GPUs to the left GPUs to the right GPUs all day GPUs all night

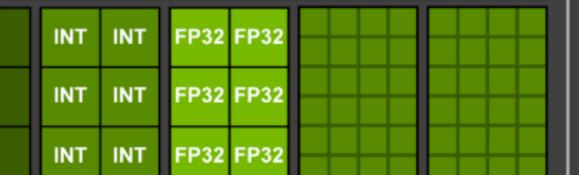
Chris Rossbach cs378

L0 Instruction Cache

Warp Scheduler (32 thread/clk)

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)



Outline for Today

Questions?

FP64

FP6

LD

- Administrivia
 - Exam graded
- Agenda
 - CUDA continued
 - **CUDA Performance**

Acknowledgements:

Regi

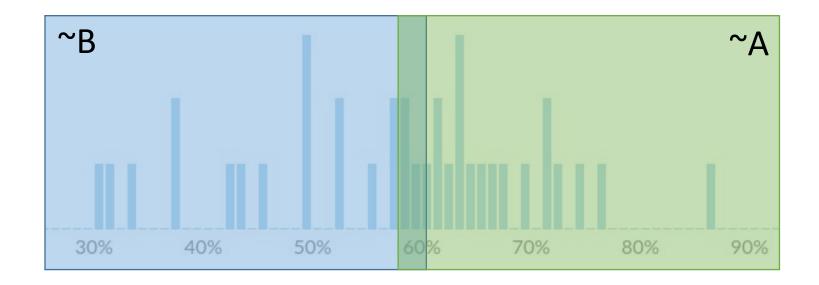
- http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/cuda language/Introduction to CUDA C.pptx
- http://www.seas.upenn.edu/~cis565/LECTURES/CUDA%20Tricks.pptx
- http://www.cs.utexas.edu/~pingali/CS378/2015sp/lectures/GPU%20Programming.p ptx

 FP64
 INT
 INT
 FP32
 FP32

 FP64
 INT
 INT
 FP32
 FP32

 FP64
 INT
 INT
 FP32
 FP32

Exam Stats

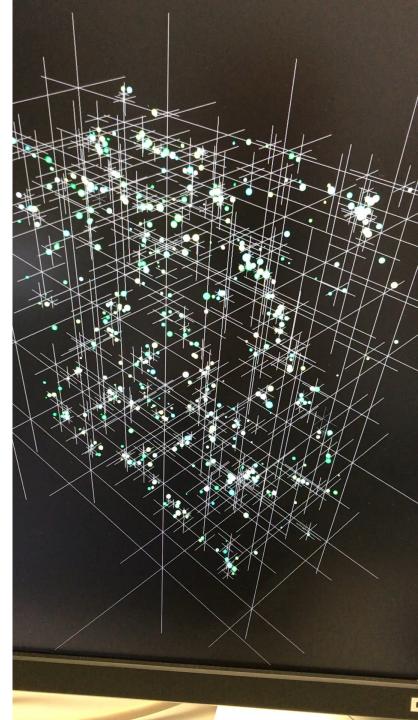


Average: ~60

High: 91

Low: 33

Stdev: ~14



Faux Quiz Questions

- How is occupancy defined (in CUDA nomenclature)?
- What's the difference between a block scheduler (e.g. Giga-Thread Engine) and a warp scheduler?
- Modern CUDA supports UVM to eliminate the need for cudaMalloc and cudaMemcpy*. Under what conditions might you want to use or not use it and why?
- What is control flow divergence? How does it impact performance?
- What is a bank conflict?
- What is work efficiency?
- What is the difference between a thread block scheduler and a warp scheduler?
- How are atomics implemented in modern GPU hardware?
- How is __shared__ memory implemented by modern GPU hardware?
- Why is __shared __ memory necessary if GPUs have an L1 cache? When will an L1 cache provide all the benefit of __shared __ memory and when will it not?
- Is cudaDeviceSynchronize still necessary after copyback if I have just one CUDA stream?

Review: Blocks and Threads

With M threads/block, unique index per thread is :

```
int index = threadIdx.x + blockIdx.x * M;
```

How many threads/blocks should I use?

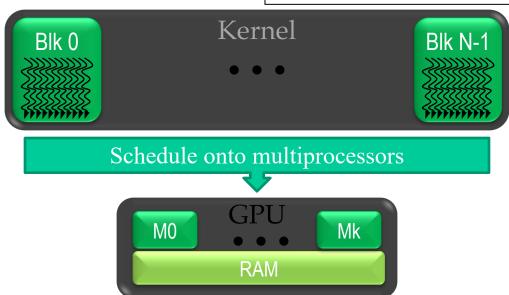
```
// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on
add <<n/th>
Add <<n/td>
Add <<td>Add <<td>Add 
Add 
Add </td
// Copy result back to host
cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost);
// Cleanup
free(a); free(b); free(c);
cudaFree(d a); cudaFree(d b); cudaFree(d c);
return 0;
```

