
Compiler-level
Concurrency Support:

OpenMP, Cilk
Chris Rossbach

Outline for Today
• Questions?
• Administrivia

• Go go go!

• Agenda
• Compiler supported parallelism/concurrency
• OpenMP
• Cilk

Faux Quiz Questions

• What is a loop-carried dependence?
• List some tradeoffs between manual and auto parallelization
• List some challenges that make auto-parallelization of C/C++ hard; do

any of them go away with managed language support?
• How does spawn differ from spawn_next in Cilk? Why does the

language need both?
• How does OpenMP deal with partitioning work across threads?

Compare and constrast this with Cilk.

Message Passing: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments
• Load balancing/assignment brittle
• Shared state requires locks à

• Priority inversion
• Deadlock
• Incorrect synchronization

• …

• Message passing:
• Threads aren’t the problem, shared memory is
• restructure programming model to avoid communication through shared memory

(and therefore locks)

Message Passing: Motivation

Remember
this slide?

Compiler Parallelization: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments
• Load balancing/assignment brittle
• Shared state requires locks à

• Priority inversion
• Deadlock
• Incorrect synchronization

• …

• Compiler Parallelization:
• Threads and shared memory aren’t the problem, the PROGRAMMER is
• restructure programming model to get the compiler to write the tricky code

A simple program

How can we
parallelize this?

int main() {
int * data = malloc(10000 * sizeof(int));
for(int i = 0; i < 10000; i++) {

data[i] = data[i] * data[i];
}

}
Could a

compiler
parallelize this?

If so, how?
If not, why not?

How can we parallelize this one?

int main() {
int * data = …
for(int i = 1; i < 10000; i++) {

data[i] = data[i] * data[i-1];
}

}

Could a
compiler tell

the difference?

Another simple program
Multiple forms
of parallelism—

both very
simple and
compiler-
accessible

int main() {
int * data = …
int * temp = …
int * result = …
for(int i = 0; i < 10000; i++) {

temp[i] = pipeline_stage1(data[i]);
}
for(int i = 0; i < 10000; i++) {

result[i] = pipeline_stage2(temp[i]);
}

}

What about this one?

int fib(int n) {
if(n == 0 || n == 1)

return n;
return fib(n - 1) + fib(n - 2);

}

int main() {
return fib(1000000);

}

Hopeless?

Auto- and Guided Compiler parallelization

• Totally do-able, sometimes
• Wide range of approaches:

• partial/guided
• Restricted programming model
• Fully automatic
• We’re going to see a lot of variants later in the semester: today guided

• Core: compiler looks for parallel idioms
• Runs static analyses to decide safety
• Not always guaranteed to be correct/performant

• Challenges same as for human
• Decomposition/partitioning
• Synchronization/Communication
• Identifying Dependences

Data Dependence

• Three types of data dependence:
1. Flow (True) dependence : read-after-write

int a, b, c;
a = c * 10;
b = 2 * a + c;

2. Anti Dependency: write-after-read
int a, b, c;
a = b* 4+ c;
c = b + 40;

3. Output Dependence: write-after-write
int a, b, c;
a = b *c ;
a = b + c + 10;

Loop dependency analysis
• Compiler detects loops that can be safely and

efficiently executed in parallel
• To know whether usages of an array access the same

memory location, compiler performs dependency
tests: dataflow analysis

Dependency in Loops
Two main types of dependency in loops

Loop Independent : Dependence in same iteration

for (i = 2; i<= 4; i++){
a[i] = b[i] + c[i];
d[i] = a[i];

}

Loop Carried : Dependence over the iteration
for (i = 2 ; i< = 4; i++) {

a[i] = b[i] + c[i];
d[i] = a[i-1];

}

Loop dependency analysis
• Compiler detects loops that can be safely and

efficiently executed in parallel
• To know whether usages of an array access the same

memory location, compiler performs dependency
tests: dataflow analysis

How about this one?

int main() {
int * data, temp, out = …
for(int i = 0; i < 100; i++) {

for(int j = 0; j < 100; j++) {
int idx = i * 100 + j;
temp[idx] = data[idx] + data[i];

}
}
for(int i = 0; i < 100; i++) {

for(int j = 0; j < 100; j++) {
int idx = i * 100 + j;
out[idx] = data[idx] + data[i];

}
}

}

Super parallel. Has
data parallelism,

nested parallelism,
pipeline…

How to partition?

In general, compiler
can’t do this arbitrarily

without hints

OpenMP
• Standard for shared memory programming

• Target: scientific applications.
• Specific support for scientific application needs

• unlike Pthreads

• API is a set of compiler directives
• Programmer inserts in the source program
• Plus a few library functions

• Ideally, compiler directives do not affect sequential code.
• pragma’s in C / C++ .
• (special) comments in Fortran code.
• If the compiler ignores them à correct single-threaded program

OpenMP API Example
Sequential code:

statement1;
statement2;
statement3;

We want to execute:
• statement 2 in parallel
• statement 1 and 3 sequentially.

