
cs378

Chris Rossbach

Rust

Administrivia
Midterm 1 discussion

Technical Agenda
Rust!

Overview
Decoupling Shared, Mutable, and State
Channels and Synchronization

Rust Lab Preview

Acknowledgements:

• https://www.slideshare.net/nikomatsakis/rust-concurrency-tutorial-2015-1202

• Thanks Nikolas Matsakis!

Outline

https://www.slideshare.net/nikomatsakis/rust-concurrency-tutorial-2015-1202

Exam Q*: Uniprocessors/Concurrency

5

Exam Q*: Threads and Address Spaces

6

Exam Q*: Scaling

7

Exam Q*: Barrier generality

8

Exam Q*: Formal properties and TM

Paraphrased: Do <safety, liveness, bounded wait, failure atomicity>
suffice to define correctness for TM?

• The point: TM can violate single-writer invariant
• Not the point: ACID

Exam Q*: CSP models and Go

• A) In general no, but receiver can poll
• C) Select!

10

Exam Q: Barriers

• A) spin on local go flag
• B) some kind of blocking
• C) barrier doesn’t reset (8), some strategy to make it reset (4)

12

Exam Q*: P+F

• A) something about futures and promises
• B) pretty much anything with go func()
• C) Channels!
• D) Stack-ripping à some creative responses

• (next slide)

13

Stack-Ripping

Stack-based state out-of-scope!
Requests must carry state

Exam Q*: Transactions
• A) Isolation, Atomicity, Durability
• A) I: other tx see “in-flight” state
• A) A: some of outer is available without

all being available
• A) D: other tx see state that rolls back

• B) Isolation – all txs see writes of
deferred actions (text is subtle)
• B) Not C – all txs see writes in order

• C) No relaxation required
• data only flows outer à inner
• no uncommitted inner writes observed

Rust Motivation

Locks’ litany of problems:
• Deadlock
• Priority inversion
• Convoys
• Fault Isolation
• Preemption Tolerance
• Performance
• Poor composability…

Solution: don’t use locks
• non-blocking
• Data-structure-centric
• HTM
• blah, blah, blah..

Shared mutable state requires locks
• So…separate sharing and mutability
• Use type system to make concurrency safe
• Ownership
• Immutability
• Careful library support for sync primitives

Multi-paradigm language modeled after C and C++
Functional, Imperative, Object-Oriented

Primary Goals:
Safe Memory Management
Safe Concurrency and Concurrent Controls

Rust Goals

Be Fast: systems programming
Be Safe: don’t crash

Rust: a “safe” environment for memory
No Null, Dangling, or Wild Pointers

Objects are immutable by default
User has more explicit control over mutability

Declared variables must be initialized prior to execution
A bit of a pain for static/global state

Memory Management

Functions determined unsafe via specific behavior
• Deference null or raw pointers
• Data Races
• Type Inheritance

Using “unsafe” keyword à bypass compiler enforcement
• Don’t do it. Not for the lab, anyway

The user deals with the integrity of the code

Unsafe

Credit: http://www.skiingforever.com/ski-tricks/

http://www.skiingforever.com/ski-tricks/

First-Class Functions and Closures
Similar to Lua, Go, …

Algebraic data types (enums)
Class Traits

Similar to Java interfaces
Allows classes to share aspects

Other Relevant Features

Hard to use/learn without
awareness of these issues

Tasks à Rust’s threads
Each task à stack and a heap

Stack Memory Allocation – A Slot
Heap Memory Allocation – A Box

Tasks can share stack (portions) with other tasks
These objects must be immutable

Task States: Running, Blocked, Failing, Dead
Failing task: interrupted by another process
Dead task: only viewable by other tasks

Scheduling
Each task à finite time-slice
If task doesn’t finish, deferred until later
“M:N scheduler”

Concurrency

fn main() {

println!("Hello, world!")

}

Hello World

Ownership
n. The act, state, or right of possessing something

Borrow
v. To receive something with the promise of returning it

Ownership/Borrowing à
No need for a runtime
Memory safety (GC)
Data-race freedom

Ownership

MM Options:
• Managed languages: GC
• Native languages: manual

management
• Rust: 3rd option: track

ownership

• Each value in Rust has a variable called its owner.
• There can only be one owner at a time.
• Owner goes out of scopeàvalue will be dropped.

fn main() {

let name = format!("...");

helper(name);

}

Ownership/Borrowing
fn helper(name: String) {

println!(“{}”, name);

}

fn main() {

let name = format!("...");

helper(name);

helper(name);

}

Ownership/Borrowing
fn helper(name: String) {

println!(“{}”, name);

}

Error: use of moved value: `name`

Take ownership of a String

Pass by reference takes “ownership implicitly” in other languages like Java

What kinds of problems might this prevent?

fn main() {

let name = format!("...");

helper(&name);

helper(&name);

}

Shared Borrowing
fn helper(name: &String) {

println!(“{}”, name);

}

Lend the string

Take a reference to a String

Why does this fix the problem?

fn main() {

let name = format!("...");

helper(&name);

helper(&name);

}

Shared Borrowing with Concurrency
fn helper(name: &String) {

thread::spawn(||{

println!("{}", name);

});

}

Lifetime `static` required

Does this prevent the exact same class of problems?

fn main() {

let name = format!("...");

helper(name.clone());

helper(name);

}

Clone, Move
fn helper(name: String) {

thread::spawn(move || {

println!("{}", name);

});

}

Is this better?