• Usually things are correct if grid*block dims >= input size

Getting good performance is another matter

Internals

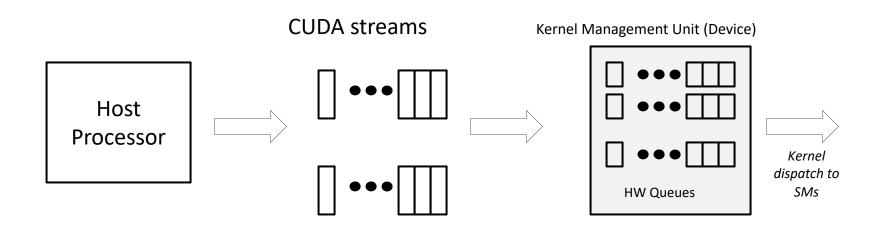
```
__host__
void vecAdd()
{
   dim3 DimGrid = (ceil(n/256,1,1);
   dim3 DimBlock = (256,1,1);
   addKernel<<<<DGrid,DBlock>>>(A_d,B_d,C_d,n);
}
```



How are threads scheduled?

Kernel Launch

- Commands by host issued through streams
 - Kernels in the same stream executed sequentially
 - Kernels in different streams may be executed concurrently
- Streams mapped to GPU HW queues
 - Done by "kernel management unit" (KMU)
 - ❖ Multiple streams mapped to each queue → serializes some kernels
- Kernel launch distributes thread blocks to SMs



SIMD vs. SIMT Single Scalar Thread <u>Register F</u>ile Flynn Taxonomy e.g., SSE/AVX **Data Streams** Instruction Streams SISD SIMD Synchronous operation MISD MIMD **SIMT** Loosely synchronized threads Multiple threads e.g., pthreads e.g., PTX, HSA

GPU Performance Metric: Occupancy

- Occupancy = (#Active Warps) /(#MaximumActive Warps)
 - Measures how well concurrency/parallelism is utilized
- Occupancy captures
 - which resources can be dynamically shared
 - how to reason about resource demands of a CUDA kernel Shouldn't we just create as many
 - Enables device-specific online tuning of kernel parameter, threads as possible?

Shouldn't we just create as many threads as possible?

A Taco Bar

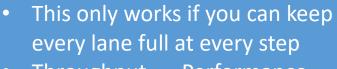
• Where is the parallelism here?

GPU: a multi-lane Taco Bar

• Where is the parallelism here?

• Where is the parallelism here?

GPU: a multi-lane Taco Bar

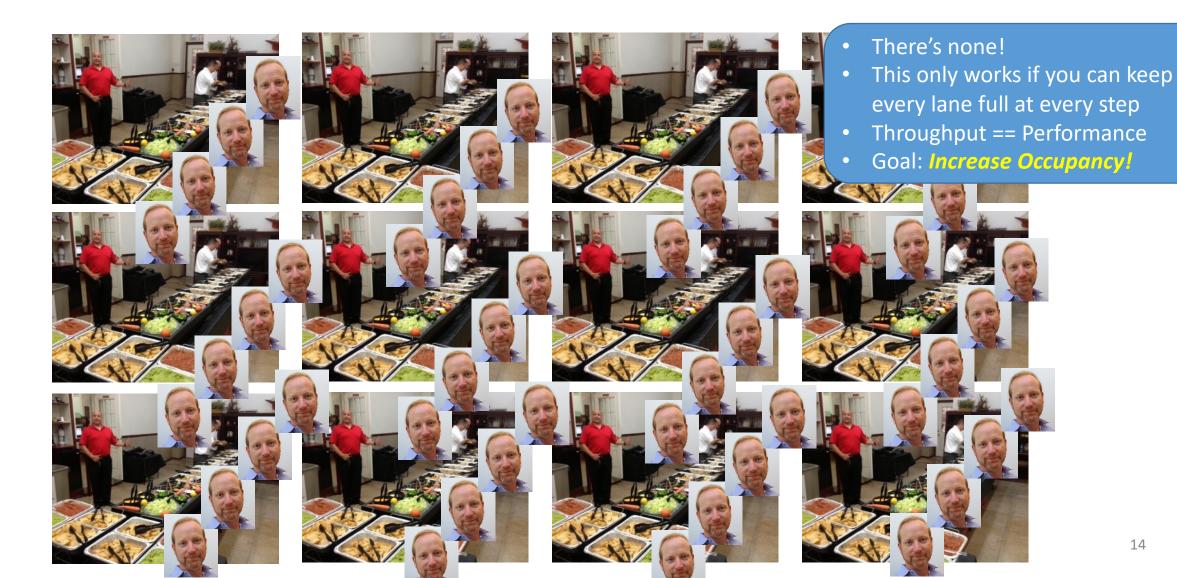


Goal: Increase Occupancy!

There's none!

• Where is the parallelism here?

GPU: a multi-lane Taco Bar

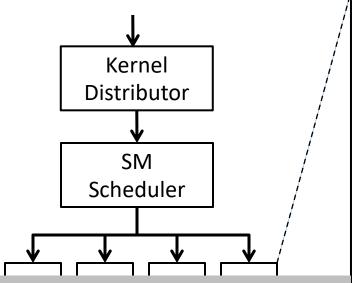


GPU Performance Metric: Occupancy

- Occupancy = (#Active Warps) /(#MaximumActive Warps)
 - Measures how well concurrency/parallelism is utilized
- Occupancy captures
 - which resources can be dynamically shared
 - how to reason about resource demands of a CUDA kernel Shouldn't we just create as many
 - Enables device-specific online tuning of kernel parameter, threads as possible?