OpenMP API Example
OpenMP parallel code:

statement 1;
#pragma <specific OpenMP directive>
statement2;
statement3;

Statement 2 (may be) executed in parallel.
Statement 1 and 3 are executed sequentially.
• By giving a parallel directive, the user asserts that the program will

remain correct if the statement is executed in parallel.
• OpenMP compiler does not check correctness.

API Semantics
• Master thread executes sequential code.
• Master and slaves execute parallel code.
• Note: very similar to fork-join:
• But allows nesting!

Fork

Join

Fork

Join

Fork

Join

OpenMP Compiler

OpenMP
Compiler

Annotated
Source

Sequential
Program

Parallel
Program

compiler switch

• Sequential switch à
• comments and pragmas are ignored.

• Parallel switch à
• translation into parallel program.

• One source for sequential and
parallel!

OpenMP Directives
• Parallelization directives:

• parallel region
• parallel for

• Data environment
directives:

• shared, private,
threadprivate, reduction,
etc.

• Synchronization directives:
• barrier, critical

• Always apply to the next
statement
• must be a structured block.

• Examples
• #pragma omp …

statement
• #pragma omp …

{ statement1; statement2;
statement3; }

OpenMP Parallel Region
#pragma omp parallel

• A number of threads are spawned at entry.
• Each thread executes the same code.
• Each thread waits at the end.
• Similar to a number of create/join’s in Pthreads.

• How to get threads to do different things?
• Through explicit thread identification (as in Pthreads).
• …and work-sharing directives.

Thread Identification
int omp_get_thread_num()
int omp_get_num_threads()

• Library function (not annotation)
• Gets the thread id.
• Gets the total number of threads.

Fork

Join

0

0 1 2 3 4 5 6 7

0

#pragma omp parallel
{

if(!omp_get_thread_num())
master();

else
slave();

}

Work Sharing Directives
• Always occur within a parallel region directive.
• Two principal ones are

• parallel for
• parallel section

OpenMP Parallel For
#pragma omp parallel

#pragma omp for
for(…) { … }

• Each thread executes a subset of the
iterations.

• All threads wait at the end of the parallel for.
#pragma omp parallel for
for(i=0; i<n; i++)

for(j=0; j<n; j++) {
c[i][j] = 0.0;
for(k=0; k<n; k++)

c[i][j] += a[i][k]*b[k][j];
}

Fork

Join

0 1 2 3 4 5 6 7

Multiple Work Sharing Directives

• May occur within a single parallel region
#pragma omp parallel
{
#pragma omp for
for(; ;) { … }
#pragma omp for
for(; ;) { … }
}

• All threads wait at the end of the first for.

Fork

Join

0 1 2 3 4 5 6 7

Fork

Join

0 1 2 3 4 5 6 7

Conditional Parallelism
• Parallelism only useful for large problem size
• For smaller sizes, overhead exceeds benefit.

#pragma omp parallel if(expression)
#pragma omp for if(expression)
#pragma omp parallel for if(expression)

• Execute in parallel if expression, otherwise sequential

for(i=0; i<n; i++)
#pragma omp parallel for if(n-i > 100)
for(j=i+1; j<n; j++)

for(k=i+1; k<n; k++)
a[j][k] = a[j][k] - a[i][k]*a[i][j] /

a[j][j]

Scheduling of Iterations
• Scheduling: assigning iterations to a thread.
• Default is block scheduling.
• OpenMP allows other scheduling strategies:

• Cyclic, block, gss (guided self-scheduling), dynamic…
#pragma omp parallel for schedule(<sched>)

• <sched> can be one of
• block (default)
• cyclic
• Gss
• Etc.

Example

chunk size changes as the
program runs. It begins with big

chunks, but then adjusts to
smaller chunk sizes if the
workload is imbalanced

Data Environment Directives
• All variables are by default shared.
• One exception: the loop variable of a parallel for is private.
• Data directives:

#pragma omp parallel for
for(i=0; i<n; i++)

for(j=0; j<n; j++) {
c[i][j] = 0.0;
for(k=0; k<n; k++)

c[i][j] +=
a[i][k]*b[k][j];
}

• a, b, c are shared
• i, j, k are private

• Private
• Threadprivate
• Reduction

Private Variables
#pragma omp parallel for private(list)

• Private copy for each thread for each variable in the list.

for(i=0; i<n; i++) {
tmp = a[i];
a[i] = b[i];
b[i] = tmp;

}
• Swaps the values in a and b.
• Loop-carried dependence on

tmp.
• Easily fixed by privatizing tmp.

#pragma omp parallel for private(tmp)
for(i=0; i<n; i++) {

tmp = a[i];
a[i] = b[i];
b[i] = tmp;

}
• Removes dependence

Reduction Variables
#pragma omp parallel for reduction(op:list)

• op is one of +, *, -, &, ^, |, &&, or ||
• The variables in list must be used with this operator in the
loop.

• The variables are automatically initialized to sensible
values. #pragma omp parallel for reduction(+:sum)

for(i=0; i<n; i++)
sum += a[i];

• Sum is automatically initialized to zero.

