End-of-semester Review
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Outline/Administrivia

e Questions?

e Review

* Can someone please act as scribe?

* Requested review content:

* GPUs: SIMT vs SIMD, schedulers, limitations on threads/blocks and num blocks,
divergence, sharing global memory

* FPGAs/Verilog: CLB, BRAM, and LUT

* MPI, distributed systems, shared nothing architectures, PGAS
* Distributed systems (like CAP and NoSQL)

* Consistency guarantees?

* Linearizability vs. Serializability



Review: what is a vector processor?

# C code
for (i=0; i<64; i++)
C[i] = A[i] + B[1i]:;

# Scalar Code
LI R4, 64
loop:
L.D FO, O0(R1)
L.D F2. 0(R2)
ADD.D F4, F2, FO
8.D F4, 0(R3)
DADDIU R1, 8
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop
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Review: what is a vector processor?

# C code
~- <\ B = 2 |foxr (i=0; i<64; i++)
g - C[i] = A[i] + B[i];

— —| # Scalar Code
‘_:’J LI R4, 64
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# C code
¥ for (i=0; i<64; i++) [# Vector Code
] Cli] = A[i] + BI[il: LI VIR, 64
# Scalar Code Lv vl, R1
LI R4, 64 LV V2, R2
loop: ADDV.D V3, V1, V2
L.D FO, O(R1) sV V3, R3
L.D F2, 0(R2)
ADD.D F4, F2, FO
= S.D F4, O0(R3)
¥ DADDIU R1, 8
B DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop
)




Review: what is a vector processor?

Implementation:

* Instruction fetch control logic shared
e Same instruction stream executed on
* Multiple pipelines

* Multiple different operands in parallel
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# C code
¥ for (i=0; i<64; i++) [# Vector Code
] Cli] = A[i] + BTil: LI VLR, 64
# Scalar Code Lv V1l, R1
s R4, 64 Ay V2, R2
loop: ADDV.D V3, V1, V2
L.D FO, O(R1) sV V3, R3

L.D F2, 0(R2)
ADD.D F4, F2, FO
S.D F4, 0(R3)
DADDIU R1, 8
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop
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Review: what is a vector proc
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" Scalar Registers Vecroa.-gisters
rM5———— v15
T Yoo [VLRMAX-1]
[63], [127], [255], ...
Vector Length Register VLR
Vector Arithmetic Vs Z
Instructions oo OO
ADDV v3,v1l,v2  y3c———————
Im S [01 [1] [VLR-1]
¢ Ir " Vector Load and Vector Register
Store Instructions M=
* S wvirn2 )
[ x T I b M T
\Y _ Base, r1 ' Stride, r2 emory

* Multiple different operands in parallel
# C code
for (i=0; i<64; i++) [# X(Iactor Code -
= . V|.R'
e e # Scalar Code Lv V1, R1
LI R4, 64 LV V2, R2
loop: ADDV.D V3, V1, V2
L.D FO, O(R1) sV V3, R3
L.D F2, 0(R2)
ADD.D F4, F2, FO
S.D F4, 0(R3)
DADDIU R1, 8
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop
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Hardware multi-threading

* Address memory bottleneck

i Share exec unit across
* |nstruction streams
e Switch on stalls
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* Address memory bottleneck

i Share exec unit across
* |nstruction streams
e Switch on stalls
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Hardware multi-threading

* Address memory bottleneck

i Share exec unit across
* |nstruction streams
e Switch on stalls

* Looks like multiple cores to the OS
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Hardware multi-threading

Thread 0

* Address memory bottleneck

i Share exec unit across
Instruction streams
e Switch on stalls

ks like multiple cores to the OS
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Hardware multi-threading

* Address memory bottleneck

i Share exec unit across
* |nstruction streams
witch on stalls

ks like multiple cores to the OS

ree variants:
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* Fine-grain
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SIMD vs. SIMT

