
GPUs going once…
GPUs going twice…

you get the idea
Chris Rossbach

cs378

1

Outline for Today
• Questions?

• Administrivia
• Start thinking about Projects!

• Agenda
• GPU performance
• GPU advanced topics

• Divergence

• Device APIs vs Dataflow
• Coherence

Acknowledgements:

• http://developer.download.nvidia.com/compute/developertrainingmaterials/presentatio
ns/cuda_language/Introduction_to_CUDA_C.pptx

• http://www.seas.upenn.edu/~cis565/LECTURES/CUDA%20Tricks.pptx

• http://www.cs.utexas.edu/~pingali/CS378/2015sp/lectures/GPU%20Programming.pptx

• Tor Aamodt’s 2013 paper

2

http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/cuda_language/Introduction_to_CUDA_C.pptx
http://www.seas.upenn.edu/~cis565/LECTURES/CUDA%20Tricks.pptx
http://www.cs.utexas.edu/~pingali/CS378/2015sp/lectures/GPU%20Programming.pptx

Faux Quiz Questions

• How is occupancy defined (in CUDA nomenclature)?
• What’s the difference between a block scheduler (e.g. Giga-Thread Engine) and a warp scheduler?
• Modern CUDA supports UVM to eliminate the need for cudaMalloc and cudaMemcpy*. Under

what conditions might you want to use or not use it and why?
• What is control flow divergence? How does it impact performance?
• What is a bank conflict?
• What is work efficiency?
• What is the difference between a thread block scheduler and a warp scheduler?
• How are atomics implemented in modern GPU hardware?
• How is __shared__ memory implemented by modern GPU hardware?
• Why is __shared__ memory necessary if GPUs have an L1 cache? When will an L1 cache provide

all the benefit of __shared__ memory and when will it not?
• Is cudaDeviceSynchronize still necessary after copyback if I have just one CUDA stream?

3

How many threads/blocks?

4

// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU
add<<<N/THREADS_PER_BLOCK,,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
return 0;

}

• Usually things are correct if grid*block dims >= input size
• Getting good performance is another matter

Review: Thread Blocks, Warps, Scheduling
Suppose one TB (threadblock) has 64 threads (2 warps)

Register File
Cores

L1 Cache/Shared Memory

Register File
Cores

L1 Cache/Shared Memory

Register File
Cores

L1 Cache/Shared Memory

SMs

……

……

SM_0 SM_1 SM_12

Thread Blocks

• SMs split blocks into warps
• Unit of HW scheduling for SM
• 32 threads each

Remaining TBs are queued

Review: GPU Performance Metric: Occupancy

• Occupancy = (#Active Warps) /(#MaximumActive Warps)
• Measures how well concurrency/parallelism is utilized

• Occupancy captures
• which resources can be dynamically shared
• how to reason about resource demands of a CUDA kernel
• Enables device-specific online tuning of kernel parameters

12

Shouldn’t we just create as many
threads as possible?

Hardware Resources Are Finite

SM
Scheduler

Kernel
Distributor

SM SM SM SM

DRAM

Warp Schedulers

Warp ContextWarp ContextWarp ContextWarp Context

Register File

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

TB 0

Thread Block Control

L1/Shared Memory

Limits the #thread blocks

Limits the #threads

Limits the #thread blocks

Limits the #threads

SM – Stream Multiprocessor

SP – Stream Processor

13

Occupancy:
• (#Active Warps) /(#MaximumActive Warps)
• Limits on the numerator:

• Registers/thread
• Shared memory/thread block
• Number of scheduling slots: blocks, warps

• Limits on the denominator:
• Memory bandwidth
• Scheduler slots What is the performance impact of varying kernel resource demands?

Impact of Thread Block Size

Example: v100:
• max active warps/SM == 64 (limit: warp context)
• max active blocks/SM == 32 (limit: block control)

• With 512 threads/block how many blocks can execute (per SM) concurrently?
• Max active warps * threads/warp = 64*32 = 2048 threads à
• With 128 threads/block? à

• Consider HW limit of 32 thread blocks/SM @ 32 threads/block:
• Blocks are maxed out, but max active threads = 32*32 = 1024
• Occupancy = .5 (1024/2048)

• To maximize utilization, thread block size should balance
• Limits on active thread blocks vs.
• Limits on active warps

14

4
16

Impact of #Registers Per Thread

Registers/thread can limit number of active threads!
V100:
• Registers per thread max: 255
• 64K registers per SM
Assume a kernel uses 32 registers/thread, thread block size of 256
• Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM

• Uses all 2048 thread slots (8 blocks * 256 threads/block)
• 8192 regs/block * 8 block/SM = 64k registers
• FULLY Occupied!