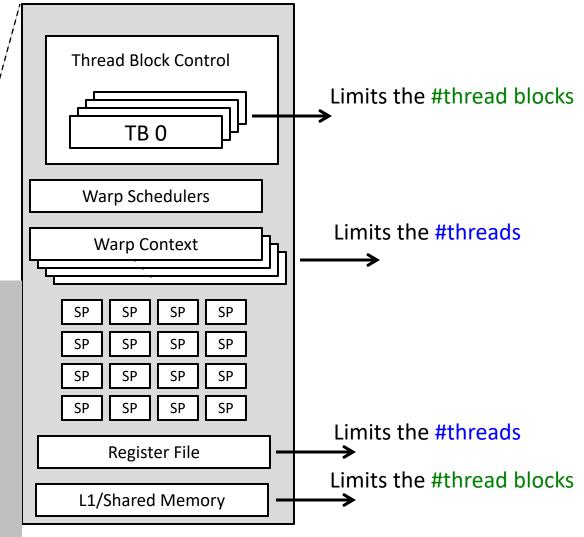
Shouldn't we just create as many threads as possible?

Hardware Resources Are Finite



Occupancy:

- (#Active Warps) /(#MaximumActive Warps)
- Limits on the numerator:
 - Registers/thread
 - Shared memory/thread block
 - Number of scheduling slots: blocks, warps
- Limits on the denominator:
 - Memory bandwidth
 - Scheduler slots

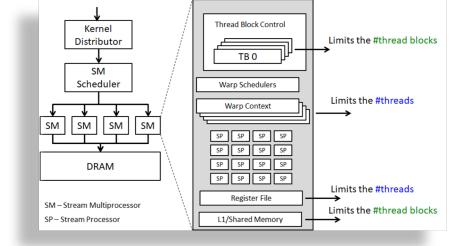


What is the performance impact of varying kernel resource demands?

Impact of Thread Block Size

Example: v100:

- max active warps/SM == 64 (limit: warp context)
- max active blocks/SM == 32 (limit: block control)
 - With 512 threads/block how many blocks can execute (per SM) concurrently?
 - Max active warps * threads/warp = 64*32 = 2048 threads \rightarrow 4
 - With 128 threads/block? → 16
- Consider HW limit of 32 thread blocks/SM @ 32 threads/block:
 - Blocks are maxed out, but max active threads = 32*32 = 1024
 - Occupancy = .5 (1024/2048)
- To maximize utilization, thread block size should balance
 - Limits on active thread blocks vs.
 - Limits on active warps



Impact of #Registers Per Thread

Registers/thread can limit number of active threads! V100:

- Registers per thread max: 255
- 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

- Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
 - Uses all 2048 thread slots (8 blocks * 256 threads/block)
 - 8192 regs/block * 8 block/SM = 64k registers
 - FULLY Occupied!
- What is the impact of increasing number of registers by 2?
 - Recall: granularity of management is a thread block!
 - Loss of concurrency of 256 threads!
 - 34 regs/thread * 256 threads/block * 7 blocks/SM = 60k registers,
 - 8 blocks would over-subscribe register file
 - Occupancy drops to .875!

Impact of Shared Memory

- Shared memory is allocated per thread block
 - Can limit the number of thread blocks executing concurrently per SM
 - Shared mem/block * # blocks <= total shared mem per SM
- gridDim and blockDim parameters impact demand for
 - shared memory
 - number of thread slots
 - number of thread block slots

Balance

template < class T >

__host__ <u>cudaError t</u> cudaOccupancyMaxActiveBlocksPerMultiprocessor (int* numBlocks, T func, int blockSize, size_t dynamicSMemSize) [inline]

Returns occupancy for a device function.

Parameters

numBlocks

- Returned occupancy

func

- Kernel function for which occupancy is calulated

blockSize

- Block size the kernel is intended to be launched with

dynamicSMemSize

- Per-block dynamic shared memory usage intended, in bytes
 - Navigate the tradeoffs
 - maximize core utilization and memory bandwidth utilization
 - Device-specific
 - Goal: Increase occupancy until one or the other is saturated

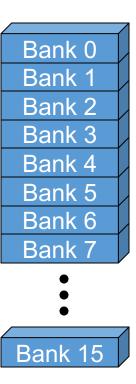
Parallel Memory Accesses

- Coalesced main memory access (16/32x faster)
 - HW combines multiple warp memory accesses into a single coalesced access
- Bank-conflict-free shared memory access (16/32)
 - No alignment or contiguity requirements
 - CC 1.3: 16 different banks per half warp or same word
 - CC 2.x+3.0 : 32 different banks + 1-word broadcast each

CUDA Optimization Tutorial 21

Parallel Memory Architecture

- In a parallel machine, many threads access memory
 - Therefore, memory is divided into banks
 - Essential to achieve high bandwidth
- Each bank can service one address per cycle
 - A memory can service as many simultaneous accesses as it has banks
- Multiple simultaneous accesses to a bank result in a bank conflict
 - Conflicting accesses are serialized

