Programming at Scale: Dataflow

cs378

Questions?

Administrivia

• Project Proposal Due Soon!

Agenda:

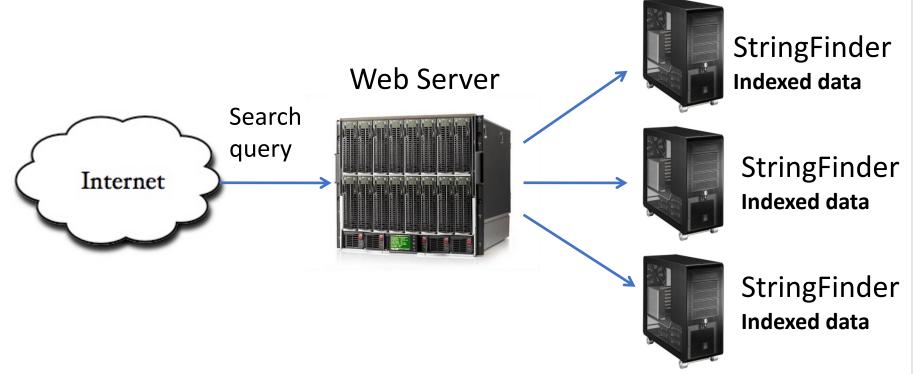
- Dataflow Wrap up
- Start talking about Consistency at scale

Spark faux quiz (5 min, any 2):

- What is the difference between *transformations* and *actions* in Spark?
- Spark supports a persist API. When should a programmer want to use it? When should she [not] use use the "*RELIABLE*" flag?
- List aspects of Spark's design that help/hinder multi-core parallelism relative to MapReduce. If the issue is orthogonal, explain why.
- Compare and contrast fault tolerance guarantees of Spark to those of MapReduce. How are[n't] the mechanisms different?
- Compare/contrast the *abstractions* for parallelism in Spark/MapReduce
- For what kinds of workloads will Spark/MR have different/similar performance?
- Why does Spark expose control over caching RDDs in memory to the programmer?
- What's a "wide" dependence? A "narrow" one? How do these ideas relate to fault tolerance in Spark?
- Is Spark a good system for indexing the web? For computing page rank over a web index? Why [not]?

Review: Scale: Goal

Infrastructure is hard to get right



- 1. How do we distribute the searchable files on our machines?
- 2. What if our webserver goes down?
- 3. What if a StringFinder machine dies? How would you know it was dead?
- 4. What if marketing comes and says, "well, we also want to show pictures of the earth from space too! Ooh..and the moon too!"

Dataflow Engines

Programming model + infrastructure Write programs that run on lots of machines Automatic parallelization and distribution Fault-tolerance I/O and jobs Scheduling Status and monitoring

> Key Ideas: All modern "big data" platforms are dataflow engines!

Differences:

- 1. what graph structures are allowed?
- 2. How does this impact programming model?

Spark (2012) Background

Commodity clusters: important platform

In industry: search, machine translation, ad targeting, ... In research: bioinformatics, NLP, climate simulation, ...

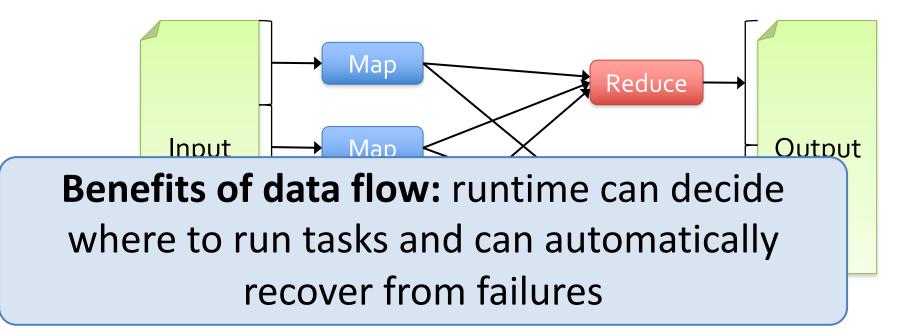
Cluster-scale models (e.g. MR) de facto standard Fault tolerance through replicated durable storage Dataflow is the common theme

Multi-core

Iteration

Programming models for clusters transform data flowing from stable storage to stable storage

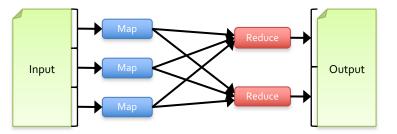
E.g., MapReduce:



