
Parallel Architectures
Parallel Algorithms

CUDA
Chris Rossbach

cs378h



Outline for Today

• Questions?

• Administrivia 

• pedagogical-* machines should be available

• Agenda

• Parallel Algorithms

• CUDA

• Acknowledgements: 
http://developer.download.nvidia.com/compute/develo
pertrainingmaterials/presentations/cuda_language/Intro
duction_to_CUDA_C.pptx
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Faux Quiz Questions

• What is a reduction? A prefix sum? Why are they hard to parallelize and what basic techniques 
can be used to parallelize them?

• Define flow dependence, output dependence, and anti-dependence: give an example of each. 
Why/how do compilers use them to detect loop-independent vs loop-carried dependences?

• What is the difference between a thread-block and a warp? 

• How/Why must programmers copy data back and forth to a GPU?

• What is “shared memory” in CUDA? Describe a setting in which it might be useful.

• CUDA kernels have implicit barrier synchronization. Why is __syncthreads() necessary in light of 
this fact? 

• How might one implement locks on a GPU?

• What ordering guarantees does a GPU provide across different hardware threads’ access to a 
single memory location? To two disjoint locations?

• When is it safe for one GPU thread to wait (e.g. by spinning) for another? 
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When does vector processing help?

What are the potential bottlenecks here?
When can it improve throughput? 

Only helps if memory can keep the pipeline busy!
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Hardware multi-threading

• Address memory bottleneck

• Share exec unit across 
• Instruction streams

• Switch on stalls

• Looks like multiple cores to the OS

• Three variants:
• Coarse

• Fine-grain

• Simultaneous



Running example

Thread A Thread B Thread C Thread D

• Colors → pipeline full
• White → stall
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Coarse- grained multithreading

• Single thread runs until a costly stall
• E.g. 2nd level cache miss

• Another thread starts during stall
• Pipeline fill time requires several cycles!

• Hardware support required
• PC and register file for each thread 

• Looks like another physical CPU to 
OS/software

Pros? Cons?
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issue architecture
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Skip C
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Why Vector and Multithreading Background?

GPU: 

• A very wide vector machine

• Massively multi-threaded to hide memory latency

• Originally designed for graphics pipelines…
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http://caig.cs.nctu.edu.tw/course/CG2007/images/ex2_phong.jpg


Algorithm → Graphics Pipeline
foreach(vertex v in model)

map vmodel→ vview

fragment[] frags = {};

foreach triangle t (v0, v1, v2) 

frags.add(rasterize(t));

foreach fragment f in frags

choose_color(f);

display(visible_fragments(frags));

Dandelion 14

OpenGL pipeline

To first order, DirectX looks the same!
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Graphics pipeline → GPU architecture
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Late Modernity: unified shaders

Dandelion 16

Mapping to Graphics pipeline no longer apparent
Processing elements no longer specialized to a particular role
Model supports real control flow, larger instr count3/4/2021



Mostly Modern: Pascal



Definitely Modern: Turing



• Simple cores

• Single instruction stream
• Vector instructions (SIMD) OR

• Implicit HW-managed sharing 
(SIMT)

• Hide memory latency with 
HW multi-threading

Cross-generational GPU observations

GPUs designed for parallelism in 
graphics pipeline:
• Data

• Per-vertex
• Per-fragment
• Per-pixel

• Task
• Vertex processing
• Fragment processing
• Rasterization
• Hidden-surface elimination

• MLP
• HW multi-threading for hiding memory 

latency
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• Simple cores

• Single instruction stream
• Vector instructions (SIMD) OR
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(SIMT)

• Hide memory latency with 
HW multi-threading

Cross-generational GPU observations

GPUs designed for parallelism in 
graphics pipeline:
• Data

• Per-vertex
• Per-fragment
• Per-pixel

• Task
• Vertex processing
• Fragment processing
• Rasterization
• Hidden-surface elimination

• MLP
• HW multi-threading for hiding memory 

latency

Dandelion 20

Even as GPU architectures become more 
general, certain assumptions persist:
1. Data parallelism is trivially exposed
2. All problems look like painting a box 

with colored dots

But what if my problem isn’t 
painting a box?!!?!
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Programming Model

• GPUs are I/O devices, managed by user-code

• “kernels” == “shader programs”

• 1000s of HW-scheduled threads per kernel

• Threads grouped into independent blocks.
• Threads in a block can synchronize (barrier)

• This is the *only* synchronization

• “Grid” == “launch” == “invocation” of a kernel 
• a group of blocks (or warps)
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Need codes that are 1000s-X 
parallel….
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• Does not mean there work has no parallelism
• A different approach can yield parallelism
• but often changes the algorithm 
• Parallelizing != just adding locks to a sequential algorithm

• Parallel Patterns
• Map
• Scatter, Gather
• Reduction
• Scan
• Search, Sort

If you can express your 
algorithm using these  patterns, 

an apparently fundamentally 
sequential algorithm can be 

made parallel
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Map

• Inputs
• Array A

• Function f(x)

• map(A, f) → apply f(x) on all elements in A

• Parallelism trivially exposed
• f(x) can be applied in parallel to all elements, in principle

for(i=0; i<numPoints; i++) {
labels[i] = findNearestCenter(points[i]);

}

map(points, findNearestCenter)



Scatter and Gather
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Scatter and Gather

• Gather:
• Read multiple items to single /packed location

• Scatter:
• Write single/packed data item to multiple locations

• Inputs: x, y, indeces, N

for (i=0; i<N; ++i)
x[i] = y[idx[i]];

for (i=0; i<N; ++i)
y[idx[i]] = x[i];

gather(x, y, idx)

scatter(x, y, idx)

Why is this useful on 
a box-drawing 

machine?

24



Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z



Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

for(i=0; i<N; ++i) {
accum += (point[i]*point[i])

}
accum = reduce(*, point)



Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

for(i=0; i<N; ++i) {
accum += (point[i]*point[i])

}
accum = reduce(*, point)

Why must op be associative?



Reduce

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Reduce(op, s) returns a op b op c … op z

for(i=0; i<N; ++i) {
accum += (point[i]*point[i])

}
accum = reduce(*, point)

Why must op be associative?



Scan (prefix sum)

• Input
• Associative operator op

• Ordered set s = [a, b, c, … z]

• Identity I

• scan(op, s) = [I, a, (a op b), (a op b op c) …]

• Scan is the workhorse of parallel algorithms:
• Sort, histograms, sparse matrix, string compare, … 
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foreach(T elem in ints)

{

key   = KeyLambda(elem);

group = GetGroup(key); 

group.Add(elem);
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GroupBy
• Group a collection by key

• Lambda function maps elements → key

var res = ints.GroupBy(x => x);

10 30 20 10 20 30 10

101010 202030 30

foreach(T elem in ints)

{

key   = KeyLambda(elem);

group = GetGroup(key); 

group.Add(elem);

}

foreach(T elem in PF(ints))

{

key   = KeyLambda(elem);

group = GetGroup(key); 

group.Add(elem);

}
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GroupBy using parallel primitives

Sorting or hashing
10 30 20 10 20 30 10

Assign group IDs

Compute group sizes

0 1 2

10 20 30

Group ID :

0 1 2

10 20 30

3 2 2

Group ID :

Group Size :

Compute start indices

0 1 2

10 20 30

0 3 5

Group ID :

Group Start Index :

Write Outputs

10 302010 20 3010

Hash table lookup: group ID

-- Uses atomic increment

prefix sum of group sizes

Write to output location
– Uses atomic increment
– Scatter gather
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