
Parallel Architectures
Parallel Algorithms

CUDA
Chris Rossbach

cs378h

Outline for Today

• Questions?

• Administrivia

• pedagogical-* machines should be available

• Agenda

• Parallel Algorithms

• CUDA

• Acknowledgements:
http://developer.download.nvidia.com/compute/develo
pertrainingmaterials/presentations/cuda_language/Intro
duction_to_CUDA_C.pptx

2

Faux Quiz Questions

• What is a reduction? A prefix sum? Why are they hard to parallelize and what basic techniques
can be used to parallelize them?

• Define flow dependence, output dependence, and anti-dependence: give an example of each.
Why/how do compilers use them to detect loop-independent vs loop-carried dependences?

• What is the difference between a thread-block and a warp?

• How/Why must programmers copy data back and forth to a GPU?

• What is “shared memory” in CUDA? Describe a setting in which it might be useful.

• CUDA kernels have implicit barrier synchronization. Why is __syncthreads() necessary in light of
this fact?

• How might one implement locks on a GPU?

• What ordering guarantees does a GPU provide across different hardware threads’ access to a
single memory location? To two disjoint locations?

• When is it safe for one GPU thread to wait (e.g. by spinning) for another?

3

Review: what is a vector processor?

4

Review: what is a vector processor?

4

Review: what is a vector processor?
Dont decode same instruction

over and over…

4

Review: what is a vector processor?

4

Review: what is a vector processor?

4

Review: what is a vector processor?

Implementation:

• Instruction fetch control logic shared

• Same instruction stream executed on

• Multiple pipelines

• Multiple different operands in parallel

4

Review: what is a vector processor?

Implementation:

• Instruction fetch control logic shared

• Same instruction stream executed on

• Multiple pipelines

• Multiple different operands in parallel

4

When does vector processing help?

When does vector processing help?

What are the potential bottlenecks here?
When can it improve throughput?

When does vector processing help?

What are the potential bottlenecks here?
When can it improve throughput?

Only helps if memory can keep the pipeline busy!

Hardware multi-threading

Hardware multi-threading

• Address memory bottleneck

Hardware multi-threading

• Address memory bottleneck

• Share exec unit across
• Instruction streams

• Switch on stalls

Hardware multi-threading

• Address memory bottleneck

• Share exec unit across
• Instruction streams

• Switch on stalls

Hardware multi-threading

• Address memory bottleneck

• Share exec unit across
• Instruction streams

• Switch on stalls

Hardware multi-threading

• Address memory bottleneck

• Share exec unit across
• Instruction streams

• Switch on stalls

• Looks like multiple cores to the OS

Hardware multi-threading

• Address memory bottleneck

• Share exec unit across
• Instruction streams

• Switch on stalls

• Looks like multiple cores to the OS

• Three variants:
• Coarse

• Fine-grain

• Simultaneous

Running example

Thread A Thread B Thread C Thread D

• Colors → pipeline full
• White → stall

Coarse- grained multithreading

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

• Another thread starts during stall
• Pipeline fill time requires several cycles!

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

• Another thread starts during stall
• Pipeline fill time requires several cycles!

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

• Another thread starts during stall
• Pipeline fill time requires several cycles!

• Hardware support required
• PC and register file for each thread

• Looks like another physical CPU to
OS/software

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

• Another thread starts during stall
• Pipeline fill time requires several cycles!

• Hardware support required
• PC and register file for each thread

• Looks like another physical CPU to
OS/software

Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

• Another thread starts during stall
• Pipeline fill time requires several cycles!

• Hardware support required
• PC and register file for each thread

• Looks like another physical CPU to
OS/software

Pros? Cons?