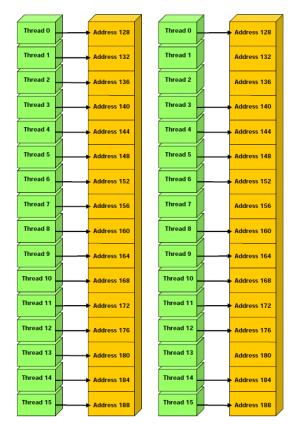


Coalesced Main Memory Accesses

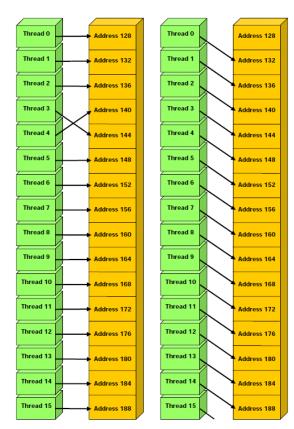
NVIDIA

single coalesced access

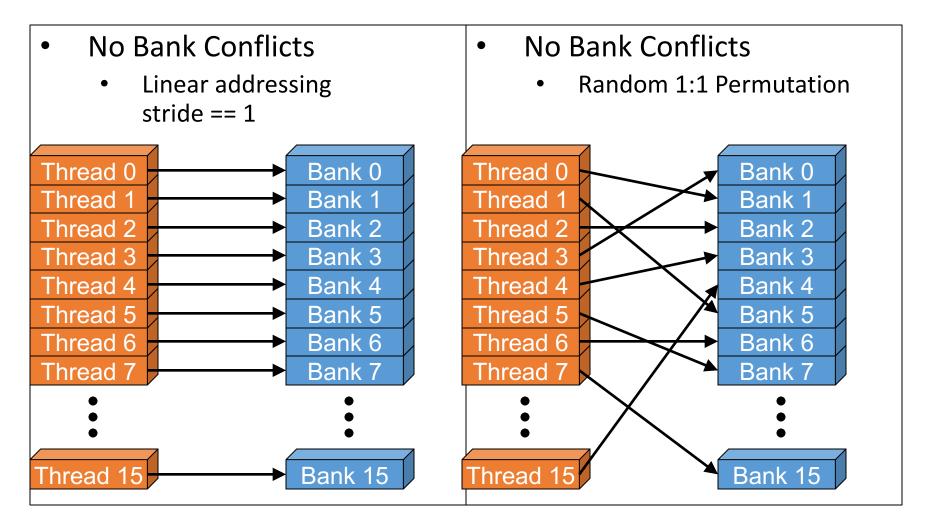
NVIDIA



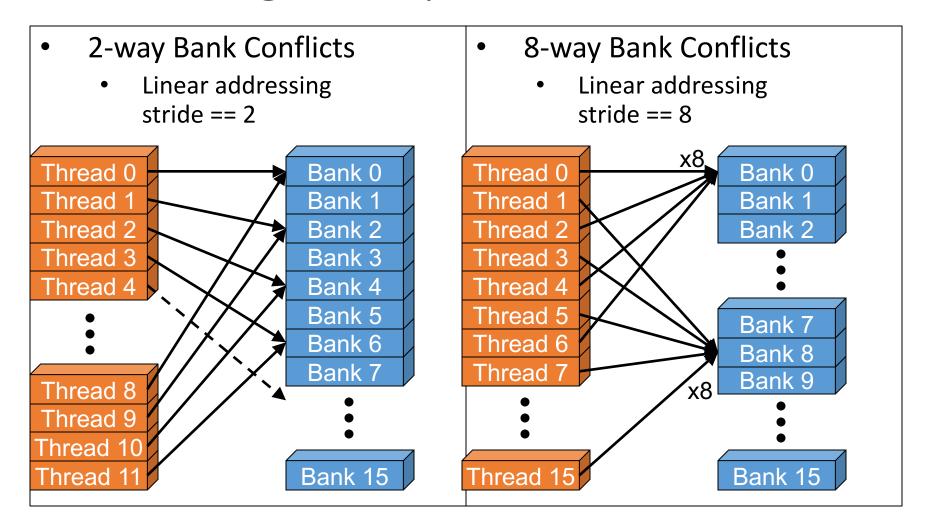
one and two coalesced accesses*



Bank Addressing Examples



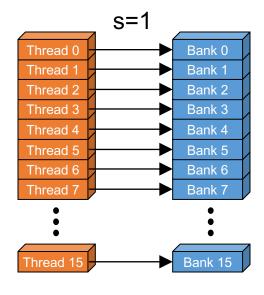
Bank Addressing Examples



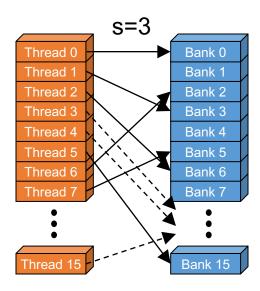
Linear Addressing

• Given:

