
cs378h

Programming at Fast Scale:
Consistency + Lock Freedom

Today

Questions?

Administrivia

• Project Proposal Due Today!

Agenda:

• Consistency

• Lock Freedom

Faux Quiz Questions

• What is the CAP theorem? What does “PACELP” stand for and how does it relate to CAP?

• What is the difference between ACID and BASE?

• Why do NoSQL systems claim to be more horizontally scalable than RDMBSes? List some features NoSQL systems give up toward this goal?

• What is eventual consistency? Give a concrete example of how of why it causes a complex programming model (relative to a strongly consistent
model).

• Compare and contrast Key-Value, Document, and Wide-column Stores

• Define and contrast the following consistency properties:
• strong consistency, eventual consistency, consistent prefix, monotonic reads, read-my-writes, bounded staleness

• What is causal consistency?

• What is chain replication?

• What is obstruction freedom, wait freedom, lock freedom?

• How can one compose lock free data structures?

• Why should I want a lock free hash table instead of a fine-grain lock-based one?

• What is the difference between linearizability and strong consistency? Between linearizability and serializability?

• What is the ABA problem? Give an example.

• How do lock-free data structures deal with the “inconsistent view” problem?

Another Framework

4

Another Framework

4

Consistency

Another Framework

4

D
a

ta
M

o
d

el

Consistency

Another Framework

4

D
a

ta
M

o
d

el

Consistency

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

• Atomicity
• Consistency
• Isolation
• Durability

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

• Basically Available
• Soft State
• Eventually Consistent

• Atomicity
• Consistency
• Isolation
• Durability

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Key Value Stores

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Key Value Stores

Document Stores

Wide-Column Stores

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Key Value Stores

Document Stores

Wide-Column Stores

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Wide-Column Stores

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Wide-Column Stores

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Wide-Column Stores

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

• Shared-Disk
• Range-Sharding
• Hash-Sharding
• Consistent Hashing

Wide-Column Stores

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

• Primary-Backup
• Commit-Consensus

Protocol
• Sync/Async

Wide-Column Stores

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

• Logging
• Update In Place
• Caching
• In-Memory Storage

Wide-Column Stores

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support
• Secondary Indexing
• Query Planning
• Materialized Views
• Analytics

Wide-Column Stores

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Wide-Column Stores

Another Framework

4

Strong: ACID Eventual: BASE

D
a

ta
M

o
d

el

Consistency

Sharding/Partitioning

Key Value Stores

Document Stores

Replication

Storage

Query Support

Still not a perfect framework

Cons:

● Many dimensions contain sub-dimensions

● Many concerns fundamentally coupled

● Dimensions are often un- or partially-ordered

Pros:

• Makes important concerns explicit

• Cleanly taxonomizes most modern systems

Consistency

Consistency

How to keep data in sync?

Consistency

How to keep data in sync?

• Partitioning → single row spread over multiple machines

Consistency

How to keep data in sync?

• Partitioning → single row spread over multiple machines

Consistency

Partitions

How to keep data in sync?

• Partitioning → single row spread over multiple machines

Consistency

Partitions

How to keep data in sync?

• Partitioning → single row spread over multiple machines

• Redundancy → single datum spread over multiple machines

Consistency

Partitions

How to keep data in sync?

• Partitioning → single row spread over multiple machines

• Redundancy → single datum spread over multiple machines

Consistency

Partitions

How to keep data in sync?

• Partitioning → single row spread over multiple machines

• Redundancy → single datum spread over multiple machines

Consistency: the core problem

R1 R2
writer reader

Write(k,v) Read(k,v)

Consistency: the core problem

• Clients perform reads and writes

R1 R2
writer reader

Write(k,v) Read(k,v)

Consistency: the core problem

• Clients perform reads and writes

• Data is replicated among a set of servers

R1 R2
writer reader

Write(k,v) Read(k,v)

Consistency: the core problem

• Clients perform reads and writes

• Data is replicated among a set of servers

• Writes must be performed at all servers

R1 R2
writer reader

Write(k,v) Read(k,v)

Consistency: the core problem

• Clients perform reads and writes

• Data is replicated among a set of servers

• Writes must be performed at all servers

• Reads return the result of one or more past writes

R1 R2
writer reader

Write(k,v) Read(k,v)

Consistency: the core problem

• Clients perform reads and writes

• Data is replicated among a set of servers

• Writes must be performed at all servers

• Reads return the result of one or more past writes

R1 R2
writer reader

Write(k,v) Read(k,v)

• How should we implement write?