Flynn Taxonomy

e.qg., SSE/AVX

Data Streams

SISD SIMD

Synchronous operation

MISD MIMD v v o e\
/ ______

¥

Instruction Streams

SIMT

Loosely synchronized threads
Multiple threads

—> | & & &

e.g., pthreads e.g., PTX, HSA
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PCI Express 3.0 Host Interface
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* Each SM has multiple vector units (4)
* 32 lanes wide = warp size
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* Each SM has multiple vector units (4)
* 32 lanes wide = warp size

* Vector units use hardware multi-threading



Review

* Each SM has multiple vector units (4)
* 32 lanes wide = warp size

* Vector units use hardware multi-threading

» Execution = a grid of thread blocks (TBs)
e Each TB has some number of threads



L1 Instruction Cache
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PCI Express 3.0 Host Interface
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GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kerne| @seSirreTs ey
* Enables device-specific online tuning of kernel parameterQlEeEEER Jebx:
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Hardware Resources Are Finite

l

Distributor ;

SM ;
Scheduler )

v v v v/

Occupancy:
* (#Active Warps) /(#MaximumActive Warps)

e Limits on the numerator:
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Hardware Resources Are Finite

Kernel ,’I Thread Block Control
Distributor A Limits the #thread blocks
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* Shared memory/thread block —
* Number of scheduling slots: blocks, warps Register File ]
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e Limits on the denominator:
* Memory bandwidth
e Scheduler slots

What is the performance impact of varying kernel resource demands?
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Impact of Thread Block Size

Example: v100:
* max active warps/SM == 64 (limit: warp context)
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Impact of Thread Block Size

Example: v100:
* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
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* With 512 threads/block how many blocks can execute (per SM) concurrently?
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Impact of Thread Block Size

Example: v100:

* max active warps/SM == 64 (limit: warp context)
* max active blocks/SM == 32 (limit: block control)
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* With 512 threads/block how many blocks can execute (per SM) concurrently?
* Max active warps * threads/warp = 64*32 = 2048 threads =

* With 128 threads/block? =

e Consider HW limit of 32 thread blocks/SM @ 32 threads/block:

* Blocks are maxed out, but max active threads = 32*32 = 1024

e Occupancy =.5(1024/2048)

 To maximize utilization, thread block size should balance

e Limits on active thread blocks vs.
* Limits on active warps

Limits the #threads

Limits the #thread blocks
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Registers/thread can limit number of active threads!
V100:

* Registers per thread max: 255
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Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!
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* What is the impact of increasing number of registers by 2?
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Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

* What is the impact of increasing number of registers by 2?
* Recall: granularity of management is a thread block!
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Registers/thread can limit number of active threads! e (e J5—
V100:

* Registers per thread max: 255
* 64K registers per SM
Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

* What is the impact of increasing number of registers by 2?
* Recall: granularity of management is a thread block!
e Loss of concurrency of 256 threads!
34 regs/thread * 256 threads/block * 7 blocks/SM = 60k registers,
8 blocks would over-subscribe register file
* Occupancy drops to .875!



Control Flow Divergence

 Performance concern with branching: divergence
 Threads within a single warp take different paths

* Different execution paths are serialized

 The control paths taken by the threads in a warp are traversed one at a
time until there is no more.

e Common case: branch condition is a function of thread ID

 Example with divergence:
e If (threadIdx.x > 2) { }
e This creates two different control paths for threads in a block

e Branch granularity < warp size; threads 0, 1 and 2 follow different path
than the rest of the threads in the first warp

 Example without divergence:
* If (threadIdx.x / WARP SIZE > 2) { }
e Also creates two different control paths for threads in a block

* Branch granularity is a whole multiple of warp size; all threads in any
given warp follow the same path
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FPGAs/Verilog

* CLB, BRAM, and LUT?

* CLB: combinational logic block

* BRAM: block random access memory
e LUT: lookup table

e Other questions?



Blocking vs Non-blocking Behavior

* A sequence of nonblocking assignments don’t communicate

a=1; a<=1;

b =a; b <=a;

c=b; c<=b;

Blocking assignment: Nonblocking assignment:
a=b=c=1 a=1

b = old value of a
c = old value of b
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What is NoSQL?

. Next Generation Compute/Storage engines (databases)
. non-relational

. distributed

- open-source

. horizontally scalable
. One view: “no” = elide SQL/database functionality to achieve scale

. Another view: “NoSQL” is actually misleading.