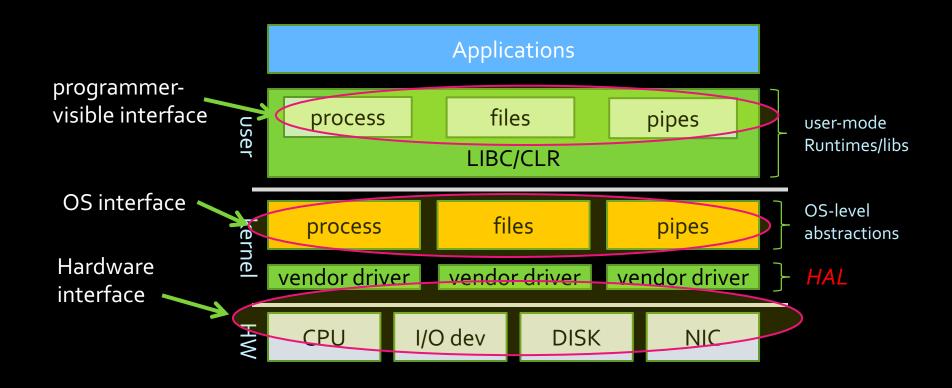
```
__shared__ float shared[256];
float foo =
   shared[baseIndex + s *
   threadIdx.x];
```



- This is only bank-conflict-free if s shares no common factors with the number of banks
 - 16 on G80, so s must be odd

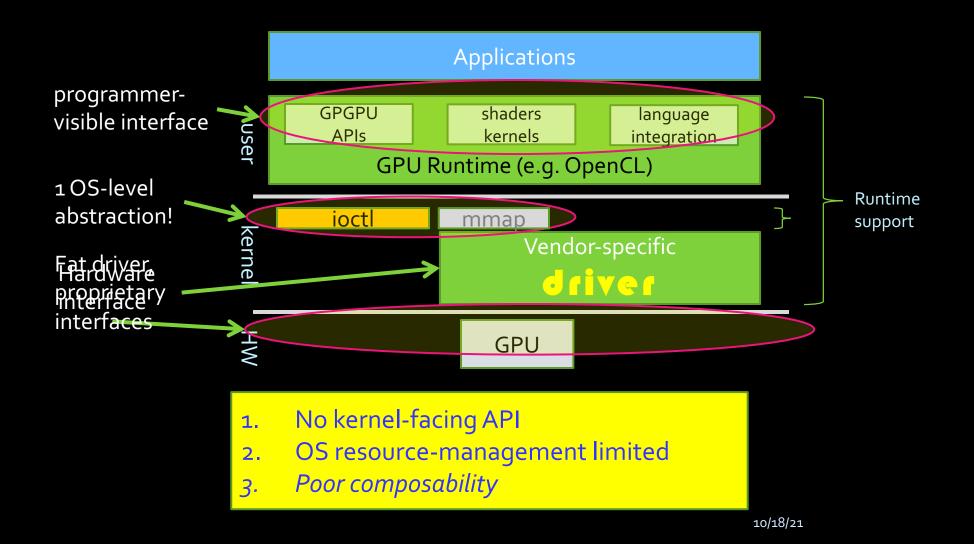


Layered abstractions



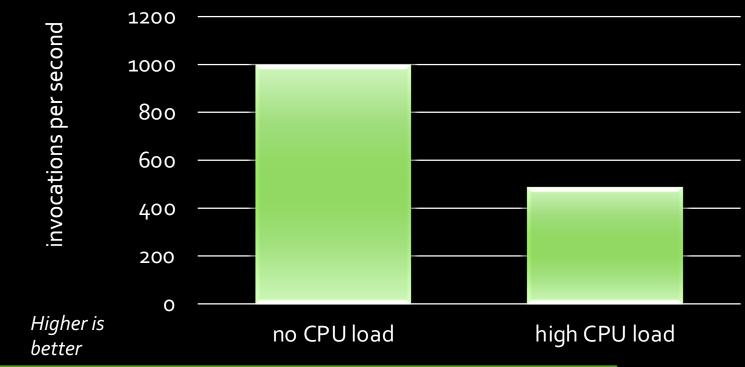
- * 1:1 correspondence between OS-level and user-level abstractions
- * Diverse HW support enabled HAL