Fine-grained multithreading

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

• Hardware support required
• Separate PC and register file per thread

• Hardware to control alternating pattern

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

• Hardware support required
• Separate PC and register file per thread

• Hardware to control alternating pattern

• Naturally hides delays
• Data hazards, Cache misses

• Pipeline runs with rare stalls

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

• Hardware support required
• Separate PC and register file per thread

• Hardware to control alternating pattern

• Naturally hides delays
• Data hazards, Cache misses

• Pipeline runs with rare stalls

Fine-grained multithreading

• Threads interleave instructions
• Round-robin

• Skip stalled threads

• Hardware support required
• Separate PC and register file per thread

• Hardware to control alternating pattern

• Naturally hides delays
• Data hazards, Cache misses

• Pipeline runs with rare stalls

Pros? Cons?

Simultaneous Multithreading (SMT)

Simultaneous Multithreading (SMT)
• Instructions from multiple threads

issued on same cycle
• Uses register renaming

• dynamic scheduling facility of multi-
issue architecture

Simultaneous Multithreading (SMT)
• Instructions from multiple threads

issued on same cycle
• Uses register renaming

• dynamic scheduling facility of multi-
issue architecture

Skip A

Skip C

Simultaneous Multithreading (SMT)
• Instructions from multiple threads

issued on same cycle
• Uses register renaming

• dynamic scheduling facility of multi-
issue architecture

• Hardware support:
• Register files, PCs per thread

• Temporary result registers pre commit

• Support to sort out which threads get
results from which instructions

Skip A

Skip C

Simultaneous Multithreading (SMT)
• Instructions from multiple threads

issued on same cycle
• Uses register renaming

• dynamic scheduling facility of multi-
issue architecture

• Hardware support:
• Register files, PCs per thread

• Temporary result registers pre commit

• Support to sort out which threads get
results from which instructions

Skip A

Skip C

Simultaneous Multithreading (SMT)
• Instructions from multiple threads

issued on same cycle
• Uses register renaming

• dynamic scheduling facility of multi-
issue architecture

• Hardware support:
• Register files, PCs per thread

• Temporary result registers pre commit

• Support to sort out which threads get
results from which instructions

Skip A

Skip C

Pros? Cons?

Why Vector and Multithreading Background?

Why Vector and Multithreading Background?

GPU:

• A very wide vector machine

• Massively multi-threaded to hide memory latency

• Originally designed for graphics pipelines…

Graphics ~= Rendering

123/4/2021

Graphics ~= Rendering

Inputs

123/4/2021

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures →

geometry

123/4/2021

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures →

geometry

• Light locations and properties
• Attempt to model surtface/light interactions with

modeled objects/materials

123/4/2021

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures →

geometry

• Light locations and properties
• Attempt to model surtface/light interactions with

modeled objects/materials

• View point

123/4/2021

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures →

geometry

• Light locations and properties
• Attempt to model surtface/light interactions with

modeled objects/materials

• View point

Output

123/4/2021

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures →

geometry

• Light locations and properties
• Attempt to model surtface/light interactions with

modeled objects/materials

• View point

Output
• 2D projection seen from the view-point

123/4/2021

Graphics ~= Rendering

Inputs
• 3D world model(objects, materials)

• Geometry modeled w triangle meshes, surface normals
• GPUs subdivide triangles into “fragments” (rasterization)
• Materials modeled with “textures”
• Texture coordinates, sampling “map” textures →

geometry

• Light locations and properties
• Attempt to model surtface/light interactions with

modeled objects/materials

• View point

Output
• 2D projection seen from the view-point

123/4/2021

Grossly over-simplified rendering algorithm

Dandelion 133/4/2021

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

Dandelion 133/4/2021

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel→ vview

Dandelion 133/4/2021

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel→ vview

Dandelion 133/4/2021

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

Dandelion 133/4/2021

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

Dandelion 133/4/2021

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

Dandelion 133/4/2021

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

Dandelion 133/4/2021

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

Dandelion 133/4/2021

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));

Dandelion 133/4/2021

Grossly over-simplified rendering algorithm

foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));

Dandelion 133/4/2021

http://caig.cs.nctu.edu.tw/course/CG2007/images/ex2_phong.jpg

Algorithm → Graphics Pipeline
foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));

Dandelion 14

OpenGL pipeline

To first order, DirectX looks the same!