. more appropriate term is actually “Not Only SQL”
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. Next Generation Compute/Storage engines (databases)

. non-relational
. distributed

- open-source
P What NoSQL gives up in exchange for scale:

- horizontally scalable Relationships between entities are non-existent

. One view: “no” = elide SQL/da' Limited or no ACID transactions

No standard language for queries (SQL)

. Another view: “NoSQL”" is actua
Less structured

. more appropriate term is actually "Not Unly SQL"



What is NoSQL?

. Next Generation Compute/Storage engines (databases)
. non-relational
. distributed

- open-source
P What NoSQL gives up in exchange for scale:

- horizontally scalable Why talk about NoSQL in concurrency class?
. One view: “no” = elide SQL/da Principle

Most tradeoffs are a direct result of concurrency

. . V7
. Another view: “NoSQL” is actua Practice

. more appropriate term is actually “No RESQESyStemSaEibIGHIONE

Relevant aspects
scale/performance tradeoff space
Correctness/programmability tradeoff space
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Consistency

Clients perform reads and writes Partitions
Dat.a is replicated among a set of servers T e ——
Writes must be performed at all servers « consistency: no internal contradictions

Reads return the result of one or more past writ © Correct: higher-level property
How to keep datain sync? * Inconsistency = code does wrong things
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Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:
 system allows operations all the time, Why care about CAP Properties?

Availability
*Reads/writes complete reliably and quickly.

3. Partition-tolerance: *E.g. Amazon, each ms latency = S6M yearly loss.
Partitions

. Internet router outages

. Under-sea cables cut

. rack switch outage

. system should continue functioning normally!
Consistency
. all nodes see same data at any time, or reads return latest
written value by any client.
. This basically means correctness!

* and operations return quickly

e system continues to work in spite of netwo
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Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:

« system allows operations all the time, Why is this “theorem” true?
e and operations return quickly SO

3. Partition-tolerance:
e system continues to work in spite of netwo

Write(k,v)

Read(k,v)

‘ writer | ‘ reader ‘

| [

\
=
s f,

o o -

if(partition) { keep going } = !consistent && available
if(partition) { stop } 2 consistent && !available
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CAP Implications

PACELC:

if(partition) {

e Adistributed storage -
system can achieve at gonSIStency choose Aor C
} else {

most two of C, A, and P.
choose latency or consistency

}

* When partition-
tolerance is important,
you have to choose

between consistency and  HBase, HyperTable,
availability BigTable, Spanner

RDBMSs
(non-replicated)

CAP is
HEVYL

Partition-tolerance Availability

Cassandra, RIAK,
Dynamo, Voldemort
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* Eventual Consistency * Strict:
. . . » Absolute time ordering of all shared accesses, reads always return
* |If writes to a key stop, all replicas of key will last write
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operations) that obeys sanity (consistency) at all clients, and across clients.
* Eventually Consistent « ACID properties
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Eventual (e.g., Sequential)




Consistency Spectrum

* Eventual Consistency

* |If writes to a key stop, all replicas of key will
converge

* Originally from Amazon’s Dynamo and LinkedIn’s
Voldemort systems

BASE:
« Basically Available
e Soft State

* Eventually Consistent

Strict:

. ﬁb?olu’%e time ordering of all shared accesses, reads always return
ast write

Linearizability:

. Eaccj:h operation is visible (or available) to all other clients in real-time
order

Sequential Consistency [Lamport]:

. . the result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by
its program.

*  After the fact, find a “reasonable” ordering of the operations (can re-order
operations) that obeys sanity (consistency) at all clients, and across clients.

