
Consistency
Transactions

Transactional Memory
Chris Rossbach

cs378h



Outline for Today
• Questions?

• Administrivia
• Comments on Lab 2 due date

• Comments on the changes to schedule

• Agenda
• Consistency

• Transactions

• Transactional Memory

• Acks: Yoav Cohen for some STM slides



Faux Quiz questions

• How are promises and futures related? Since there is disagreement 
on the nomenclature, don’t worry about which is which—just 
describe what the different objects are and how they function.

• How does HTM resemble or differ from Load-linked Stored-
Conditional?

• What are some pros and cons of HTM vs STM?

• What is Open Nesting? Closed Nesting? Flat Nesting? 

• How does 2PL differ from 2PC?

• Define ACID properties: which, if any, of these properties does TM 
relax?



Memory Consistency

4



Memory Consistency

• Formal specification of memory semantics
• Statement of how shared memory will behave  with multiple CPUs

• Ordering of reads and writes

4



Memory Consistency

• Formal specification of memory semantics
• Statement of how shared memory will behave  with multiple CPUs

• Ordering of reads and writes

• Memory Consistency != Cache Coherence
• Coherence: propagate updates to cached copies

• Invalidate vs. Update

• Coherence vs. Consistency? 
• Coherence: ordering of ops. at a single location

• Consistency: ordering of ops. at multiple locations

4



Sequential Consistency

5



Sequential Consistency

P1 P2 P3 Pn…

Memory

5



Sequential Consistency

• Result of any execution is same 
as if all operations execute on a 
uniprocessor

P1 P2 P3 Pn…

Memory

5



Sequential Consistency

• Result of any execution is same 
as if all operations execute on a 
uniprocessor

• Operations on each processor 
are totally ordered in the 
sequence and respect program 
order for each processor

P1 P2 P3 Pn…

Memory

5



Sequential Consistency

• Result of any execution is same 
as if all operations execute on a 
uniprocessor

• Operations on each processor 
are totally ordered in the 
sequence and respect program 
order for each processor

P1 P2 P3 Pn…

Memory

5

Trying to mimic Uniprocessor semantics:
• Memory operations occur:

• One at a time
• In program order 

• Read returns value of last write



Sequential Consistency

• Result of any execution is same 
as if all operations execute on a 
uniprocessor

• Operations on each processor 
are totally ordered in the 
sequence and respect program 
order for each processor

P1 P2 P3 Pn…

Memory

5

Trying to mimic Uniprocessor semantics:
• Memory operations occur:

• One at a time
• In program order 

• Read returns value of last write

• How is this different from coherence?

• Why do modern CPUs not implement SC?

• Requirements: program order, write atomicity



Sequential Consistency

• All operations are executed in some sequential order 

• each process issues operations in program order

• Any valid interleaving is allowed

• All  agree on the same interleaving

• Each process preserves its program order



Sequential Consistency

• All operations are executed in some sequential order 

• each process issues operations in program order

• Any valid interleaving is allowed

• All  agree on the same interleaving

• Each process preserves its program order

Are either of these SC?



Sequential Consistency: Canonical Example

Initially, Flag1 = Flag2 = 0

P1 P2

Flag1 = 1 Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
enter CS enter CS 

7



Sequential Consistency: Canonical Example

Initially, Flag1 = Flag2 = 0

P1 P2

Flag1 = 1 Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
enter CS enter CS 

7

Can both P1 and P2 wind up in the 
critical section at the same time?



Do we need Sequential Consistency?

Initially, Flag1 = Flag2 = 0

P1 P2

Flag1  = 1      

Flag2 = 1
if (Flag1 == 0)

shared_data++
if (Flag2 == 0)

shared_data++

8



Do we need Sequential Consistency?

Initially, Flag1 = Flag2 = 0

P1 P2

Flag1  = 1      

Flag2 = 1
if (Flag1 == 0)

shared_data++
if (Flag2 == 0)

shared_data++

8

Key issue: 
• P1 and P2 may not see each other’s writes in the same order
• Implication: both in critical section, which is incorrect
• Why would this happen?



