure programming model so threads are not exposed!

Event Programming Model Basics

Event Programming Model Basics

• Programmer only writes events

Event Programming Model Basics

• Programmer only writes events

• Event: an object queued for a module (think future/promise)

Event Programming Model Basics

• Programmer only writes events

• Event: an object queued for a module (think future/promise)

• Basic primitives
• create_event_queue(handler) → event_q

• enqueue_event(event_q, event-object)
• Invokes handler (eventually)

Event Programming Model Basics

• Programmer only writes events

• Event: an object queued for a module (think future/promise)

• Basic primitives
• create_event_queue(handler) → event_q

• enqueue_event(event_q, event-object)
• Invokes handler (eventually)

• Scheduler decides which event to execute next
• E.g. based on priority, CPU usage, etc.

Event-based programming

Event-based programming

Event-based programming

Event-based programming

Event-based programming

Runtime

Event-based programming

Runtime

Event-based programming

Runtime

Is the problem solved?

Another Event-based Program

Another Event-based Program

Another Event-based Program

Blocks!

Another Event-based Program

Blocks!Burns CPU!

Another Event-based Program

Blocks!Burns CPU!Uses Other Handlers!
(call OnPaint?)

No problem!
Just use more events/handlers, right?

Continuations, BTW

Stack-Ripping

Stack-Ripping

Stack-Ripping

Stack-Ripping

Stack-based state out-of-scope!
Requests must carry state

Threads vs Events

• Thread Pros
• Overlap I/O and computation

• While looking sequential

• Intermediate state on stack

• Control flow naturally expressed

• Thread Cons
• Synchronization required

• Overflowable stack

• Stack memory pressure

• Event Pros
• Easier to create well-conditioned system
• Easier to express dynamic change in level of

parallelism

• Event Cons
• Difficult to program
• Control flow between callbacks obscure
• When to deallocate memory
• Incomplete language/tool/debugger support
• Difficult to exploit concurrent hardware

Threads vs Events

• Thread Pros
• Overlap I/O and computation

• While looking sequential

• Intermediate state on stack

• Control flow naturally expressed

• Thread Cons
• Synchronization required

• Overflowable stack

• Stack memory pressure

• Event Pros
• Easier to create well-conditioned system
• Easier to express dynamic change in level of

parallelism

• Event Cons
• Difficult to program
• Control flow between callbacks obscure
• When to deallocate memory
• Incomplete language/tool/debugger support
• Difficult to exploit concurrent hardware

Threads vs Events

• Thread Pros
• Overlap I/O and computation

• While looking sequential

• Intermediate state on stack

• Control flow naturally expressed

• Thread Cons
• Synchronization required

• Overflowable stack

• Stack memory pressure

• Event Pros
• Easier to create well-conditioned system
• Easier to express dynamic change in level of

parallelism

• Event Cons
• Difficult to program
• Control flow between callbacks obscure
• When to deallocate memory
• Incomplete language/tool/debugger support
• Difficult to exploit concurrent hardware

Language-level
Futures: the
sweet spot?

Threads vs Events

• Thread Pros
• Overlap I/O and computation

• While looking sequential

• Intermediate state on stack

• Control flow naturally expressed

• Thread Cons
• Synchronization required

• Overflowable stack

• Stack memory pressure

• Event Pros
• Easier to create well-conditioned system
• Easier to express dynamic change in level of

parallelism

• Event Cons
• Difficult to program
• Control flow between callbacks obscure
• When to deallocate memory
• Incomplete language/tool/debugger support
• Difficult to exploit concurrent hardware

Language-level
Futures: the
sweet spot?

Thread Pool Implementation

Thread Pool Implementation

Cool project
idea: build a
thread pool!

