
Asynchronous Programming
Promises + Futures

Chris Rossbach

CS378H



Today

• Questions?

• Administrivia

• Material for the day
• Events / Asynchronous programming

• Promises & Futures

• Bonus: memory consistency models

• Acknowledgements

• Consistency slides borrow some materials from Kevin Boos. Thanks!



Asynchronous Programming
Events, Promises, and Futures



Asynchronous Programming
Events, Promises, and Futures



Review: Java Example



Review: Java Example



Review: Java Example

• CompletableFuture is a container for Future object type



Review: Java Example

• CompletableFuture is a container for Future object type

• cf is an instance



Review: Java Example

• CompletableFuture is a container for Future object type

• cf is an instance

• runAsync() accepts

• Lambda expression

• Anonymous function

• Functor



Review: Java Example

• CompletableFuture is a container for Future object type

• cf is an instance

• runAsync() accepts

• Lambda expression

• Anonymous function

• Functor

• runAsync() immediately returns a waitable object (cf)



Review: Java Example

• CompletableFuture is a container for Future object type

• cf is an instance

• runAsync() accepts

• Lambda expression

• Anonymous function

• Functor

• runAsync() immediately returns a waitable object (cf)

• Where (on what thread) does the lambda expression run?



Review: Java Example

• CompletableFuture is a container for Future object type

• cf is an instance

• runAsync() accepts

• Lambda expression

• Anonymous function

• Functor

• runAsync() immediately returns a waitable object (cf)

• Where (on what thread) does the lambda expression run?

Futures: 

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects

• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Programming Model between:

• Event-based programming

• Thread-based programming



GUI Programming Distilled



GUI Programming Distilled
How can we 
parallelize 

this?



Parallel GUI Implementation 1



Parallel GUI Implementation 1



Parallel GUI Implementation 1



Parallel GUI Implementation 1



Parallel GUI Implementation 1

DoThisProc

DoThatProc

OtherThing



Parallel GUI Implementation 1

DoThisProc

DoThatProc

OtherThing

Pros/cons?



Parallel GUI Implementation 1

Pros: 
• Encapsulates parallel work
Cons:
• Obliterates original code structure
• How to assign handlers→CPUs?
• Load balance?!?
• Utilization

DoThisProc

DoThatProc

OtherThing

Pros/cons?



Parallel GUI Implementation 2



Parallel GUI Implementation 2
Pros/cons?



Parallel GUI Implementation 2
Pros: 
• Preserves programming model
• Can recover some parallelism
Cons:
• Workers still have same problem
• How to load balance?
• Shared mutable state a problem

Pros/cons?



Parallel GUI Implementation 2
Pros: 
• Preserves programming model
• Can recover some parallelism
Cons:
• Workers still have same problem
• How to load balance?
• Shared mutable state a problem

Extremely difficult to solve 
without changing the whole 

programming model…so 

change it

Pros/cons?



Event-based Programming: Motivation



Event-based Programming: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments

• Load balancing/assignment brittle 

• Shared state requires locks →
• Priority inversion

• Deadlock 

• Incorrect synchronization

• …



Event-based Programming: Motivation

• Threads have a *lot* of down-sides:
• Tuning parallelism for different environments

• Load balancing/assignment brittle 

• Shared state requires locks →
• Priority inversion

• Deadlock 

• Incorrect synchronization

• …

• Events: restructure programming model so threads are not exposed!



Event Programming Model Basics



Event Programming Model Basics

• Programmer only writes events



Event Programming Model Basics

• Programmer only writes events

• Event: an object queued for a module (think future/promise)



Event Programming Model Basics

• Programmer only writes events

• Event: an object queued for a module (think future/promise)

• Basic primitives
• create_event_queue(handler) → event_q

• enqueue_event(event_q, event-object)
• Invokes handler (eventually)



Event Programming Model Basics

• Programmer only writes events

• Event: an object queued for a module (think future/promise)

• Basic primitives
• create_event_queue(handler) → event_q

• enqueue_event(event_q, event-object)
• Invokes handler (eventually)

• Scheduler decides which event to execute next
• E.g. based on priority, CPU usage, etc.