Do we need Sequential Consistency?

Initially, Flag1 = Flag2 = 0

P1 P2

Flag1  = 1      

Flag2 = 1
if (Flag1 == 0)

shared_data++
if (Flag2 == 0)

shared_data++

8

Key issue: 
• P1 and P2 may not see each other’s writes in the same order
• Implication: both in critical section, which is incorrect
• Why would this happen?

Write Buffers
• P_0 write → queue op in write buffer, proceed
• P_0 read → look in  write buffer, 
• P_(x != 0) read → old value: write buffer hasn’t drained



Requirements for Sequential Consistency

9



Requirements for Sequential Consistency

• Program Order
• Processor’s memory operations must complete in program order

9



Requirements for Sequential Consistency

• Program Order
• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs

• Subsequent reads must not return value of a write until propagated to all

9



Requirements for Sequential Consistency

• Program Order
• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs

• Subsequent reads must not return value of a write until propagated to all

• Write acknowledgements are necessary
• Cache coherence provides these properties for a cache-only system

9



Requirements for Sequential Consistency

• Program Order
• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs

• Subsequent reads must not return value of a write until propagated to all

• Write acknowledgements are necessary
• Cache coherence provides these properties for a cache-only system

9

Disadvantages:

• Difficult to implement!
• Coherence to (e.g.) write buffers is hard

• Sacrifices many potential optimizations 
• Hardware (cache) and software (compiler)
• Major performance hit



Relaxed Consistency Models

10



Relaxed Consistency Models

• Program Order relaxations    (different locations)

• W → R;       W →W;       R → R/W

10



Relaxed Consistency Models

• Program Order relaxations    (different locations)

• W → R;       W →W;       R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

10



Relaxed Consistency Models

• Program Order relaxations    (different locations)

• W → R;       W →W;       R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

10



Relaxed Consistency Models

• Program Order relaxations    (different locations)

• W → R;       W →W;       R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

10



Relaxed Consistency Models

• Program Order relaxations    (different locations)

• W → R;       W →W;       R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

10

static inline void arch_write_lock(arch_rwlock_t *rw) {
asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"

"jz 1f\n"
"call __write_lock_failed\n\t"
"1:\n"
::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS) : "memory"); }

static inline void arch_write_lock(arch_rwlock_t *rw) {
asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"

"jz 1f\n"
"call __write_lock_failed\n\t"
"1:\n"
::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS) : "memory"); }

x86

https://elixir.bootlin.com/linux/v3.13/C/ident/arch_write_lock
https://elixir.bootlin.com/linux/v3.13/C/ident/arch_rwlock_t
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/volatile
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PREFIX
https://elixir.bootlin.com/linux/v3.13/C/ident/WRITE_LOCK_SUB
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PTR_REG
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/write
https://elixir.bootlin.com/linux/v3.13/C/ident/RW_LOCK_BIAS
https://elixir.bootlin.com/linux/v3.13/C/ident/arch_write_lock
https://elixir.bootlin.com/linux/v3.13/C/ident/arch_rwlock_t
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/volatile
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PREFIX
https://elixir.bootlin.com/linux/v3.13/C/ident/WRITE_LOCK_SUB
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PTR_REG
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/write
https://elixir.bootlin.com/linux/v3.13/C/ident/RW_LOCK_BIAS


Relaxed Consistency Models

• Program Order relaxations    (different locations)

• W → R;       W →W;       R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

10



Relaxed Consistency Models

• Program Order relaxations    (different locations)

• W → R;       W →W;       R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