ACID properties

Eventual: BASE

Strong: ACID

Faster reads and writes

More consistency Strong
Eventual (e.g., Sequential)




Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a
P2 Wb P2. Wix)b
P3 R{x)b R(x)a P3: R(x)b R(x)a
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Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a

P2: Wx)b P2: Wix)b

P3: R{x)b R(x)a P3: R(x)b R(x)a

P4. Rxb R(x)a P4. R(x)a R(x)b
» Why is this weaker than strict/strong? ) ()

* Nothing is said about “most recent write”
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Causal consistency

Causal:

e Causally related writes seer If @ write produces a value that
causes another write, they are causally related

* Causally?
X=1
if(X >0) {
Y=1
}

Causal consistency =2 all see X=1, Y=1 in same order
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machines
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Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

e Concurrent writes may be seen in different orders on different

machines
P1: W()a P1: W(x)a
P2: Rx)a  Wi(x)b P2: W(x)b
P3: RO)b Ra P3: Re)b  R()a
P4: R(x)a R@)b P4: R(x)a R{x)b
(a) (b)
Permitted

Not permitted
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e Granularity: reads/writes versus transactions
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Linearizability vs. Serializability

* Linearizability assumes sequential consistency and
* |f TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
» Stronger than sequential consistency

* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

Linearizability: Serializability:

*Single-operation, single-object, real-time order *Talks aEOUt groups of 1 or more ops on one or
. . more objects

*Talks about order of ops on single object (e.g. ) o : :
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atomic register) order of txns
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time order

http://www.bailis.org/blog/linearizability-versus-serializability/



http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability

* Linearizability assumes sequential consistency and
* |f TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
» Stronger than sequential consistency

* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

Linearizability: Serializability:

*Single-operation, single-object, real-time order *Talks aEOUt groups of 1 or more ops on one or
. . more objects

*Talks about order of ops on single object (e.g. ) o : :

_ _ *Txns over multiple items equivalent to serial

atomic register) order of txns

*Ops should appear instantaneous, reflect real *Only requires *some* equivalent serial order

time order

Serializability + Linearizability == “Strict Serializability”
* Txn order equivalent to some serial order that respects real time order
* Linearizability: degenerate case of Strict Ser: txns are single op single object

http://www.bailis.org/blog/linearizability-versus-serializability/
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Some Consistency Guarantees

Strong Consistency See all previous writes.
Eventual Consistency See subset of previous writes.
Consistent Prefix See initial sequence of writes.
Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.



Some Consistency Guarantees

Strong Consistency
Eventual Consistency
Consistent Prefix
Bounded Staleness
Monotonic Reads

Read My Writes

See all previous writes.

See subset of previous writes.
See initial sequence of writes.
See all “old” writes.

See increasing subset of writes.

See all writes performed by reader.
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NoSQL faux quiz:

e What is the CAP theorem? What does “PACELC” stand for and how does it
relate to CAP?

e What is the difference between ACID and BASE?

* Why do NoSQL systems claim to be more horizontally scalable than RDMBSes?
List some features NoSQL systems give up toward this goal?

* What is eventual consistency? Give a concrete example of how of why it
cau;els)a complex programming model (relative to a strongly consistent
model).

 Compare and contrast Key-Value, Document, and Wide-column Stores

* Define and contrast the following consistency properties:

* strong consistency, eventual consistency, consistent prefix, monotonic reads, read-my-
writes, bounded staleness



NoSQL faux quiz:

e What is the CAP theorem? What does “PACELC” stand for and how does it
relate to CAP?

e What is the difference between ACID and BASE?

* Why do NoSQL systems claim to be more horizontally scalable than RDMBSes?
L : NSOl ! Lehi ¥
 What is eventual consistency? Give a concrete example of how of why it

caugels)a complex programming model (relative to a strongly consistent
model).

* Define and contrast the following consistency properties:

* strong consistency, eventual consistency, consistent prefix, monotonic reads, read-my-
writes, bounded staleness
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* Dryad
DryadLINQ
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Spark faux quiz (5 min, any 2):

* What is the difference between transformations and actions in Spark?

e Spark supports a persist APl. When should a programmer want to use it?
When should she [not] use use the “RELIABLE” flag?

 Compare and contrast fault tolerance guarantees of Spark to those of
MapReduce. How are[n’t] the mechanisms different?

* Is Spark a good system for indexing the web? For computing page rank
over a web index? Why [not]?