Explicitly take ownership

Ensure concurrent owners
Work with different copies

Copy versus Clone:
Default: Types cannot be copied
• Values move from place to place
• E.g. file descriptor
Clone: Type is expensive to copy
• Make it explicit with clone call
• e.g. Hashtable
Copy: type implicitly copy-able
• e.g. u32, i32, f32, …
#[derive(Clone, Debug)]

struct Structure {

id: i32,

map: HashMap<String, f32>,
}

impl Structure {

fn mutate(&self, name: String, value: f32) {

self.map.insert(name, value);
}

}

Mutability

Error: cannot be borrowed as mutable

struct Structure {

id: i32,

map: HashMap<String, f32>,
}

impl Structure {

fn mutate(&mut self, name: String, value: f32){

self.map.insert(name, value);
}

}

Mutability

Key idea:
• Force mutation and ownership to be explicit
• Fixes MM *and* concurrency in fell swoop!

fn main() {
let (tx0, rx0) = channel();
thread::spawn(move || {

let (tx1, rx1) = channel();
tx0.send((format!("yo"), tx1)).unwrap();
let response = rx1.recv().unwrap();
println!("child got {}", response);

});
let (message, tx1) = rx0.recv().unwrap();
tx1.send(format!("what up!")).unwrap();
println("parent received {}", message);

}

Sharing State: Channels

“yo!”“what up!”

APIs return Option<T>

fn main() {

let var = Structure::new();

for i in 0..N {
thread::spawn(move || {

// ok to mutate var?
});

}

}

Sharing State

fn main() {
let var = Structure::new();
let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

thread::spawn(move || {
let ldata = Arc::clone(&var_arc);
let vdata = ldata.lock();
// ok to mutate var (vdata)!

});
}

}

Sharing State: Arc and Mutex

Key ideas:
• Use reference counting wrapper to pass refs
• Use scoped lock for mutual exclusion
• Actually compiles à works 1st time!

fn test() {
let var = Structure::new();
let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

thread::spawn(move || {
let ldata = Arc::clone(&var_arc);
let vdata = ldata.lock();
// ok to mutate var (vdata)!

});
}

}

Sharing State: Arc and Mutex, really

Why doesn’t “&” fix it?
(&var_arc, instead of just var_arc)

Would cloning var_arc fix it?

fn test() {
let var = Structure::new();
let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

thread::spawn(move || {
let ldata = Arc::clone(&var_arc.clone());
let vdata = ldata.lock();
// ok to mutate var (vdata)!

});
}

}

Sharing State: Arc and Mutex, really

Same problem!

What if we just don’t move?

fn test() {
let var = Structure::new();
let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

thread::spawn(|| {
let ldata = Arc::clone(&var_arc);
let vdata = ldata.lock();
// ok to mutate var (vdata)!

});
}

}

Sharing State: Arc and Mutex, really

What’s the actual fix?

fn test() {
let var = Structure::new();
let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

let clone_arc = var_arc.clone();
thread::spawn(move || {

let ldata = Arc::clone(&clone_arc);
let vdata = ldata.lock();
// ok to mutate var (vdata)!

});
}

}

Sharing State: Arc and Mutex, really

Compiles! Yay!
Other fixes?

fn test() {
let var = Structure::new();
let var_lock = Mutex::new(var);
let var_arc = Arc::new(var_lock);
for i in 0..N {

thread::spawn(move || {
let ldata = Arc::clone(&var_arc);
let vdata = ldata.lock();
// ok to mutate var (vdata)!

});
}

}

Sharing State: Arc and Mutex, really

Why does this compile?

Could we use a vec of JoinHandle
to keep var_arc in scope?

for i in 0..N { join(); }

What if I need my lambda to own
some things and borrow others?

Parameters!

Discussion

GC lambdas, Rust C++
• This is pretty nuanced:
• Stack closures, owned closures, managed closures, exchg heaps
Ownership and Macros

Macros use regexp and expand to closures

Summary

Rust: best of both worlds
systems vs productivity language

Separate sharing, mutability, concurrency
Type safety solves MM and concurrency
Have fun with the lab!