10

static inline unsigned long 
__arch_spin_trylock(arch_spinlock_t *lock)
{
unsigned long tmp, token;
token = LOCK_TOKEN;
__asm__ __volatile__(
"1: "  PPC_LWARX(%0,0,%2,1) "\n\

cmpwi 0,%0,0\n\
bne- 2f\n\
stwcx. %1,0,%2\n\
bne- 1b\n"
PPC_ACQUIRE_BARRIER

"2:“ : "=&r" (tmp)
: "r" (token), "r" (&lock->slock)
: "cr0", "memory");

return tmp;
}

static inline unsigned long 
__arch_spin_trylock(arch_spinlock_t *lock)
{
unsigned long tmp, token;
token = LOCK_TOKEN;
__asm__ __volatile__(
"1: "  PPC_LWARX(%0,0,%2,1) "\n\

cmpwi 0,%0,0\n\
bne- 2f\n\
stwcx. %1,0,%2\n\
bne- 1b\n"
PPC_ACQUIRE_BARRIER

"2:“ : "=&r" (tmp)
: "r" (token), "r" (&lock->slock)
: "cr0", "memory");

return tmp;
} PowerPC



Relaxed Consistency Models

• Program Order relaxations    (different locations)

• W → R;       W →W;       R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

10



Transactions and Transactional Memory



Transactions and Transactional Memory

• 3 Programming Model Dimensions:



Transactions and Transactional Memory

• 3 Programming Model Dimensions:
• How to specify computation



Transactions and Transactional Memory

• 3 Programming Model Dimensions:
• How to specify computation
• How to specify communication



Transactions and Transactional Memory

• 3 Programming Model Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer



Transactions and Transactional Memory

• 3 Programming Model Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer



Transactions and Transactional Memory

• 3 Programming Model Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Threads, Futures, Events etc. 
• Mostly about how to express control



Transactions and Transactional Memory

• 3 Programming Model Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Threads, Futures, Events etc. 
• Mostly about how to express control

• Transactions 
• Mostly about how to deal with shared state



Transactions
Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) {
delete(file, old-dir)

add(file, new-dir)

}

create(file, dir) {
alloc-disk(file, header, data)

write(header)

add (file, dir)

}



Transactions
Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) {
delete(file, old-dir)

add(file, new-dir)

}

create(file, dir) {
alloc-disk(file, header, data)

write(header)

add (file, dir)

}

• Modified data in memory/caches
• Even if in-memory data is durable, multiple disk updates



Transactions
Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) {
delete(file, old-dir)

add(file, new-dir)

}

create(file, dir) {
alloc-disk(file, header, data)

write(header)

add (file, dir)

}

Problems: crash in the middle / visibility of intermediate state
• Modified data in memory/caches
• Even if in-memory data is durable, multiple disk updates



Problem: Unreliability



Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B

• Create file (update free list, inode, data block)

• Bank transfer (move $100 from my account to VISA account)

• Move directory from server A to B



Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B

• Create file (update free list, inode, data block)

• Bank transfer (move $100 from my account to VISA account)

• Move directory from server A to B

• Machines can crash, messages can be lost



Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B

• Create file (update free list, inode, data block)

• Bank transfer (move $100 from my account to VISA account)

• Move directory from server A to B

• Machines can crash, messages can be lost Can we use messages? E.g. 
with retries over unreliable 
medium to synchronize with 
guarantees?



Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B

• Create file (update free list, inode, data block)

• Bank transfer (move $100 from my account to VISA account)

• Move directory from server A to B

• Machines can crash, messages can be lost Can we use messages? E.g. 
with retries over unreliable 
medium to synchronize with 
guarantees?

No. 
Not even if all messages get 
through!



General’s paradox



General’s paradox
• Two generals on separate mountains



General’s paradox
• Two generals on separate mountains

• Can only communicate via messengers



General’s paradox
• Two generals on separate mountains

• Can only communicate via messengers

• Messengers can get lost or captured



General’s paradox
• Two generals on separate mountains

• Can only communicate via messengers

• Messengers can get lost or captured

• Need to coordinate attack
• attack at same time good, different times bad!



General’s paradox
• Two generals on separate mountains

• Can only communicate via messengers

• Messengers can get lost or captured

• Need to coordinate attack
• attack at same time good, different times bad!



General’s paradox
• Two generals on separate mountains

• Can only communicate via messengers

• Messengers can get lost or captured

• Need to coordinate attack
• attack at same time good, different times bad!



General’s paradox
• Two generals on separate mountains

• Can only communicate via messengers

• Messengers can get lost or captured

• Need to coordinate attack
• attack at same time good, different times bad!