Event-based programming



Event-based programming



Event-based programming



Event-based programming



Event-based programming

Runtime



Event-based programming

Runtime



Event-based programming

Runtime

Is the problem solved?



Another Event-based Program



Another Event-based Program



Another Event-based Program

Blocks!



Another Event-based Program

Blocks!Burns CPU!



Another Event-based Program

Blocks!Burns CPU!Uses Other Handlers!
(call OnPaint?)



No problem! 
Just use more events/handlers, right?



Continuations, BTW



Stack-Ripping



Stack-Ripping



Stack-Ripping



Stack-Ripping

Stack-based state out-of-scope!
Requests must carry state



Threads vs Events

• Thread Pros
• Overlap I/O and computation 

• While looking sequential

• Intermediate state on stack

• Control flow naturally expressed

• Thread Cons
• Synchronization required

• Overflowable stack

• Stack memory pressure

• Event Pros
• Easier to create well-conditioned system
• Easier to express dynamic change in level of 

parallelism

• Event Cons
• Difficult to program
• Control flow between callbacks obscure
• When to deallocate memory
• Incomplete language/tool/debugger support
• Difficult to exploit concurrent hardware



Threads vs Events

• Thread Pros
• Overlap I/O and computation 

• While looking sequential

• Intermediate state on stack

• Control flow naturally expressed

• Thread Cons
• Synchronization required

• Overflowable stack

• Stack memory pressure

• Event Pros
• Easier to create well-conditioned system
• Easier to express dynamic change in level of 

parallelism

• Event Cons
• Difficult to program
• Control flow between callbacks obscure
• When to deallocate memory
• Incomplete language/tool/debugger support
• Difficult to exploit concurrent hardware



Threads vs Events

• Thread Pros
• Overlap I/O and computation 

• While looking sequential

• Intermediate state on stack

• Control flow naturally expressed

• Thread Cons
• Synchronization required

• Overflowable stack

• Stack memory pressure

• Event Pros
• Easier to create well-conditioned system
• Easier to express dynamic change in level of 

parallelism

• Event Cons
• Difficult to program
• Control flow between callbacks obscure
• When to deallocate memory
• Incomplete language/tool/debugger support
• Difficult to exploit concurrent hardware

Language-level 
Futures: the 
sweet spot?



Threads vs Events

• Thread Pros
• Overlap I/O and computation 

• While looking sequential

• Intermediate state on stack

• Control flow naturally expressed

• Thread Cons
• Synchronization required

• Overflowable stack

• Stack memory pressure

• Event Pros
• Easier to create well-conditioned system
• Easier to express dynamic change in level of 

parallelism

• Event Cons
• Difficult to program
• Control flow between callbacks obscure
• When to deallocate memory
• Incomplete language/tool/debugger support
• Difficult to exploit concurrent hardware

Language-level 
Futures: the 
sweet spot?



Thread Pool Implementation



Thread Pool Implementation

Cool project 
idea: build a 
thread pool!



Thread Pool Implementation



ThreadPool Implementation



Redux: Futures in Context



Redux: Futures in Context

Futures: 



Redux: Futures in Context

Futures: 

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent



Redux: Futures in Context

Futures: 

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks



Redux: Futures in Context

Futures: 

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks



Redux: Futures in Context

Futures: 

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Model:



Redux: Futures in Context

Futures: 

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Model:

• Event-based programming



Redux: Futures in Context

Futures: 

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Model:

• Event-based programming

• Thread-based programming



Redux: Futures in Context

Futures: 

• abstraction for concurrent work supported by
• Compiler: abstractions are language-level objects
• Runtime: scheduler, task queues, thread-pools are transparent

• Programming remains mostly imperative
• Threads of control peppered with asynchronous/concurrent tasks

Compromise Model:

• Event-based programming

• Thread-based programming

Currently: 2nd renaissance IMHO



Questions?