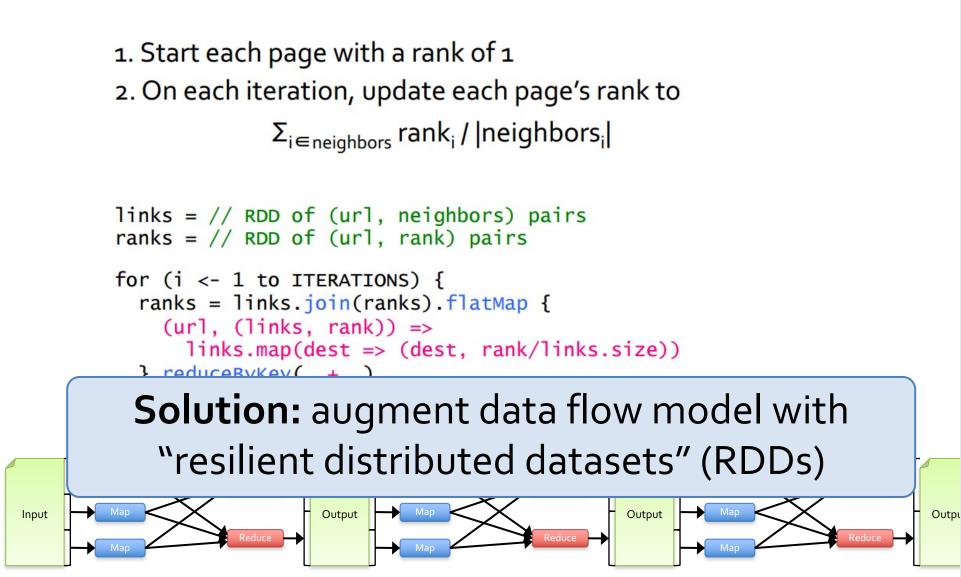
Iterative Computations: PageRank

```
1. Start each page with a rank of 1
2. On each iteration, update each page's rank to
\Sigma_{i \in neighbors} rank<sub>i</sub> / |neighbors<sub>i</sub>|
```

```
links = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs
for (i <- 1 to ITERATIONS) {
   ranks = links.join(ranks).flatMap {
     (url, (links, rank)) =>
        links.map(dest => (dest, rank/links.size))
   }.reduceByKey(_ + _)
}
```



Iterative Computations: PageRank

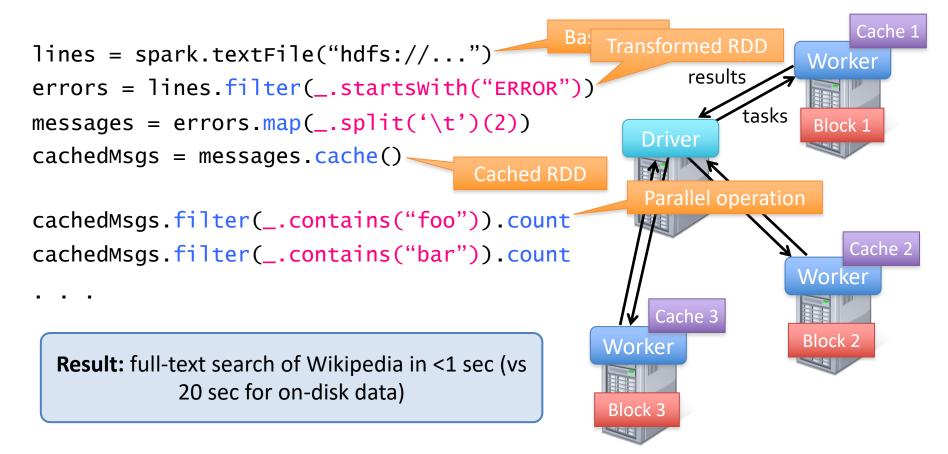


Programming Model

- Resilient distributed datasets (RDDs)
 - Immutable collections partitioned across cluster that can be rebuilt if a partition is lost
 - Created by transforming data in stable storage using data flow operators (map, filter, group-by, ...)
 - Can be *cached* across parallel operations
- Parallel operations on RDDs
 - Reduce, collect, count, save, ...
- Restricted shared variables
 - Accumulators, broadcast variables