GPU abstractions



No OS support \rightarrow No isolation

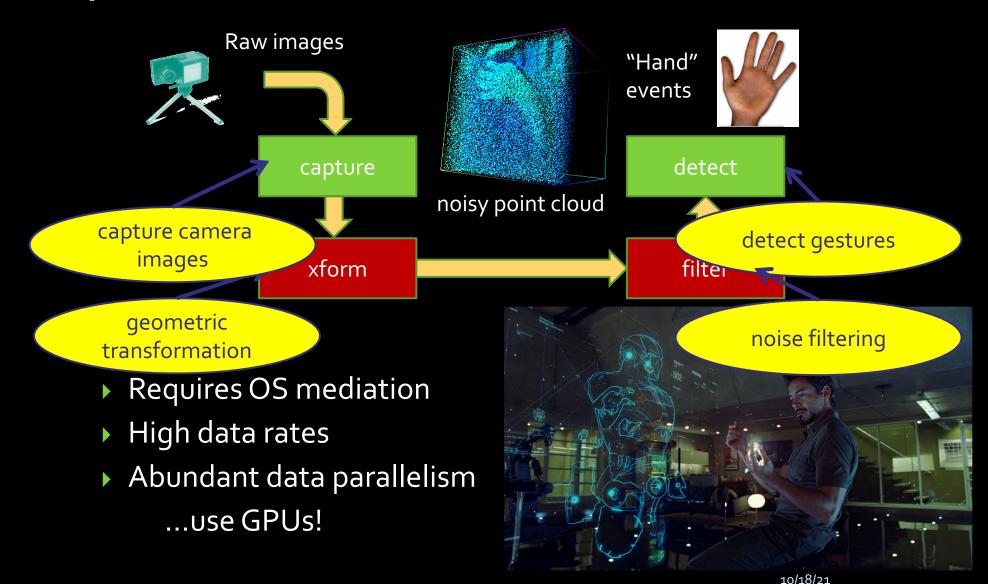
GPU benchmark throughput



CPU+GPU schedulers not integrated! ...other pathologies abundant

ge-convolution in CUDA dows 7 x64 8GB RAM I Core 2 Quad 2.66GHz dia GeForce GT230

Composition: Gestural Interface



What We'd Like To Do

```
#> capture | xform | filter | detect &
CPU GPU GPU CPU
```

- Modular design
 - flexibility, reuse
- Utilize heterogeneous hardware
 - ▶ Data-parallel components → GPU
 - ▶ Sequential components → CPU
- Using OS provided tools
 - processes, pipes

GPU Execution model

- GPUs cannot run OS:
 - different ISA
 - Memories have different coherence guarantees
 - (disjoint, or require fence instructions)
- Host CPU must "manage" GPU execution
 - Program inputs explicitly transferred/bound at runtime
- Device buffers pre-allocated

 Wain memory

 Copy inputs

 Copy inputs

 Copy outputs

 GPU

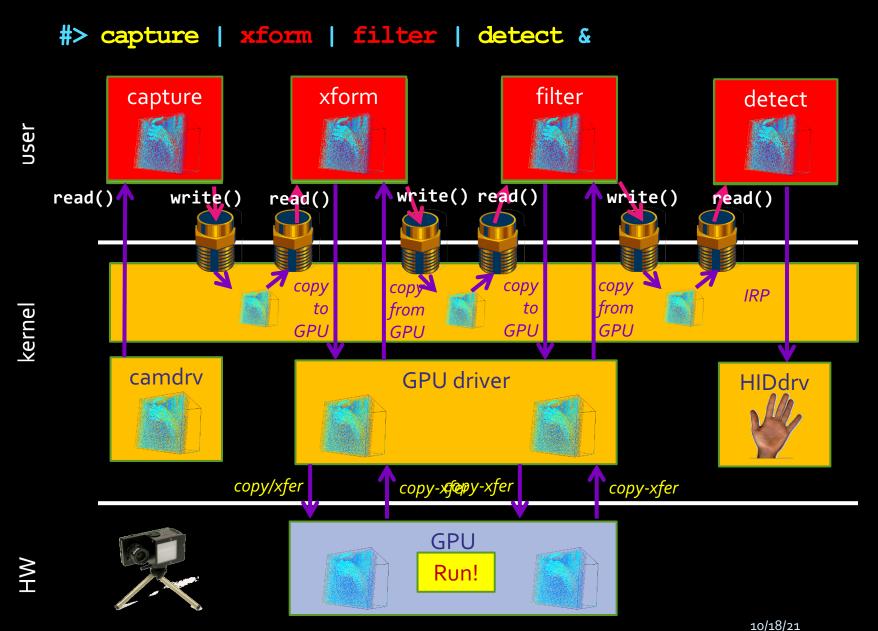
 Main CPU

 GPU

 GPU

 Memory

Data migration



Device-centric APIs considered harmful

```
Matrix
gemm(Matrix A, Matrix B) {
    copyToGPU(A);
    copyToGPU(B);
    invokeGPU();
    Matrix C = new Matrix();
    copyFromGPU(C);
    return C;
}
```

What happens if I want the following? Matrix $D = A \times B \times C$

Composed matrix multiplication

Matrix

Composed matrix multiplication

```
Matrix
                                        gemm(Matrix A, Matrix B) {
                AxB copied from
                                          copyToGPU(A);
                                          copyToGPU(B);
                 GPU memory...
                                          invokeGPU();
                                          Matrix C = new Matrix();
                                          copyFromGPU(C);
Matrix
                                          return C;
AxBxC(Matrix A, B, C) {
    Matrix(AXB) = gemm(A,B);
    Matrix AxBxC = gemm(AxB,C);
    return AxBxC;
```

Composed matrix multiplication

```
gemm(matrix A, Matrix B) {
                                           copyToGPU(A);
                                          copyToGPU(B);
                                           invoke [PU();
                                           Matrix C = new Matrix();
                                           copyFromGPU(C);
Matrix
                                                C;
                                           returr
AxBxC(Matrix A, B, C) {
    Matrix AxB = gemm(A,B);
    Matrix AxBxC = gemm(AxB,C);
    return AxBxC;
                                       ...only to be copied
                                       right back!
```