General A → General B: let’s attack at dawn



General’s paradox
• Two generals on separate mountains

• Can only communicate via messengers

• Messengers can get lost or captured

• Need to coordinate attack
• attack at same time good, different times bad!

General A → General B: let’s attack at dawn
General B → General A: OK, dawn. 



General’s paradox
• Two generals on separate mountains

• Can only communicate via messengers

• Messengers can get lost or captured

• Need to coordinate attack
• attack at same time good, different times bad!

General A → General B: let’s attack at dawn
General B → General A: OK, dawn. 
General A → General B: Check. Dawn it is. 



General’s paradox
• Two generals on separate mountains

• Can only communicate via messengers

• Messengers can get lost or captured

• Need to coordinate attack
• attack at same time good, different times bad!

General A → General B: let’s attack at dawn
General B → General A: OK, dawn. 
General A → General B: Check. Dawn it is. 
General B → General A: Alright already—dawn. 

…



General’s paradox
• Two generals on separate mountains

• Can only communicate via messengers

• Messengers can get lost or captured

• Need to coordinate attack
• attack at same time good, different times bad!

General A → General B: let’s attack at dawn
General B → General A: OK, dawn. 
General A → General B: Check. Dawn it is. 
General B → General A: Alright already—dawn. 

…

• Even if all messages 
delivered, can’t assume–
maybe some message 
didn’t get through.

• No solution: one of the 
few CS impossibility 
results.



Transactions can help
(but can’t solve it)



Transactions can help
(but can’t solve it)

• Solves weaker problem: 
• 2 things will either happen or not

• not necessarily at the same time



Transactions can help
(but can’t solve it)

• Solves weaker problem: 
• 2 things will either happen or not

• not necessarily at the same time

• Core idea: one entity has the power to say yes or no for all
• Local txn: one final update (TxEND) irrevocably triggers several

• Distributed transactions
• 2 phase commit

• One machine has final say for all machines

• Other machines bound to comply



Transactions can help
(but can’t solve it)

• Solves weaker problem: 
• 2 things will either happen or not

• not necessarily at the same time

• Core idea: one entity has the power to say yes or no for all
• Local txn: one final update (TxEND) irrevocably triggers several

• Distributed transactions
• 2 phase commit

• One machine has final say for all machines

• Other machines bound to comply

What is the role of 
synchronization here?



Transactional Programming Model

begin transaction;

x = read(“x-values”, ....);

y = read(“y-values”, ....);

z = x+y;

write(“z-values”, z, ....);

commit transaction;



Transactional Programming Model

begin transaction;

x = read(“x-values”, ....);

y = read(“y-values”, ....);

z = x+y;

write(“z-values”, z, ....);

commit transaction;

What has changed from 
previous programming 
models?



ACID Semantics



ACID Semantics

What are they?
• A
• C
• I
• D



ACID Semantics



ACID Semantics

begin transaction;

x = read(“x-values”, ....);

y = read(“y-values”, ....);

z = x+y;

write(“z-values”, z, ....);

commit transaction;



ACID Semantics

• Atomic – all updates happen or none do

begin transaction;

x = read(“x-values”, ....);

y = read(“y-values”, ....);

z = x+y;

write(“z-values”, z, ....);

commit transaction;



ACID Semantics

• Atomic – all updates happen or none do

• Consistent – system invariants maintained across updates

begin transaction;

x = read(“x-values”, ....);

y = read(“y-values”, ....);

z = x+y;

write(“z-values”, z, ....);

commit transaction;



ACID Semantics

• Atomic – all updates happen or none do

• Consistent – system invariants maintained across updates

• Isolated – no visibility into partial updates

begin transaction;

x = read(“x-values”, ....);

y = read(“y-values”, ....);

z = x+y;

write(“z-values”, z, ....);

commit transaction;



ACID Semantics

• Atomic – all updates happen or none do

• Consistent – system invariants maintained across updates

• Isolated – no visibility into partial updates

• Durable – once done, stays done

begin transaction;

x = read(“x-values”, ....);

y = read(“y-values”, ....);

z = x+y;

write(“z-values”, z, ....);

commit transaction;



ACID Semantics

• Atomic – all updates happen or none do

• Consistent – system invariants maintained across updates

• Isolated – no visibility into partial updates

• Durable – once done, stays done

• Are subsets ever appropriate?
• When would ACI be useful?