3/4/2021

Algorithm → Graphics Pipeline
foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));

Dandelion 14

OpenGL pipeline

To first order, DirectX looks the same!

3/4/2021

Algorithm → Graphics Pipeline
foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));

Dandelion 14

OpenGL pipeline

To first order, DirectX looks the same!

3/4/2021

Algorithm → Graphics Pipeline
foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));

Dandelion 14

OpenGL pipeline

To first order, DirectX looks the same!

3/4/2021

Algorithm → Graphics Pipeline
foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2)

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));

Dandelion 14

OpenGL pipeline

To first order, DirectX looks the same!

3/4/2021

Graphics pipeline → GPU architecture

Dandelion 15

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series

3/4/2021

Graphics pipeline → GPU architecture

Dandelion 15

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series

3/4/2021

Graphics pipeline → GPU architecture

Dandelion 15

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series

3/4/2021

Graphics pipeline → GPU architecture

Dandelion 15

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series

3/4/2021

Graphics pipeline → GPU architecture

Dandelion 15

Limited “programmability” of shaders:
Minimal/no control flow
Maximum instruction count

GeForce 6 series

3/4/2021

Late Modernity: unified shaders

Dandelion 16

Mapping to Graphics pipeline no longer apparent
Processing elements no longer specialized to a particular role
Model supports real control flow, larger instr count3/4/2021

Mostly Modern: Pascal

Definitely Modern: Turing

• Simple cores

• Single instruction stream
• Vector instructions (SIMD) OR

• Implicit HW-managed sharing
(SIMT)

• Hide memory latency with
HW multi-threading

Cross-generational GPU observations

GPUs designed for parallelism in
graphics pipeline:
• Data

• Per-vertex
• Per-fragment
• Per-pixel

• Task
• Vertex processing
• Fragment processing
• Rasterization
• Hidden-surface elimination

• MLP
• HW multi-threading for hiding memory

latency

Dandelion 203/4/2021

• Simple cores

• Single instruction stream
• Vector instructions (SIMD) OR

• Implicit HW-managed sharing
(SIMT)

• Hide memory latency with
HW multi-threading

Cross-generational GPU observations

GPUs designed for parallelism in
graphics pipeline:
• Data

• Per-vertex
• Per-fragment
• Per-pixel

• Task
• Vertex processing
• Fragment processing
• Rasterization
• Hidden-surface elimination

• MLP
• HW multi-threading for hiding memory

latency

Dandelion 20

Even as GPU architectures become more
general, certain assumptions persist:
1. Data parallelism is trivially exposed
2. All problems look like painting a box

with colored dots

3/4/2021

• Simple cores

• Single instruction stream
• Vector instructions (SIMD) OR

• Implicit HW-managed sharing
(SIMT)

• Hide memory latency with
HW multi-threading

Cross-generational GPU observations

GPUs designed for parallelism in
graphics pipeline:
• Data

• Per-vertex
• Per-fragment
• Per-pixel

• Task
• Vertex processing
• Fragment processing
• Rasterization
• Hidden-surface elimination

• MLP
• HW multi-threading for hiding memory

latency

Dandelion 20

Even as GPU architectures become more
general, certain assumptions persist:
1. Data parallelism is trivially exposed
2. All problems look like painting a box

with colored dots

But what if my problem isn’t
painting a box?!!?!

3/4/2021

Programming Model

• GPUs are I/O devices, managed by user-code

• “kernels” == “shader programs”

• 1000s of HW-scheduled threads per kernel

• Threads grouped into independent blocks.
• Threads in a block can synchronize (barrier)

• This is the *only* synchronization

• “Grid” == “launch” == “invocation” of a kernel
• a group of blocks (or warps)

213/4/2021

Programming Model

• GPUs are I/O devices, managed by user-code

• “kernels” == “shader programs”

• 1000s of HW-scheduled threads per kernel

• Threads grouped into independent blocks.
• Threads in a block can synchronize (barrier)

• This is the *only* synchronization

• “Grid” == “launch” == “invocation” of a kernel
• a group of blocks (or warps)

213/4/2021

Need codes that are 1000s-X
parallel….