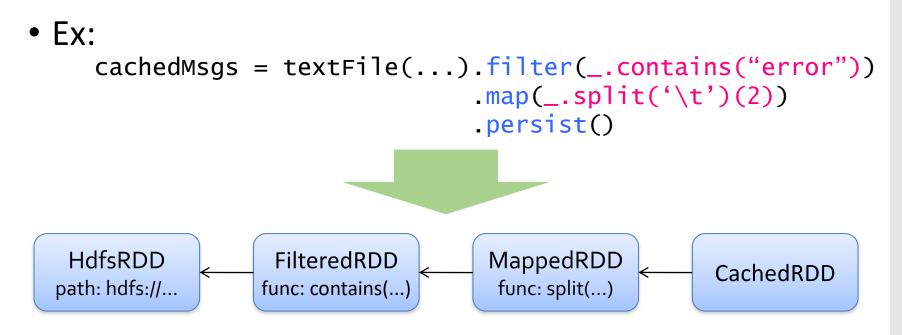
Example: Log Mining

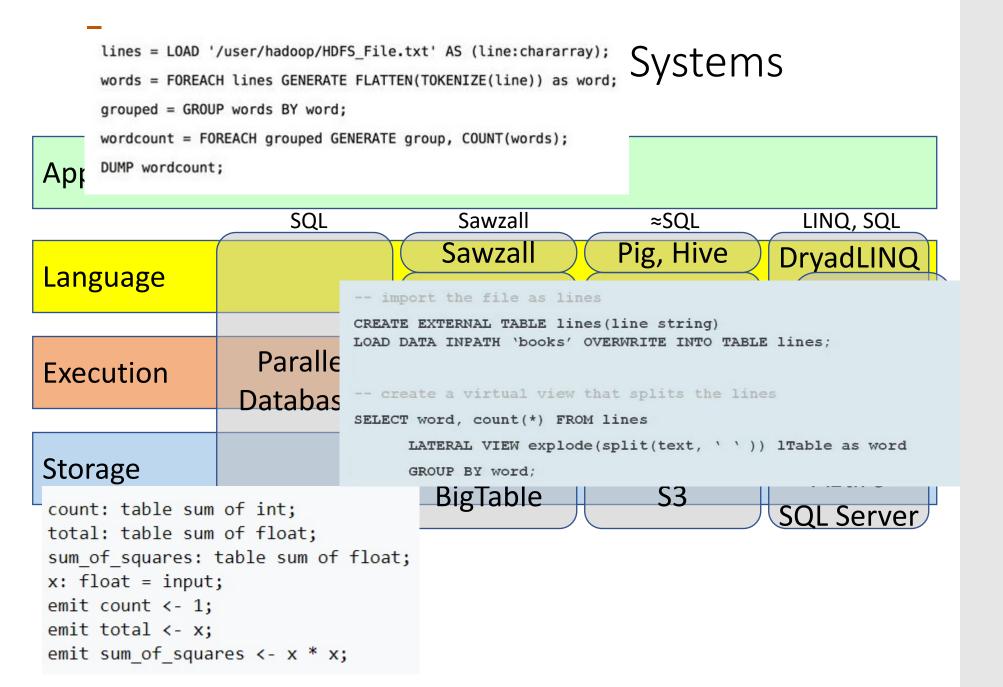
• Load error messages from a log into memory, then interactively search for various patterns



RDD Fault Tolerance

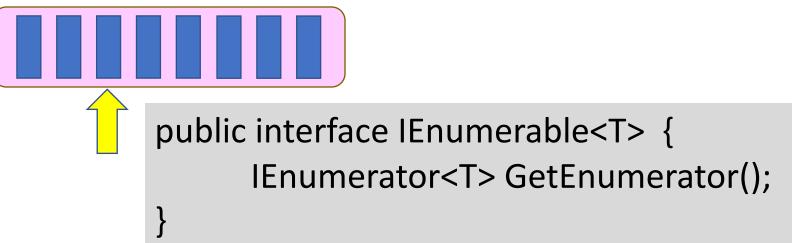
• RDDs maintain *lineage* information that can be used to reconstruct lost partitions