Consistency: the core problem

• Clients perform reads and writes

• Data is replicated among a set of servers

• Writes must be performed at all servers

• Reads return the result of one or more past writes

R1 R2
writer reader

Write(k,v) Read(k,v)

• How should we implement write?
• How to implement read?

Consistency: CAP Theorem

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

•Reads/writes complete reliably and quickly.
•E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

•Reads/writes complete reliably and quickly.
•E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

•Reads/writes complete reliably and quickly.
•E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

•Reads/writes complete reliably and quickly.
•E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

•Reads/writes complete reliably and quickly.
•E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

•Reads/writes complete reliably and quickly.
•E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

if(partition) { keep going } → !consistent && available

Consistency: CAP Theorem

• A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

• all nodes see same data at any time

• or reads return latest written value by any client

2. Availability:
• system allows operations all the time,

• and operations return quickly

3. Partition-tolerance:
• system continues to work in spite of network partitions

Why care about CAP Properties?
Availability

•Reads/writes complete reliably and quickly.
•E.g. Amazon, each ms latency → $6M yearly loss.

Partitions
• Internet router outages
• Under-sea cables cut
• rack switch outage
• system should continue functioning normally!

Consistency
• all nodes see same data at any time, or reads return latest

written value by any client.
• This basically means correctness!

Why is this “theorem” true?

if(partition) { keep going } → !consistent && available
if(partition) { stop } → consistent && !available

CAP Implications

• A distributed storage
system can achieve at
most two of C, A, and P.

• When partition-
tolerance is important,
you have to choose
between consistency and
availability

Consistency

Partition-tolerance Availability

RDBMSs

(non-replicated)

Cassandra, RIAK,

Dynamo, Voldemort

HBase, HyperTable,

BigTable, Spanner

CAP Implications

• A distributed storage
system can achieve at
most two of C, A, and P.

• When partition-
tolerance is important,
you have to choose
between consistency and
availability

Consistency

Partition-tolerance Availability

RDBMSs

(non-replicated)

Cassandra, RIAK,

Dynamo, Voldemort

HBase, HyperTable,

BigTable, Spanner

CAP is
flawed

CAP Implications

• A distributed storage
system can achieve at
most two of C, A, and P.

• When partition-
tolerance is important,
you have to choose
between consistency and
availability

Consistency

Partition-tolerance Availability

RDBMSs

(non-replicated)

Cassandra, RIAK,

Dynamo, Voldemort

HBase, HyperTable,

BigTable, Spanner

PACELC:

if(partition) {
choose A or C

} else {
choose latency or consistency

}

CAP is
flawed

Consistency Spectrum

Strong

(e.g., Sequential)Eventual
More consistency

Faster reads and writes

Spectrum Ends: Eventual Consistency

• Eventual Consistency
• If writes to a key stop, all replicas of key will converge

• Originally from Amazon’s Dynamo and LinkedIn’s Voldemort systems

Strong

(e.g., Sequential)Eventual
More consistency

Faster reads and writes

Spectrum Ends: Strong Consistency

• Strict:
• Absolute time ordering of all shared accesses, reads always return last write

• Linearizability:
• Each operation is visible (or available) to all other clients in real-time order

• Sequential Consistency [Lamport]:
• "... the result of any execution is the same as if the operations of all the processors

were executed in some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its program.

• After the fact, find a “reasonable” ordering of the operations (can re-order operations)
that obeys sanity (consistency) at all clients, and across clients.

• ACID properties

Many Many Consistency Models

Eventual
Strong

(e.g., Sequential, Strict)

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Many Many Consistency Models

Eventual
Strong

(e.g., Sequential, Strict)

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

• Amazon S3 – eventual consistency

• Amazon Simple DB – eventual or strong

• Google App Engine – strong or eventual

• Yahoo! PNUTS – eventual or strong

• Windows Azure Storage – strong (or eventual)

• Cassandra – eventual or strong (if R+W > N)

• ...

Many Many Consistency Models

Eventual
Strong

(e.g., Sequential, Strict)

Causal
Red-Blue

CRDTs
Per-key sequential

Probabilistic

Question: How to choose what
to use or support?

• Amazon S3 – eventual consistency

• Amazon Simple DB – eventual or strong

• Google App Engine – strong or eventual

• Yahoo! PNUTS – eventual or strong

• Windows Azure Storage – strong (or eventual)

• Cassandra – eventual or strong (if R+W > N)

• ...

Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

A D F

D A A

C B A

B C D

C B B

C C C

Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

A D F

D A A

C B A

B C D

C B B

C C C

Some Consistency Guarantees

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

A D F

D A A

C B A

B C D

C B B

C C C

Strong

RMWMonotonicBoundedPrefix

Eventual

metric =
set of
allowable
read
results

strength