• What is the impact of increasing number of registers by 2?
• Recall: granularity of management is a thread block!
• Loss of concurrency of 256 threads!
• 34 regs/thread * 256 threads/block * 7 blocks/SM = 60k registers,
• 8 blocks would over-subscribe register file
• Occupancy drops to .875!

15

Impact of Shared Memory

• Shared memory is allocated per thread block
• Can limit the number of thread blocks executing concurrently per SM
• Shared mem/block * # blocks <= total shared mem per SM

• gridDim and blockDim parameters impact demand for
• shared memory
• number of thread slots
• number of thread block slots

16

Balance
#Threads/Bl

ock

#Thread
Blocks

Shared
memory/Th
read block

#Registers/T
hread

• Navigate the tradeoffs
v maximize core utilization and memory bandwidth utilization
v Device-specific

• Goal: Increase occupancy until one or the other is saturated
17

Parallel Memory Accesses

• Coalesced main memory access (16/32x faster)
• HW combines multiple warp memory accesses into a single coalesced access

• Bank-conflict-free shared memory access (16/32)
• No alignment or contiguity requirements

• CC 1.3: 16 different banks per half warp or same word
• CC 2.x+3.0 : 32 different banks + 1-word broadcast each

CUDA Optimization Tutorial 18

19

Parallel Memory Architecture

• In a parallel machine, many threads access memory
• Therefore, memory is divided into banks
• Essential to achieve high bandwidth

• Each bank can service one address per cycle
• A memory can service as many simultaneous

accesses as it has banks

• Multiple simultaneous accesses to a bank
result in a bank conflict
• Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Coalesced Main Memory Accesses

single coalesced access one and two coalesced accesses*

NVIDIA NVIDIA

20

21

Bank Addressing Examples
• No Bank Conflicts

• Linear addressing
stride == 1

• No Bank Conflicts
• Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

22

Bank Addressing Examples
• 2-way Bank Conflicts

• Linear addressing
stride == 2

• 8-way Bank Conflicts
• Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0x8

x8

23

Linear Addressing
• Given:

__shared__ float shared[256];

float foo =

shared[baseIndex + s *
threadIdx.x];

• This is only bank-conflict-free if s
shares no common factors with the
number of banks
• 16 on G80, so s must be odd

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

s=3

s=1

GPU Atomics & Divergence

Race conditions –
• Traditional locks: avoid!
• How do we synchronize?

Read-Modify-Write – atomic

atomicAdd() atomicInc()
atomicSub() atomicDec()
atomicMin() atomicExch()
atomicMax() atomicCAS()

Implemented as write-through to L2
• “Fire-and-forget”

24

Is this a good
idea?

Advanced Topic: GPU Programming Models

25

Layered abstractions

vendor driver vendor driver vendor driver

CPU I/O dev DISK NIC

process files pipes

LIBC/CLR

process files pipes

Applications

user
kernel

H
W

OS-level
abstractions

HAL

user-mode
Runtimes/libs

programmer-
visible interface

OS interface

Hardware
interface

* 1:1 correspondence between OS-level and user-level abstractions
* Diverse HW support enabled HAL

10/20/21

GPU abstractions

Vendor-specific

driver

GPU

ioctl

GPU Runtime (e.g. OpenCL)

GPGPU
APIs

shaders
kernels

language
integration

Applications

user
kernel

H
W

Runtime
support

programmer-
visible interface

1 OS-level
abstraction!

Hardware
interface

mmap

1. No kernel-facing API
2. OS resource-management limited
3. Poor composability

Fat driver,
proprietary
interfaces

10/20/21

No OS support à No isolation

• Image-convolution in CUDA
• Windows 7 x64 8GB RAM
• Intel Core 2 Quad 2.66GHz
• nVidia GeForce GT230

Higher is
better

0

200

400

600

800

1000

1200

no CPU load high CPU load

GPU benchmark throughput

CPU+GPU schedulers not integrated!
…other pathologies abundant

10/20/21

Composition: Gestural Interface

capture

filterxform

“Hand”
events

Raw images

detect

} Requires OS mediation
} High data rates
} Abundant data parallelism

…use GPUs!

noisy point cloud

geometric
transformation

capture camera
images

detect gestures

noise filtering

10/20/21

What We’d Like To Do
#> capture | xform | filter | detect &

} Modular design
} flexibility, reuse

} Utilize heterogeneous hardware
} Data-parallel components àGPU
} Sequential components àCPU

} Using OS provided tools
} processes, pipes

CPU CPUGPU GPU

10/20/21

§ GPUs cannot run OS:
 different ISA
 Memories have different coherence guarantees

� (disjoint, or require fence instructions)

§ Host CPU must “manage” GPU execution
ú Program inputs explicitly transferred/bound at runtime
ú Device buffers pre-allocated