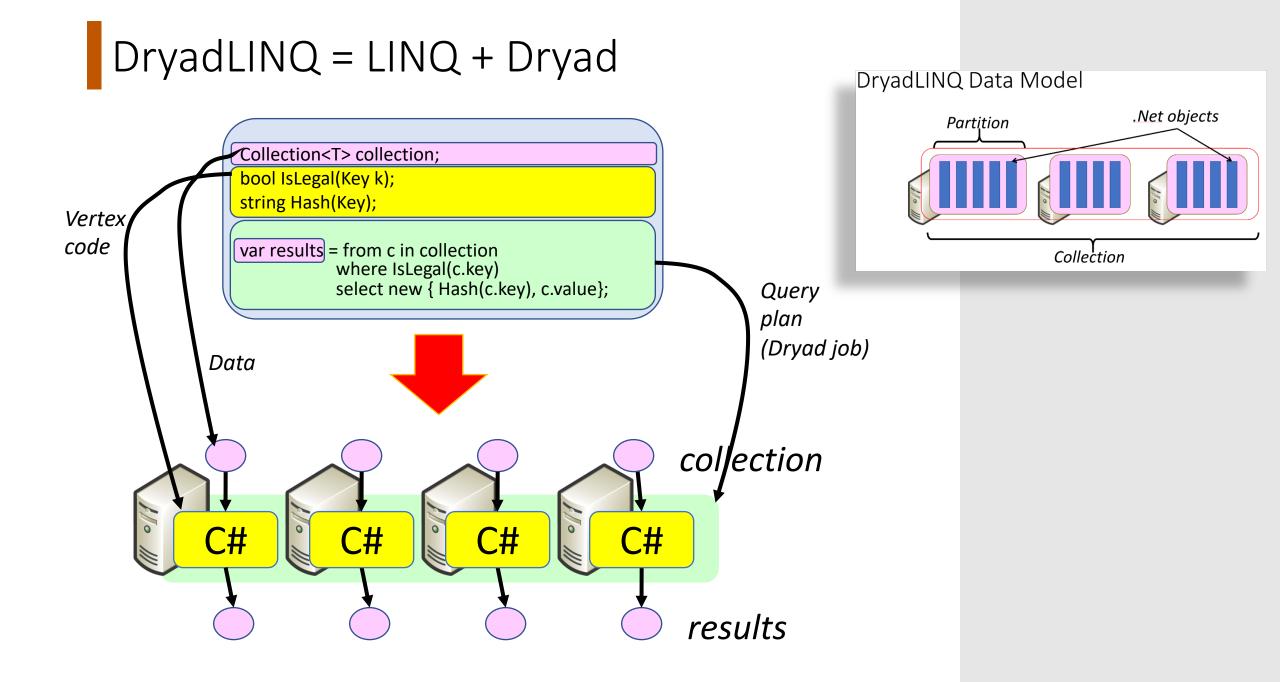


Background: Collections and Iterators

class Collection<T> : IEnumerable<T>;