OpenMP synchronization

Implicit Barrier
– beginning and end of parallel constructs
– end of all other control constructs
– implicit synchronization can be removed
with nowait clause

• Explicit
critical

OpenMP critical directive

Enclosed code
– executed by all threads, but
– restricted to only one thread at a time
• C/C++:
#pragma omp critical [(name)] new-line
structured-block

• A thread waits at the beginning of a critical region until no other
thread in the team is executing a critical region with the same name.
All unnamed critical directives map to the same unspecified
name.

OpenMP critical
C / C++: cnt = 0;
f=7;
#pragma omp parallel
{
#pragma omp for

for (i=0; i<20; i++) {
if (b[i] == 0) {

#pragma omp critical
cnt ++;

} /* endif */
a[i] = b[i] + f * (i+1);
} /* end for */

} /*omp end parallel */

OpenMP Fibonacci

OpenMP Summary

• Programmer gives the compiler hints
• Compiler auto-parallizes based on those hints
• Seems to require a lot of hints, no?
• What do you think?

Cilk

• Goal:
To implement dynamic, asynchronous, concurrent programs.

• Cilk programmer optimizes:
• total work
• critical path

• A Cilk computation:
• dynamic, directed acyclic graph (dag)

Cilk Terms

• Cilk program is a set of procedures

• A procedure is a sequence of threads

• Cilk threads are:

• represented by nodes in the dag

• Non-blocking: run to completion: no waiting or

suspension: atomic units of execution

Programming Model

• Threads can spawn child threads
• downward edges connect a parent to its children

• A child & parent can run concurrently.
• Non-blocking threads è a child cannot return a value to its parent.

• The parent spawns a successor that receives values from its children

Programming Model

• Thread & successor: parts of the same Cilk procedure.
• connected by horizontal arcs

• Children’s returned values:
• received before their successor begins
• They constitute data dependencies.
• Connected by curved arcs

Execution Time & Scheduling
• Execution time of a Cilk program using P cores depends on:

• Work (T1): time for Cilk program with 1 processor to complete.

• Critical path (T¥): the time to execute the longest directed path in the dag.
• TP >= T1 / P (not true for some searches)

• TP >= T¥

• Cilk uses run time scheduling: work stealing.

• For “fully strict” programs
• asymptotic optimality for:

• space, time, & communication

Cilk Language

• Cilk is an extension of C

• Cilk programs are:

• preprocessed to C

• linked with a runtime library

• Declaring a thread:

thread T (<args>) { <stmts> }

• T is preprocessed

• C function of 1 argument

• return type void.

• The 1 argument is a pointer to a closure

Environment: Closures and Continuations
• A closure is a data structure that has:

• a pointer to the C function for T

• a slot for each argument (inputs &
continuations)

• a join counter: count of the missing
argument values

• A closure is ready when join counter == 0.

• A closure is waiting otherwise.

• They are allocated from a runtime heap

• Continuation is a data type,
cont int x;

• Global reference to an empty slot of a closure.
• It is implemented as 2 items:

• a pointer to the closure; (what thread)
• an int value: the slot number. (what input)

Creating Parallel Work

• To spawn a child, a thread creates its closure:

spawn T (<args>)
• creates child’s closure

• sets available arguments

• sets join counter

• To specify a missing argument, prefix with a “?”

spawn T (k, ?x);

• A successor thread spawned the same way

• except the keyword spawn_next is used:

spawn_next T(k, ?x)

• Children typically have no missing arguments;
successors do.

Explicit continuation passing
• Nonblocking threads è a parent cannot block on children’s results.

• It spawns a successor thread.

• Paradigm called explicit continuation passing.

• Cilk provides a primitive to send a value from one closure to another.

send_argument(k, value)
sends value to the argument slot of a

waiting closure specified by continuation
k. spawn

spawn_next

send_argument

parent

child

successor

Cilk Procedure for computing a Fibonacci
number

thread int fib (cont int k, int n) {
if (n < 2) send_argument(k, n);
else { cont int x, y;

spawn_next sum (k, ?x, ?y);
spawn fib (x, n - 1);
spawn fib (y, n - 2);
}

}
thread sum (cont int k, int x, int y) {
send_argument (k, x + y);

}

Nonblocking Threads: Pros, Cons
• Shallow call stack. (for us: fault tolerance)

• Simplify runtime system:

Completed threads leave C runtime stack empty.

• Portable runtime implementation

Con: Burdens programmer with explicit continuation passing.

Stealing Work: The Ready Deque

• Work-stealing:
• Process with no work selects a victim
• Gets shallowest thread in victim’s spawn tree.

• Thieves choose victims randomly.
• Each closure has a level:

• level(child) = level(parent) + 1
• level(successor) = level(parent)

• Each processor keeps a ready deque:
• Contains ready closures
• The Lth element contains the list of all ready

closures whose level is L.

Ready deque

if (! readyDeque .isEmpty())

take deepest thread

else

steal shallowest thread from

readyDeque of randomly

selected victim

Why Steal Shallowest closure?

• Shallow threads probably produce more work, therefore,

reduce communication.

• Shallow threads more likely to be on critical path.