Matrix

What if I have many GPUs?

```
Matrix
gemm(Matrix A, Matrix B) {
   copyToGPU(A);
   copyToGPU(B);
   invokeGPU();
   Matrix C = new Matrix();
   copyFromGPU(C);
   return C;
}
```

What if I have many GPUs?

```
Matrix
gemm(GPU dev, Matrix A, Matrix B) {
   copyToGPU(dev, A);
   copyToGPU(dev, B);
   invokeGPU(dev);
   Matrix C = new Matrix();
   copyFromGPU(dev, C);
   return C;
}
```

What happens if I want the following? Matrix $D = A \times B \times C$

Composition with many GPUs

```
gemm(GPU dev, Matrix A, Matrix B)
                                      copyToGPU(A);
                                      copyToGPU(B);
                                      invokeGPU();
                                      Matrix C = new Matrix();
                                      copyFromGPU(C);
                                      return C;
Matrix
AxBxC(Matrix A,B,C) {
   Matrix AxB = gemm(???, A,B);
   Matrix AxBxC = gemm(????, AxB,C);
    return AxBxC;
```

Matrix

Composition with many GPUs



```
Matrix
gemm(GPU dev, Matrix A, Matrix B)
{
    copyToGPU(A);
    copyToGPU(B);
    invokeGPU();
    Matrix C = new Matrix();
    copyFromGPU(C);
    return C;
}
```

```
Matrix
AxBxC(GPU dev, Matrix A,B,C) {
    Matrix AxB = gemm(dev, A,B);
    Matrix AxBxC = gemm(dev, AxB,C);
    return AxBxC;
}
```

Composition with many GPUs

This will never be manageable for many GPUs.

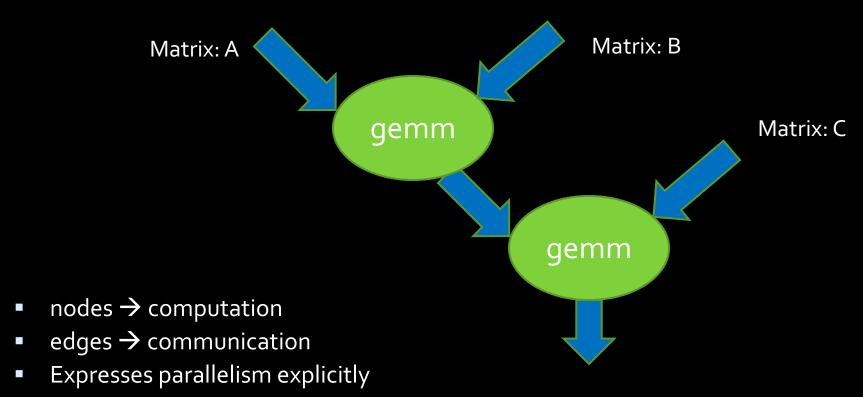
Programmer implements scheduling using static view!

```
Matrix
gemm(GPU dev, Matrix A, Matrix B)
{
    copyToGPU(A);
    copyToGPU(B);
    invokeGPU();
    Matrix C = new Matrix();
    copyFromGPU(C);
    return C;
}
```

```
Matrix
AxBxC(GPU devA, GPU devB, Matrix A,B,C) {
   Matrix AxB = gemm(devA, A,B);
   Matrix AxBxC = gemm(devB, AxB,C);
   return AxBxC;
}

Why don't we have this problem with CPUs?
```

Dataflow: a better abstraction

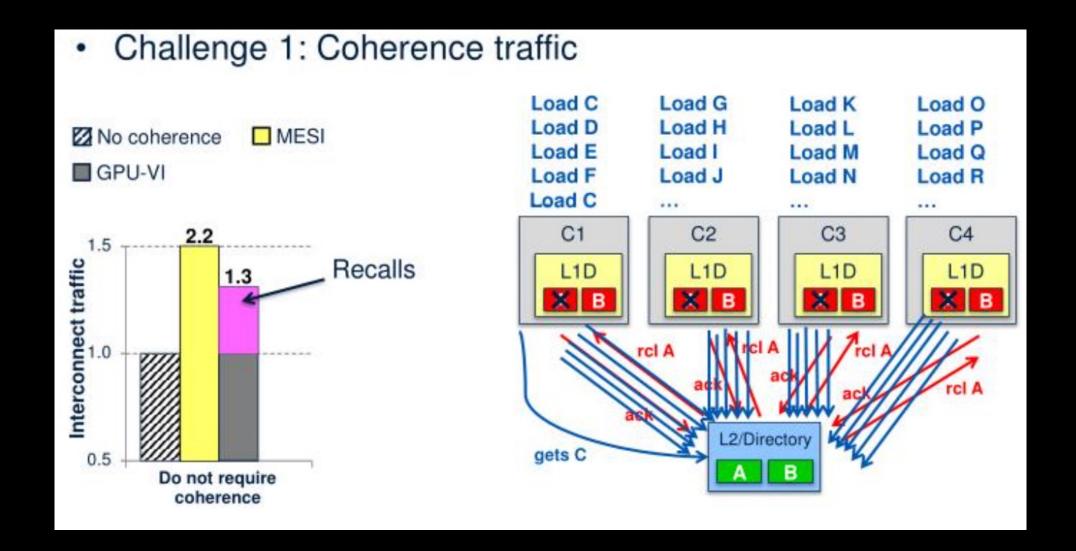


- Minimal specification of data movement: runtime does it.
- asynchrony is a runtime concern (not programmer concern)
- No specification of compute → device mapping: like threads!

