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Outline for Today
• Questions?

• Administrivia
• Comments on Lab 2 due date

• Comments on the changes to schedule

• Agenda
• Consistency

• Transactions

• Transactional Memory

• Acks: Yoav Cohen for some STM slides



Faux Quiz questions

• How are promises and futures related? Since there is disagreement 
on the nomenclature, don’t worry about which is which—just 
describe what the different objects are and how they function.

• How does HTM resemble or differ from Load-linked Stored-
Conditional?

• What are some pros and cons of HTM vs STM?

• What is Open Nesting? Closed Nesting? Flat Nesting? 

• How does 2PL differ from 2PC?

• Define ACID properties: which, if any, of these properties does TM 
relax?
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Memory Consistency

• Formal specification of memory semantics
• Statement of how shared memory will behave  with multiple CPUs

• Ordering of reads and writes

• Memory Consistency != Cache Coherence
• Coherence: propagate updates to cached copies

• Invalidate vs. Update

• Coherence vs. Consistency? 
• Coherence: ordering of ops. at a single location

• Consistency: ordering of ops. at multiple locations
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Sequential Consistency

• Result of any execution is same 
as if all operations execute on a 
uniprocessor

• Operations on each processor 
are totally ordered in the 
sequence and respect program 
order for each processor

P1 P2 P3 Pn…

Memory

5

Trying to mimic Uniprocessor semantics:
• Memory operations occur:

• One at a time
• In program order 

• Read returns value of last write

• How is this different from coherence?

• Why do modern CPUs not implement SC?

• Requirements: program order, write atomicity
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Sequential Consistency

• All operations are executed in some sequential order 

• each process issues operations in program order

• Any valid interleaving is allowed

• All  agree on the same interleaving

• Each process preserves its program order

Are either of these SC?



Sequential Consistency: Canonical Example

Initially, Flag1 = Flag2 = 0

P1 P2

Flag1 = 1 Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
enter CS enter CS 
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Sequential Consistency: Canonical Example

Initially, Flag1 = Flag2 = 0

P1 P2

Flag1 = 1 Flag2 = 1
if (Flag2 == 0) if (Flag1 == 0)
enter CS enter CS 
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Can both P1 and P2 wind up in the 
critical section at the same time?



Do we need Sequential Consistency?

Initially, Flag1 = Flag2 = 0

P1 P2

Flag1  = 1      

Flag2 = 1
if (Flag1 == 0)

shared_data++
if (Flag2 == 0)

shared_data++
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Do we need Sequential Consistency?

Initially, Flag1 = Flag2 = 0

P1 P2

Flag1  = 1      

Flag2 = 1
if (Flag1 == 0)

shared_data++
if (Flag2 == 0)

shared_data++

8

Key issue: 
• P1 and P2 may not see each other’s writes in the same order
• Implication: both in critical section, which is incorrect
• Why would this happen?

Write Buffers
• P_0 write → queue op in write buffer, proceed
• P_0 read → look in  write buffer, 
• P_(x != 0) read → old value: write buffer hasn’t drained
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Requirements for Sequential Consistency

• Program Order
• Processor’s memory operations must complete in program order

• Write Atomicity
• Writes to the same location seen by all other CPUs

• Subsequent reads must not return value of a write until propagated to all

• Write acknowledgements are necessary
• Cache coherence provides these properties for a cache-only system

9

Disadvantages:

• Difficult to implement!
• Coherence to (e.g.) write buffers is hard

• Sacrifices many potential optimizations 
• Hardware (cache) and software (compiler)
• Major performance hit
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static inline void arch_write_lock(arch_rwlock_t *rw) {
asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"

"jz 1f\n"
"call __write_lock_failed\n\t"
"1:\n"
::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS) : "memory"); }

static inline void arch_write_lock(arch_rwlock_t *rw) {
asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"