Parallel Algorithms

• Sequential algorithms often do not permit easy parallelization
• Does not mean there work has no parallelism
• A different approach can yield parallelism
• but often changes the algorithm
• Parallelizing != just adding locks to a sequential algorithm

• Parallel Patterns
• Map
• Scatter, Gather
• Reduction
• Scan
• Search, Sort

Parallel Algorithms

• Sequential algorithms often do not permit easy parallelization
• Does not mean there work has no parallelism
• A different approach can yield parallelism
• but often changes the algorithm
• Parallelizing != just adding locks to a sequential algorithm

• Parallel Patterns
• Map
• Scatter, Gather
• Reduction
• Scan
• Search, Sort

If you can express your
algorithm using these patterns,

an apparently fundamentally
sequential algorithm can be

made parallel

Map

• Inputs
• Array A

• Function f(x)

• map(A, f) → apply f(x) on all elements in A

• Parallelism trivially exposed
• f(x) can be applied in parallel to all elements, in principle

Map

• Inputs
• Array A

• Function f(x)

• map(A, f) → apply f(x) on all elements in A

• Parallelism trivially exposed
• f(x) can be applied in parallel to all elements, in principle

for(i=0; i<numPoints; i++) {
labels[i] = findNearestCenter(points[i]);

}

map(points, findNearestCenter)

Scatter and Gather

24

Scatter and Gather

• Gather:
• Read multiple items to single /packed location

24

Scatter and Gather

• Gather:
• Read multiple items to single /packed location

• Scatter:
• Write single/packed data item to multiple locations

24

Scatter and Gather

• Gather:
• Read multiple items to single /packed location

• Scatter:
• Write single/packed data item to multiple locations

• Inputs: x, y, indeces, N

24

Scatter and Gather

• Gather:
• Read multiple items to single /packed location

• Scatter:
• Write single/packed data item to multiple locations

• Inputs: x, y, indeces, N

for (i=0; i<N; ++i)
x[i] = y[idx[i]];

for (i=0; i<N; ++i)
y[idx[i]] = x[i];

gather(x, y, idx)

scatter(x, y, idx)

24

Scatter and Gather

• Gather:
• Read multiple items to single /packed location

• Scatter:
• Write single/packed data item to multiple locations

• Inputs: x, y, indeces, N

for (i=0; i<N; ++i)
x[i] = y[idx[i]];

for (i=0; i<N; ++i)
y[idx[i]] = x[i];

gather(x, y, idx)

scatter(x, y, idx)

24

Scatter and Gather

• Gather:
• Read multiple items to single /packed location

• Scatter:
• Write single/packed data item to multiple locations

• Inputs: x, y, indeces, N

for (i=0; i<N; ++i)
x[i] = y[idx[i]];

for (i=0; i<N; ++i)
y[idx[i]] = x[i];

gather(x, y, idx)

scatter(x, y, idx)

Why is this useful on
a box-drawing

machine?

24

Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

for(i=0; i<N; ++i) {
accum += (point[i]*point[i])

}
accum = reduce(*, point)

Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

for(i=0; i<N; ++i) {
accum += (point[i]*point[i])

}
accum = reduce(*, point)

Why must op be associative?

Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

for(i=0; i<N; ++i) {
accum += (point[i]*point[i])

}
accum = reduce(*, point)

Why must op be associative?