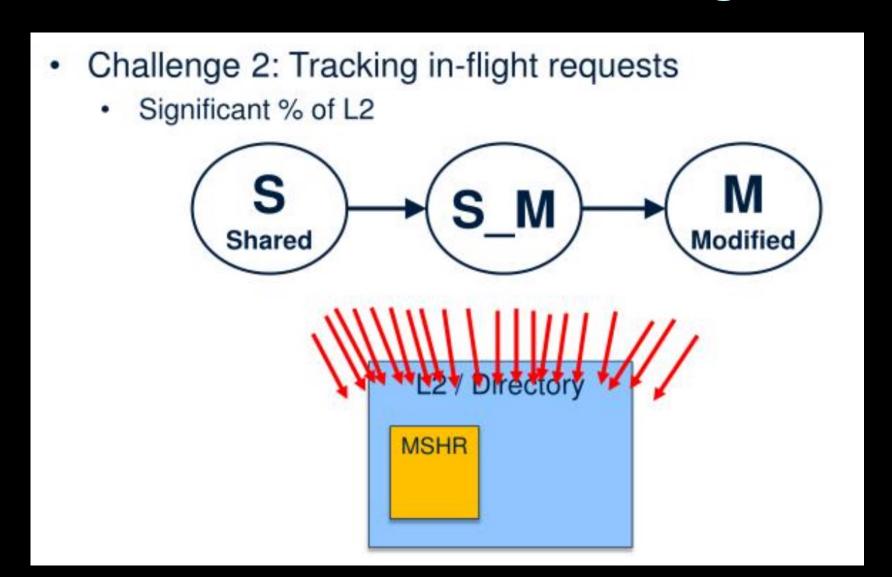
Faux Quiz Questions

- How is occupancy defined (in CUDA nomenclature)?
- What's the difference between a block scheduler (e.g. Giga-Thread Engine) and a warp scheduler?
- Modern CUDA supports UVM to eliminate the need for cudaMalloc and cudaMemcpy*. Under what conditions might you want to use or not use it and why?
- What is control flow divergence? How does it impact performance?
- What is a bank conflict?
- What is work efficiency?
- What is the difference between a thread block scheduler and a warp scheduler?
- How are atomics implemented in modern GPU hardware?
- How is __shared__ memory implemented by modern GPU hardware?
- Why is __shared__ memory necessary if GPUs have an L1 cache? When will an L1 cache provide all the benefit of __shared__ memory and when will it not?
- Is cudaDeviceSynchronize still necessary after copyback if I have just one CUDA stream?

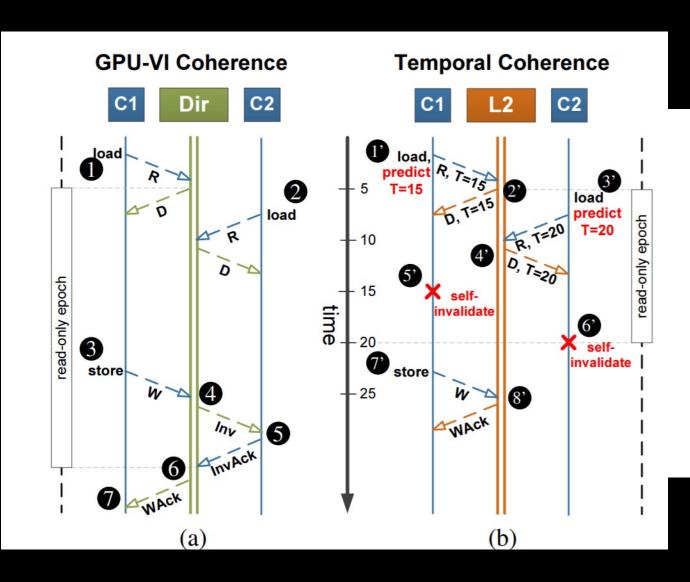
GPU Cache Coherence Challenges

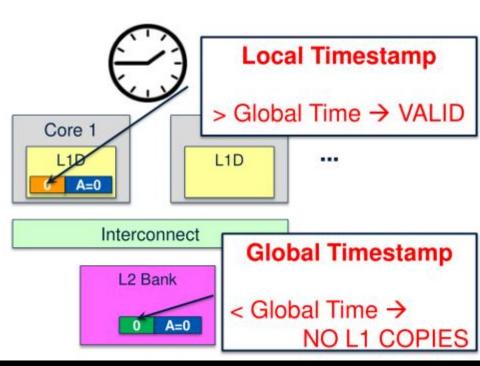


GPU Cache Coherence Challenges



Temporal Coherence (TC)





TC-Strong vs TC-Weak