"jz 1f\n"
"call __write_lock_failed\n\t"
"1:\n"
::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS) : "memory"); }

x86

https://elixir.bootlin.com/linux/v3.13/C/ident/arch_write_lock
https://elixir.bootlin.com/linux/v3.13/C/ident/arch_rwlock_t
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/volatile
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PREFIX
https://elixir.bootlin.com/linux/v3.13/C/ident/WRITE_LOCK_SUB
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PTR_REG
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/write
https://elixir.bootlin.com/linux/v3.13/C/ident/RW_LOCK_BIAS
https://elixir.bootlin.com/linux/v3.13/C/ident/arch_write_lock
https://elixir.bootlin.com/linux/v3.13/C/ident/arch_rwlock_t
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/volatile
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PREFIX
https://elixir.bootlin.com/linux/v3.13/C/ident/WRITE_LOCK_SUB
https://elixir.bootlin.com/linux/v3.13/C/ident/LOCK_PTR_REG
https://elixir.bootlin.com/linux/v3.13/C/ident/rw
https://elixir.bootlin.com/linux/v3.13/C/ident/write
https://elixir.bootlin.com/linux/v3.13/C/ident/RW_LOCK_BIAS


Relaxed Consistency Models

• Program Order relaxations    (different locations)

• W → R;       W →W;       R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

10



Relaxed Consistency Models

• Program Order relaxations    (different locations)

• W → R;       W →W;       R → R/W

• Write Atomicity relaxations
• Read returns another processor’s Write early

• Requirement: synchronization primitives for safety
• Fence, barrier instructions etc

10

static inline unsigned long 
__arch_spin_trylock(arch_spinlock_t *lock)
{
unsigned long tmp, token;
token = LOCK_TOKEN;
__asm__ __volatile__(
"1: "  PPC_LWARX(%0,0,%2,1) "\n\

cmpwi 0,%0,0\n\
bne- 2f\n\
stwcx. %1,0,%2\n\
bne- 1b\n"
PPC_ACQUIRE_BARRIER

"2:“ : "=&r" (tmp)
: "r" (token), "r" (&lock->slock)
: "cr0", "memory");

return tmp;
}

static inline unsigned long 
__arch_spin_trylock(arch_spinlock_t *lock)
{
unsigned long tmp, token;
token = LOCK_TOKEN;
__asm__ __volatile__(
"1: "  PPC_LWARX(%0,0,%2,1) "\n\

cmpwi 0,%0,0\n\
bne- 2f\n\
stwcx. %1,0,%2\n\
bne- 1b\n"
PPC_ACQUIRE_BARRIER

"2:“ : "=&r" (tmp)
: "r" (token), "r" (&lock->slock)
: "cr0", "memory");

return tmp;
} PowerPC
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Transactions and Transactional Memory

• 3 Programming Model Dimensions:
• How to specify computation
• How to specify communication
• How to specify coordination/control transfer

• Threads, Futures, Events etc. 
• Mostly about how to express control

• Transactions 
• Mostly about how to deal with shared state



Transactions
Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) {
delete(file, old-dir)

add(file, new-dir)

}

create(file, dir) {
alloc-disk(file, header, data)

write(header)

add (file, dir)

}



Transactions
Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) {
delete(file, old-dir)

add(file, new-dir)

}

create(file, dir) {
alloc-disk(file, header, data)

write(header)

add (file, dir)

}

• Modified data in memory/caches
• Even if in-memory data is durable, multiple disk updates



Transactions
Core issue: multiple updates

Canonical examples:

move(file, old-dir, new-dir) {
delete(file, old-dir)

add(file, new-dir)

}

create(file, dir) {
alloc-disk(file, header, data)

write(header)

add (file, dir)

}

Problems: crash in the middle / visibility of intermediate state
• Modified data in memory/caches
• Even if in-memory data is durable, multiple disk updates
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Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B

• Create file (update free list, inode, data block)

• Bank transfer (move $100 from my account to VISA account)

• Move directory from server A to B

• Machines can crash, messages can be lost Can we use messages? E.g. 
with retries over unreliable 
medium to synchronize with 
guarantees?

No. 
Not even if all messages get 
through!
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General’s paradox
• Two generals on separate mountains

• Can only communicate via messengers

• Messengers can get lost or captured

• Need to coordinate attack
• attack at same time good, different times bad!