* List aspects of Spark’s design that help/hinder multi-core parallelism
relative to MapReduce. If the issue is orthogonal, explain why.
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void Reset();
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Collections and Iterators

class Collection<T> : I[Enumerable<T>;

i

public interface IEnumerable<T> {
IEnumerator<T> GetEnumerator();

}

public interface IEnumerator <T> {
T Current { get; }
bool MoveNext();
void(@set();
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DryadLINQ Data Model

Partition
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.Net objects
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DryadLINQ = LINQ + Dryad

~

[ Collection<T> collection; ]
(bool IsLegal(Key k); |
| string Hash(Key); |
s N

var results = from c in collection

where IsLegal(c.key)

lect Hash(c.key), c.value};
k select new { Hash(c.key), c.value} /
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DryadLINQ = LINQ + Dryad

~

Collection<T> collection; ]
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string Hash(Key); |

> <

var results = from c in collection

where IsLegal(c.key)
select new { Hash(c.key), c.value};
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DryadLINQ = LINQ + Dryad

4

~

Collection<T> collection;

)

bool IsLegal(Key k);
string Hash(Key);

N

/

var results = from c in collection

where IsLegal(c.key)
k select new { Hash(c.key), c.value};

=

Data ‘

& &

\

Query
plan
(Dryad job)

collection

results
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DryadLINQ = LINQ + Dryad

Vertex
code

~

Collection<T> collection; ]
bool IsLegal(Key k); |

string Hash(Key); |
> <

var results = from c in collection

where IsLegal(c.key)
select new { Hash(c.key), c.value}; / \ Query

plan
(Dryad job)

() colfection

() results
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Language Summary
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Example: Histogram

public static IQueryable<Pair> Histogram(
|Queryable<LineRecord> input, int k)
{

var words = input.SelectMany(x => x.line.Split(' '));

var groups = words.GroupBy(x => x);

var counts = groups.Select(x => new Pair(x.Key, x.Count()));
var ordered = counts.OrderByDescending(x => x.count);

var top = ordered.Take(k);

return top;

“A line of words of wisdom”

[“A”, “line”, “of”, “words”, “of”, “wisdom”]

[[“A”], [“line”], [“of”, “of”], [“words”], [“wisdom”]]

[ {“A”, 1}, {“line”, 1}, {“of”, 2}, {“words”, 1}, {“wisdom”, 1}]
[{“of”, 2}, {“A”, 1}, {“line”, 1}, {“words”, 1}, {“wisdom”, 1}]
[{“of”, 2}, {“A”, 1}, {“line”, 1}]




iterative Computations: PageRank

Input

1. Start each page with arank of 1
2. On each iteration, update each page’s rank to
ziEnei(_:;hbors ranki / |neighborsi|

Tinks // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
ranks = Tinks.join(ranks).flatmMap {
Curl, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))
}. reduceByKey(_ + _)

7 Output Output

| Output




RDD Operations

Transformations

(define a new RDD)

Parallel operations
(return a result to driver)

map
filter

sample
union
groupByKey
reduceByKey
join
persist/cache

reduce
collect
count
save
lookupKey




RDD Operations

Transformations

Parallel operations

(define a new RDD)

map
filter

sample

union
groupByKey
reduceByKey
join
persist/cache

(return a result to driver)

reduce

collect

count

save

lookupKey  where
Select
GroupBy
OrderBy
Aggregate
Join (U {10y
Apply

Materialize




RDD Fault Tolerance

* RDDs maintain lineage information that can be used
to reconstruct lost partitions

* Ex:
cachedMsgs = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))
.persist()

HdfsRDD FilteredRDD MappedRDD
[ path: hdfs://... func: contains(...) func: split(...) H CachedRDD }




RDDs vs Distributed Shared Memory

Concern RDDs Distr. Shared Mem.
Reads Fine-grained Fine-grained
Writes Bulk transformations Fine-grained

Consistency

Trivial (immutable)

Up to app / runtime

Fault recovery

Fine-grained and low-
overhead using lineage

Requires checkpoints
and program rollback

Straggler
mitigation

Possible using
speculative execution

Difficult

Work placement

Automatic based on
data locality

Up to app (but runtime
aims for transparency)