GPU Execution model

CPUMain
memory

GPU
memory

GPU

Copy inputs Copy outputs Send commands

User-mode apps
must implement

10/20/21

OS executive

capture

GPU

Data migration

Run!

camdrv GPU driver

copy/xfer copy-xfer

xform

copy
to

GPU

copy
from
GPU

copy-xfer copy-xfer

filter

copy
from
GPU

detect

IRP

HIDdrv

read()

copy
to

GPU

write() read() write() read() write() read()

capture xform filter detect

#> capture | xform | filter | detect &

10/20/21

Device-centric APIs considered harmful

What happens if I want the following?
Matrix D = A x B x C

Matrix
gemm(Matrix A, Matrix B) {

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

10/20/21

Composed matrix multiplication
Matrix
gemm(Matrix A, Matrix B) {

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

Matrix
AxBxC(Matrix A, B, C) {

Matrix AxB = gemm(A,B);
Matrix AxBxC = gemm(AxB,C);
return AxBxC;

}

10/20/21

Composed matrix multiplication
Matrix
gemm(Matrix A, Matrix B) {

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

Matrix
AxBxC(Matrix A, B, C) {

Matrix AxB = gemm(A,B);
Matrix AxBxC = gemm(AxB,C);
return AxBxC;

}

AxB copied from
GPU memory…

10/20/21

Composed matrix multiplication
Matrix
gemm(Matrix A, Matrix B) {

copyToGPU(A);

copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

Matrix
AxBxC(Matrix A, B, C) {

Matrix AxB = gemm(A,B);

Matrix AxBxC = gemm(AxB,C);
return AxBxC;

} …only to be copied
right back!

10/20/21

What if I have many GPUs?

Matrix
gemm(Matrix A, Matrix B) {

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

10/20/21

What if I have many GPUs?

What happens if I want the following?
Matrix D = A x B x C

Matrix
gemm(GPU dev,Matrix A, Matrix B) {

copyToGPU(dev, A);
copyToGPU(dev, B);
invokeGPU(dev);
Matrix C = new Matrix();
copyFromGPU(dev, C);
return C;

}

10/20/21

Composition with many GPUs
Matrix
gemm(GPU dev, Matrix A, Matrix B)
{

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

Matrix
AxBxC(Matrix A,B,C) {

Matrix AxB = gemm(???, A,B);
Matrix AxBxC = gemm(???, AxB,C);
return AxBxC;

}

10/20/21

Composition with many GPUs
Matrix
gemm(GPU dev, Matrix A, Matrix B)
{

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

Matrix
AxBxC(GPU dev, Matrix A,B,C) {

Matrix AxB = gemm(dev, A,B);
Matrix AxBxC = gemm(dev, AxB,C);
return AxBxC;

}

Rats…now I can
only use 1 GPU.
How to partition

computation?

10/20/21

Composition with many GPUs
Matrix
gemm(GPU dev, Matrix A, Matrix B)
{

copyToGPU(A);
copyToGPU(B);
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C);
return C;

}

Matrix
AxBxC(GPU devA, GPU devB, Matrix A,B,C) {

Matrix AxB = gemm(devA, A,B);
Matrix AxBxC = gemm(devB, AxB,C);
return AxBxC;

}

This will never be
manageable for many GPUs.

Programmer implements
scheduling using static view!

Why don’t we have this problem with CPUs?

10/20/21

§ nodes à computation
§ edges à communication
§ Expresses parallelism explicitly
§ Minimal specification of data movement: runtime does it.
§ asynchrony is a runtime concern (not programmer concern)
§ No specification of computeàdevice mapping: like threads!

Dataflow: a better abstraction

gemm

gemm

Matrix: C

Matrix: A Matrix: B

10/20/21

Advanced Topic: GPU Coherence

43

Review: Cache Coherence

Each cache line has a state (M, E, S, I)
§ Processors “snoop” bus to maintain states
§ Initially à ‘I’ à Invalid
§ Read one à ‘E’ à exclusive
§ Reads à ‘S’ à multiple copies possible
§ Write à ‘M’ à single copy à lots of cache coherence traffic

MODIFIED

EXCLUSIVE

SHARED

INVALID

GPU Cache Coherence Challenges

45

GPU Cache Coherence Challenges

46

Background: Directory Protocol

§ For each block: centralized
“directory” for state in caches

§ Directory is co-located with
some global view of memory

§ Requests are no longer seen
by everyone
ú Writes are serialized through

directory

10/20/21

GPU-VI

§ Directory-Based
ú Different from snoop-model
ú Global directory metadata at L2

§ Two states
ú Valid
ú Invalid

§ Writes invalidate other copies

10/20/21

Temporal Coherence (TC)

49

TC-Strong vs TC-Weak

50