General A → General B: let’s attack at dawn
General B → General A: OK, dawn. 
General A → General B: Check. Dawn it is. 
General B → General A: Alright already—dawn. 

…

• Even if all messages 
delivered, can’t assume–
maybe some message 
didn’t get through.

• No solution: one of the 
few CS impossibility 
results.
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Transactions can help
(but can’t solve it)

• Solves weaker problem: 
• 2 things will either happen or not

• not necessarily at the same time

• Core idea: one entity has the power to say yes or no for all
• Local txn: one final update (TxEND) irrevocably triggers several

• Distributed transactions
• 2 phase commit

• One machine has final say for all machines

• Other machines bound to comply

What is the role of 
synchronization here?



Transactional Programming Model

begin transaction;

x = read(“x-values”, ....);
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Transactional Programming Model

begin transaction;

x = read(“x-values”, ....);

y = read(“y-values”, ....);

z = x+y;

write(“z-values”, z, ....);

commit transaction;

What has changed from 
previous programming 
models?
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What are they?
• A
• C
• I
• D
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ACID Semantics

• Atomic – all updates happen or none do

• Consistent – system invariants maintained across updates

• Isolated – no visibility into partial updates

• Durable – once done, stays done

• Are subsets ever appropriate?
• When would ACI be useful?

• ACD?

• Isolation only?

begin transaction;

x = read(“x-values”, ....);

y = read(“y-values”, ....);

z = x+y;

write(“z-values”, z, ....);

commit transaction;
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Two-phase locking

• Phase 1: only acquire locks in order
• Phase 2: unlock at commit
• avoids deadlock

BEGIN_TXN();
Lock x, y
x = x + 1
y = y – 1
unlock y, x
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
rwset = Union(rset, wset);
rwset = sort(rwset);
forall x in rwset

LOCK(x);
}

COMMIT_TXN() {
forall x in rwset

UNLOCK(x);
}

Pros/Cons?

A: grab locks
A: modify x, y,
A: unlock y, x
B: grab locks
B: update x, y
B: unlock y, x
B: COMMIT
A: CRASH

What happens on failures?

B commits 
changes that 
depend on A’s 
updates



Two-phase commit

• N participants agree or don’t (atomicity)

• Phase 1: everyone “prepares”

• Phase 2: Master decides and tells everyone to actually commit

• What if the master crashes in the middle?



2PC: Phase 1

1. Coordinator sends REQUEST to all participants

2. Participants receive request and

3. Execute locally

4. Write VOTE_COMMIT or VOTE_ABORT to local log

5. Send VOTE_COMMIT or VOTE_ABORT to coordinator
Example—move: C→S1: delete foo from /, C→S2: add foo to /

Failure case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 decides permission problem
S2 writes/sends VOTE_ABORT

Success case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 writes add foo to /
S2 writes/sends VOTE_COMMIT



2PC: Phase 2

• Case 1: receive VOTE_ABORT or timeout
• Write GLOBAL_ABORT to log

• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all
• Write GLOBAL_COMMIT to log

• send GLOBAL_COMMIT to participants

• Participants receive decision, write GLOBAL_* to log



2PC corner cases
Phase 1

1. Coordinator sends REQUEST to all participants

2. Participants receive request and

3. Execute locally

4. Write VOTE_COMMIT or VOTE_ABORT to local log

5. Send VOTE_COMMIT or VOTE_ABORT to coordinator

Phase 2

• Case 1: receive VOTE_ABORT or timeout

• Write GLOBAL_ABORT to log

• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all

• Write GLOBAL_COMMIT to log

• send GLOBAL_COMMIT to participants

• Participants recv decision, write GLOBAL_* to log

• What if participant crashes at X?
• Coordinator crashes at Y?
• Participant crashes at Z?
• Coordinator crashes at W?

Z

X
Y

W



2PC limitation(s)
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2PC limitation(s)

• Coordinator crashes at W, never wakes up

• All nodes block forever!

• Can participants ask each other what happened?

• 2PC: always has risk of indefinite blocking

• Solution: (yes) 3 phase commit!
• Reliable replacement of crashed “leader”

• 2PC often good enough in practice



Questions?