Scan (prefix sum)

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Identity I

• scan(op, s) = [I, a, (a op b), (a op b op c) …]

• Scan is the workhorse of parallel algorithms:
• Sort, histograms, sparse matrix, string compare, …

GroupBy
• Group a collection by key

• Lambda function maps elements → key

29

GroupBy
• Group a collection by key

• Lambda function maps elements → key

var res = ints.GroupBy(x => x);

29

GroupBy
• Group a collection by key

• Lambda function maps elements → key

var res = ints.GroupBy(x => x);

10 30 20 10 20 30 10

29

GroupBy
• Group a collection by key

• Lambda function maps elements → key

var res = ints.GroupBy(x => x);

10 30 20 10 20 30 10

101010 202030 30

29

GroupBy
• Group a collection by key

• Lambda function maps elements → key

var res = ints.GroupBy(x => x);

10 30 20 10 20 30 10

101010 202030 30

foreach(T elem in ints)

{

key = KeyLambda(elem);

group = GetGroup(key);

group.Add(elem);

}

29

GroupBy
• Group a collection by key

• Lambda function maps elements → key

var res = ints.GroupBy(x => x);

10 30 20 10 20 30 10

101010 202030 30

foreach(T elem in ints)

{

key = KeyLambda(elem);

group = GetGroup(key);

group.Add(elem);

}

foreach(T elem in PF(ints))

{

key = KeyLambda(elem);

group = GetGroup(key);

group.Add(elem);

}

29

GroupBy using parallel primitives

10 30 20 10 20 30 10

30

GroupBy using parallel primitives

10 30 20 10 20 30 10

30

GroupBy using parallel primitives

10 30 20 10 20 30 10

Assign group IDs

0 1 2

10 20 30

Group ID :

30

GroupBy using parallel primitives

10 30 20 10 20 30 10

Assign group IDs

Compute group sizes

0 1 2

10 20 30

Group ID :

0 1 2

10 20 30

3 2 2

Group ID :

Group Size :

30

GroupBy using parallel primitives

10 30 20 10 20 30 10

Assign group IDs

Compute group sizes

0 1 2

10 20 30

Group ID :

0 1 2

10 20 30

3 2 2

Group ID :

Group Size :

Compute start indices

0 1 2

10 20 30

0 3 5

Group ID :

Group Start Index :

30

GroupBy using parallel primitives

10 30 20 10 20 30 10

Assign group IDs

Compute group sizes

0 1 2

10 20 30

Group ID :

0 1 2

10 20 30

3 2 2

Group ID :

Group Size :

Compute start indices

0 1 2

10 20 30

0 3 5

Group ID :

Group Start Index :

Write Outputs

10 302010 20 3010

30

GroupBy using parallel primitives

Sorting or hashing
10 30 20 10 20 30 10

Assign group IDs

Compute group sizes

0 1 2

10 20 30

Group ID :

0 1 2

10 20 30

3 2 2

Group ID :

Group Size :

Compute start indices

0 1 2

10 20 30

0 3 5

Group ID :

Group Start Index :

Write Outputs

10 302010 20 3010

30

GroupBy using parallel primitives

Sorting or hashing
10 30 20 10 20 30 10

Assign group IDs

Compute group sizes

0 1 2

10 20 30

Group ID :

0 1 2

10 20 30

3 2 2

Group ID :

Group Size :

Compute start indices

0 1 2

10 20 30

0 3 5

Group ID :

Group Start Index :

Write Outputs

10 302010 20 3010

Hash table lookup: group ID

-- Uses atomic increment

30

GroupBy using parallel primitives

Sorting or hashing
10 30 20 10 20 30 10

Assign group IDs

Compute group sizes

0 1 2

10 20 30

Group ID :

0 1 2

10 20 30

3 2 2

Group ID :

Group Size :

Compute start indices

0 1 2

10 20 30

0 3 5

Group ID :

Group Start Index :

Write Outputs

10 302010 20 3010

Hash table lookup: group ID

-- Uses atomic increment

prefix sum of group sizes

30

GroupBy using parallel primitives

Sorting or hashing
10 30 20 10 20 30 10

Assign group IDs

Compute group sizes

0 1 2

10 20 30

Group ID :

0 1 2

10 20 30

3 2 2

Group ID :

Group Size :

Compute start indices

0 1 2

10 20 30

0 3 5

Group ID :

Group Start Index :

Write Outputs

10 302010 20 3010

Hash table lookup: group ID

-- Uses atomic increment

prefix sum of group sizes

Write to output location
– Uses atomic increment
– Scatter gather

30