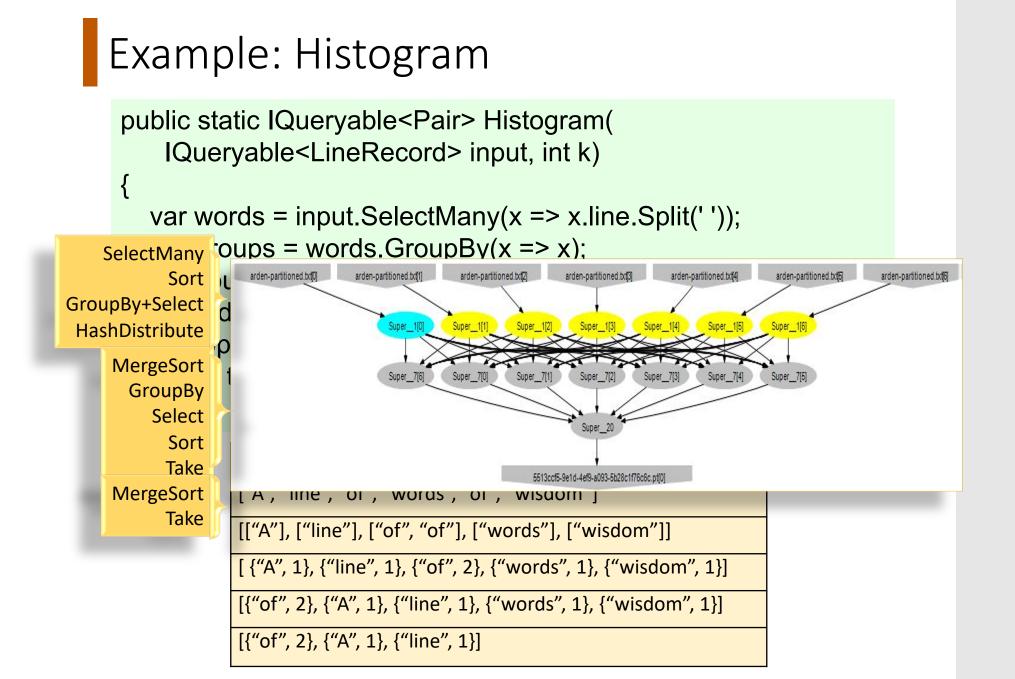


public interface IEnumerator <T> {
 T Current { get; }
 bool MoveNext();
 voic Peset();
}



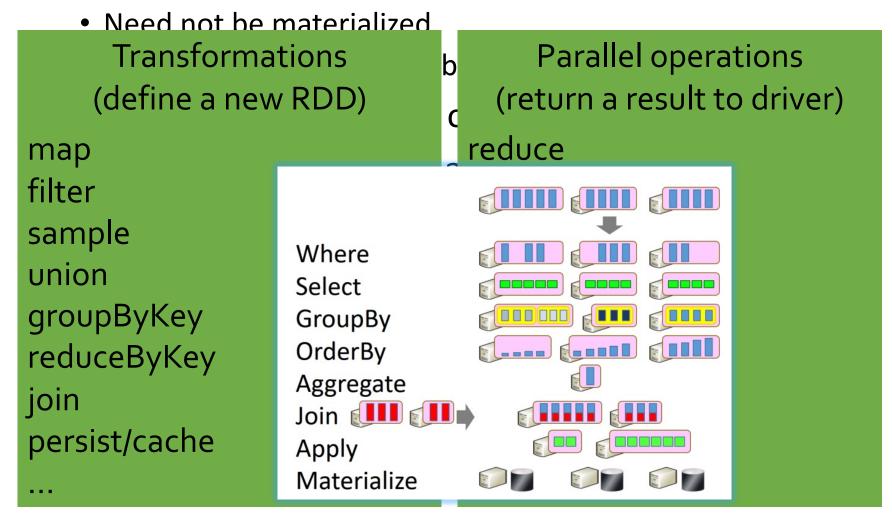
Programming Model

110 Where 110 Select 110 GroupBy 110 **OrderBy** 1/0 _ _ _ _ _ Aggregate Join Join Apply Materialize 0



RDDs

• Immutable, partitioned, logical collection of records



RDDs vs Distributed Shared Memory

Concern	RDDs	Distr. Shared Mem.
Reads	Fine-grained	Fine-grained
Writes	Bulk transformations	Fine-grained
Consistency	Trivial (immutable)	Up to app / runtime
Fault recovery	Fine-grained and low- overhead using lineage	Requires checkpoints and program rollback
Straggler mitigation	Possible using speculative execution	Difficult
Work placement	Automatic based on data locality	Up to app (but runtime aims for transparency)

Dataflow key enabler for cluster-scale parallelism

Key issues become runtime's responsibility

Data movement

Scheduling

Fault-tolerance

MapReduce is sub-optimal

Modern DBMSs: hash + B-tree indexes to accelerate data access. Indexes are user-defined Could MR do this?

No query optimizer! (oh my, terrible...but good for researchers! ③)

Skew: wide variance in distribution of keys

E.g. "the" more common than "zyzzyva"

Materializing splits

N=1000 mappers \rightarrow M=500 keys = 500,000 local files

500 reducer instances "pull" these files

DBMSs push splits to sockets (no local temp files)

MapReduce: !novel && feature-poor

- Partitioning data sets (map) == Hash join
- Parallel aggregation == reduce
- User-supplied functions differentiates from SQL:
 - POSTGRES user functions, user aggregates
 - PL/SQL: Stored procedures
 - Object databases

Absent features:

- Indexing
- Update operator
- Transactions
- Integrity constraints, referential integrity
- Views

Why is MapReduce backwards?

Map == group-by

Reduce == aggregate

SELECT job, COUNT(*) as "numemps"
FROM employees
WHERE salary > 1000
GROUP BY job;

- Where is the aggregate in this example?
- Is the DBMS analogy clear?

Why is MapReduce backwards?

Schemas are good (what's a schema?) Separation of schema from app is good (why?) High-level access languages are good (why?)