• ACD?

• Isolation only?

begin transaction;

x = read(“x-values”, ....);

y = read(“y-values”, ....);

z = x+y;

write(“z-values”, z, ....);

commit transaction;



Transactions: Implementation



Transactions: Implementation

• Key idea: turn multiple updates into a single one



Transactions: Implementation

• Key idea: turn multiple updates into a single one

• Many implementation Techniques
• Two-phase locking

• Timestamp ordering

• Optimistic Concurrency Control

• Journaling

• 2,3-phase commit

• Speculation-rollback

• Single global lock

• Compensating transactions



Transactions: Implementation

• Key idea: turn multiple updates into a single one

• Many implementation Techniques
• Two-phase locking

• Timestamp ordering

• Optimistic Concurrency Control

• Journaling

• 2,3-phase commit

• Speculation-rollback

• Single global lock

• Compensating transactions

Key problems: 
• output commit
• synchronization



Transactions: Implementation

• Key idea: turn multiple updates into a single one

• Many implementation Techniques
• Two-phase locking

• Timestamp ordering

• Optimistic Concurrency Control

• Journaling

• 2,3-phase commit

• Speculation-rollback

• Single global lock

• Compensating transactions

Key problems: 
• output commit
• synchronization



Implementing Transactions

BEGIN_TXN();

x = read(“x-values”, ....);

y = read(“y-values”, ....);

z = x+y;

write(“z-values”, z, ....);

COMMIT_TXN();



Implementing Transactions

BEGIN_TXN();

x = read(“x-values”, ....);

y = read(“y-values”, ....);

z = x+y;

write(“z-values”, z, ....);

COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}



Implementing Transactions

BEGIN_TXN();

x = read(“x-values”, ....);

y = read(“y-values”, ....);

z = x+y;

write(“z-values”, z, ....);

COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
LOCK(single-global-lock);

}

COMMIT_TXN() {
UNLOCK(single-global-lock);

}



Implementing Transactions

BEGIN_TXN();

x = read(“x-values”, ....);

y = read(“y-values”, ....);

z = x+y;

write(“z-values”, z, ....);

COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
LOCK(single-global-lock);

}

COMMIT_TXN() {
UNLOCK(single-global-lock);

}

Pros/Cons?



Two-phase locking

• Phase 1: only acquire locks in order
• Phase 2: unlock at commit
• avoids deadlock

BEGIN_TXN();
Lock x, y
x = x + 1
y = y – 1
unlock y, x
COMMIT_TXN();



Two-phase locking

• Phase 1: only acquire locks in order
• Phase 2: unlock at commit
• avoids deadlock

BEGIN_TXN();
Lock x, y
x = x + 1
y = y – 1
unlock y, x
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}



Two-phase locking

• Phase 1: only acquire locks in order
• Phase 2: unlock at commit
• avoids deadlock

BEGIN_TXN();
Lock x, y
x = x + 1
y = y – 1
unlock y, x
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
rwset = Union(rset, wset);
rwset = sort(rwset);
forall x in rwset

LOCK(x);
}

COMMIT_TXN() {
forall x in rwset

UNLOCK(x);
}



Two-phase locking

• Phase 1: only acquire locks in order
• Phase 2: unlock at commit
• avoids deadlock

BEGIN_TXN();
Lock x, y
x = x + 1
y = y – 1
unlock y, x
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
rwset = Union(rset, wset);
rwset = sort(rwset);
forall x in rwset

LOCK(x);
}

COMMIT_TXN() {
forall x in rwset

UNLOCK(x);
}

Pros/Cons?