Thread Pool Implementation

ThreadPool Implementation

Redux: Futures in Context

Redux: Futures in Context

Futures:

Redux: Futures in Context

Futures:

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent

Redux: Futures in Context

Futures:

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Redux: Futures in Context

Futures:

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Redux: Futures in Context

Futures:

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Model:

Redux: Futures in Context

Futures:

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Model:

• Event-based programming

Redux: Futures in Context

Futures:

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Model:

• Event-based programming

• Thread-based programming

Redux: Futures in Context

Futures:

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Model:

• Event-based programming

• Thread-based programming

Currently: 2nd renaissance IMHO

Memory Consistency

25

Memory Consistency

• Formal specification of memory semantics
• Statement of how shared memory will behave with multiple CPUs

• Ordering of reads and writes

25

Memory Consistency

• Formal specification of memory semantics
• Statement of how shared memory will behave with multiple CPUs

• Ordering of reads and writes

• Memory Consistency != Cache Coherence
• Coherence: propagate updates to cached copies

• Invalidate vs. Update

• Coherence vs. Consistency?
• Coherence: ordering of ops. at a single location

• Consistency: ordering of ops. at multiple locations

25

Sequential Consistency

• Result of any execution is same
as if all operations execute on a
uniprocessor

• Operations on each processor
are totally ordered in the
sequence and respect program
order for each processor

P1 P2 P3 Pn…

Memory

26

Sequential Consistency

• Result of any execution is same
as if all operations execute on a
uniprocessor

• Operations on each processor
are totally ordered in the
sequence and respect program
order for each processor

P1 P2 P3 Pn…

Memory

26

Trying to mimic Uniprocessor semantics:
• Memory operations occur:

• One at a time
• In program order

• Read returns value of last write

Sequential Consistency: Canonical Example

Initially, Flag1 = Flag2 = 0

P1 P2

Flag1 = 1 Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
enter CS enter CS

27

Sequential Consistency: Canonical Example

Initially, Flag1 = Flag2 = 0

P1 P2

Flag1 = 1 Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
enter CS enter CS

27

Can both P1 and P2 wind up in the
critical section at the same time?

Do we need Sequential Consistency?

Initially, A = B = 0

P1 P2 P3

A = 1
if (A == 1)

B = 1
if (B == 1)

register1 = A

28

Do we need Sequential Consistency?

Initially, A = B = 0

P1 P2 P3

A = 1
if (A == 1)

B = 1
if (B == 1)

register1 = A

28

Key issue:
• P2 and P3 may not see writes to A, B in the same order
• Implication: P3 can see B == 1, but A == 0 which is incorrect
• Wait! Why would this happen?

Do we need Sequential Consistency?

Initially, A = B = 0

P1 P2 P3

A = 1
if (A == 1)

B = 1
if (B == 1)

register1 = A

28

Key issue:
• P2 and P3 may not see writes to A, B in the same order
• Implication: P3 can see B == 1, but A == 0 which is incorrect
• Wait! Why would this happen?

Write Buffers
• P_0 write → queue op in write buffer, proceed
• P_0 read → look in write buffer,
• P_(x != 0) read → old value: write buffer hasn’t drained

Requirements for Sequential Consistency

29

Requirements for Sequential Consistency

• Program Order
• Processor’s memory operations must complete in program order

29

Requirements for Sequential Consistency

• Program Order
• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs

• Subsequent reads must not return value of a write until propagated to all

29

Requirements for Sequential Consistency

• Program Order
• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs

• Subsequent reads must not return value of a write until propagated to all

• Write acknowledgements are necessary
• Cache coherence provides these properties for a cache-only system

29

Requirements for Sequential Consistency

• Program Order
• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs

• Subsequent reads must not return value of a write until propagated to all

• Write acknowledgements are necessary
• Cache coherence provides these properties for a cache-only system

29

Disadvantages:
• Difficult to implement!

• Coherence to (e.g.) write buffers is hard

• Sacrifices many potential optimizations
• Hardware (cache) and software (compiler)
• Major performance hit

Relaxed Consistency Models

30

Relaxed Consistency Models

• Program Order relaxations (different locations)

• W → R; W →W; R → R/W

30

Relaxed Consistency Models

• Program Order relaxations (different locations)

• W → R; W →W; R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

30

Relaxed Consistency Models

• Program Order relaxations (different locations)

• W → R; W →W; R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Combined relaxations
• Read your own Write (okay for S.C.)

30

Relaxed Consistency Models

• Program Order relaxations (different locations)

• W → R; W →W; R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Combined relaxations
• Read your own Write (okay for S.C.)

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

30

Relaxed Consistency Models

• Program Order relaxations (different locations)

• W → R; W →W; R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Combined relaxations
• Read your own Write (okay for S.C.)

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

30

Questions?