Two-phase locking

• Phase 1: only acquire locks in order
• Phase 2: unlock at commit
• avoids deadlock

BEGIN_TXN();
Lock x, y
x = x + 1
y = y – 1
unlock y, x
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
rwset = Union(rset, wset);
rwset = sort(rwset);
forall x in rwset

LOCK(x);
}

COMMIT_TXN() {
forall x in rwset

UNLOCK(x);
}

Pros/Cons?

What happens on failures?



Two-phase locking

• Phase 1: only acquire locks in order
• Phase 2: unlock at commit
• avoids deadlock

BEGIN_TXN();
Lock x, y
x = x + 1
y = y – 1
unlock y, x
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
rwset = Union(rset, wset);
rwset = sort(rwset);
forall x in rwset

LOCK(x);
}

COMMIT_TXN() {
forall x in rwset

UNLOCK(x);
}

Pros/Cons?

A: grab locks
A: modify x, y,
A: unlock y, x
B: grab locks
B: update x, y
B: unlock y, x
B: COMMIT
A: CRASH

What happens on failures?



Two-phase locking

• Phase 1: only acquire locks in order
• Phase 2: unlock at commit
• avoids deadlock

BEGIN_TXN();
Lock x, y
x = x + 1
y = y – 1
unlock y, x
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
rwset = Union(rset, wset);
rwset = sort(rwset);
forall x in rwset

LOCK(x);
}

COMMIT_TXN() {
forall x in rwset

UNLOCK(x);
}

Pros/Cons?

A: grab locks
A: modify x, y,
A: unlock y, x
B: grab locks
B: update x, y
B: unlock y, x
B: COMMIT
A: CRASH

What happens on failures?

B commits 
changes that 
depend on A’s 
updates



Two-phase commit

• N participants agree or don’t (atomicity)

• Phase 1: everyone “prepares”

• Phase 2: Master decides and tells everyone to actually commit

• What if the master crashes in the middle?



2PC: Phase 1

1. Coordinator sends REQUEST to all participants

2. Participants receive request and

3. Execute locally

4. Write VOTE_COMMIT or VOTE_ABORT to local log

5. Send VOTE_COMMIT or VOTE_ABORT to coordinator
Example—move: C→S1: delete foo from /, C→S2: add foo to /

Failure case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 decides permission problem
S2 writes/sends VOTE_ABORT

Success case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 writes add foo to /
S2 writes/sends VOTE_COMMIT



2PC: Phase 2

• Case 1: receive VOTE_ABORT or timeout
• Write GLOBAL_ABORT to log

• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all
• Write GLOBAL_COMMIT to log

• send GLOBAL_COMMIT to participants

• Participants receive decision, write GLOBAL_* to log



2PC corner cases
Phase 1

1. Coordinator sends REQUEST to all participants

2. Participants receive request and

3. Execute locally

4. Write VOTE_COMMIT or VOTE_ABORT to local log

5. Send VOTE_COMMIT or VOTE_ABORT to coordinator

Phase 2

• Case 1: receive VOTE_ABORT or timeout

• Write GLOBAL_ABORT to log

• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all

• Write GLOBAL_COMMIT to log

• send GLOBAL_COMMIT to participants

• Participants recv decision, write GLOBAL_* to log

• What if participant crashes at X?
• Coordinator crashes at Y?
• Participant crashes at Z?
• Coordinator crashes at W?

Z

X
Y

W



2PC limitation(s)



2PC limitation(s)

• Coordinator crashes at W, never wakes up



2PC limitation(s)

• Coordinator crashes at W, never wakes up

• All nodes block forever!



2PC limitation(s)

• Coordinator crashes at W, never wakes up

• All nodes block forever!

• Can participants ask each other what happened?



2PC limitation(s)

• Coordinator crashes at W, never wakes up

• All nodes block forever!

• Can participants ask each other what happened?

• 2PC: always has risk of indefinite blocking



2PC limitation(s)

• Coordinator crashes at W, never wakes up

• All nodes block forever!

• Can participants ask each other what happened?

• 2PC: always has risk of indefinite blocking

• Solution: (yes) 3 phase commit!
• Reliable replacement of crashed “leader”

• 2PC often good enough in practice



Questions?


