End-of-semester Review

cs378h

Outline/Administrivia

e Questions?

e Review

* Can someone please act as scribe?

* Requested review content:

* GPUs: SIMT vs SIMD, schedulers, limitations on threads/blocks and num blocks,
divergence, sharing global memory

* FPGAs/Verilog: CLB, BRAM, and LUT

* MPI, distributed systems, shared nothing architectures, PGAS
* Distributed systems (like CAP and NoSQL)

* Consistency guarantees?

* Linearizability vs. Serializability

Review: what is a vector processor?

C code
for (i=0; i<64; i++)
C[i] = A[i] + B[1i]:;

Scalar Code
LI R4, 64
loop:
L.D FO, O0(R1)
L.D F2. 0(R2)
ADD.D F4, F2, FO
8.D F4, 0(R3)
DADDIU R1, 8
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop

Review: what is a vector processor?

INstruction L inatr. Decode H Exacute H Pl s ey H W rite
Fatah L Rag. Fatch H Addr. Cale H Aceann : Back

Pdosac POET L et smemes pees 1 Pt SiEC PO [_|
=]
SN = e =

8| for (i=0; i<64; i++)
C[i] = A[i] + B[i]);

aa

:
Lo
6

[EE]

N
I
I12
[0

Scalar Code

= L L 4J LI R4, 64
® e loop:

L.D FO, O(R1)
L.D F2, 0(R2)
ADD.D F4, F2, FO
S.D F4, 0(R3)
DADDIU R1, 8

—— o DADDIU R2, 8
FEd e | JJ DADDIU R3, 8
1

KRN 1

ad
1
i
@
g
\ia
T
]

EHED

P
il
I3
[l

DSUBIU R4,
BNEZ R4,

ad
1
1]
@I
\"ia
T
]

EHE]

| B
P
B
115

L]

ad
1
1]
@I
FEI]
[E 03]

Eal)

Review: what is a vector processor?

C code
~- <\ B = 2 |foxr (i=0; i<64; i++)
g - C[i] = A[i] + B[i];

— —| # Scalar Code
‘_:’J LI R4, 64

[

[0

Fdeaxt BT G e =

> [0

2

i
)

Review: what is a vector processor?

Review: what is a vector processor?

P L e 2 lrmtr. Daoo-cle H v s H A e H [T
P minab D PR Psaias H o claiy, £3ealen : e i H (L

Fdven® PRALES FRCD

—e

-9

C code
¥ for (i=0; i<64; i++) [# Vector Code
] Cli] = A[i] + BI[il: LI VIR, 64
Scalar Code Lv vl, R1
LI R4, 64 LV V2, R2
loop: ADDV.D V3, V1, V2
L.D FO, O(R1) sV V3, R3
L.D F2, 0(R2)
ADD.D F4, F2, FO
= S.D F4, O0(R3)
¥ DADDIU R1, 8
B DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop
)

Review: what is a vector processor?

Implementation:

* Instruction fetch control logic shared
e Same instruction stream executed on
* Multiple pipelines

* Multiple different operands in parallel

—e

-9

C code
¥ for (i=0; i<64; i++) [# Vector Code
] Cli] = A[i] + BTil: LI VLR, 64
Scalar Code Lv V1l, R1
s R4, 64 Ay V2, R2
loop: ADDV.D V3, V1, V2
L.D FO, O(R1) sV V3, R3

L.D F2, 0(R2)
ADD.D F4, F2, FO
S.D F4, 0(R3)
DADDIU R1, 8
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop

L

a

Review: what is a vector proc

it 2

||

" Scalar Registers Vecroa.-gisters
rM5———— v15
T Yoo [VLRMAX-1]
[63], [127], [255], ...
Vector Length Register VLR
Vector Arithmetic Vs Z
Instructions oo OO
ADDV v3,v1l,v2 y3c———————
Im S [01 [1] [VLR-1]
¢ Ir " Vector Load and Vector Register
Store Instructions M=
* S wvirn2)
[x T I b M T
\Y _ Base, r1 ' Stride, r2 emory

* Multiple different operands in parallel
C code
for (i=0; i<64; i++) [# X(Iactor Code -
= . V|.R'
e e # Scalar Code Lv V1, R1
LI R4, 64 LV V2, R2
loop: ADDV.D V3, V1, V2
L.D FO, O(R1) sV V3, R3
L.D F2, 0(R2)
ADD.D F4, F2, FO
S.D F4, 0(R3)
DADDIU R1, 8
DADDIU R2, 8
DADDIU R3, 8
DSUBIU R4, 1
BNEZ R4, loop

Hardware multi-threading

Hardware multi-threading

* Address memory bottleneck

Hardware multi-threading

* Address memory bottleneck

i Share exec unit across
* |nstruction streams
e Switch on stalls

20 vwmo_xeme ([MMl wmL Jowe | [S1io) a0 |

ZMMz M2_JOTZ]| ZMM3 TMM3 WS] | STi2) MM2

ma| [padeniz

Chd
As| Fodeer13 | CRI | CRS

ZMMA ¥MMA_ PR | ZMMS [YMME RMME] | STi4) MMA s | [EEGT O Rex SRl TR R4 CRE
ZMME YMME XVWE || ZMMT _YMMT XuM7 | [STiE) MMS 117 || [ox ROX S ekl 5h oo RIS CRT

ZMME YMME xema [[ZMMS | YMMO xamg | JriopeseRE? [l EDi RO PEPRIP [CR3 | CRB
Zmm1a__viem1o ool zumil | umiapwna] | cw | rep|Fe_op[re_cs| [s o RS [alseeseR
ZMMLZ _YMM1Z XPWIE| ZMML3 _tMML3 RET3] | 5w CR10

ZMML4 AT RG] ZMMLS HMLE RuRiE] | T M oz st ZEbltrdster opyy

[] [] §
Frne e s] s s " W ot et W b oo Wb
s s e s s G A e DRO_ DR6 | CRI3
| s || o5 F | DRI DR7 | CRI14
—=—racs | DR2 DRe | cRizaxca

CRo

DRI | DRO

DR4_ DR10|[DA12][DR14
DR5 | DRIL|[DAL3[[DA1S

* Address memory bottleneck e

i Share exec unit across
* |nstruction streams
e Switch on stalls

L 4

Hardware multi-threading

* Address memory bottleneck

i Share exec unit across
* |nstruction streams
e Switch on stalls

Thread 0

Thread 0

Thraad 1

ZMMO viemo xwma | zmmL YMML [oam1 | [sTioy Mmo | sTin ML | l|,|l-n,\xbv [“pudrcriz | CRO L CR4
[zwmz WMz o]| zams TMMS Joms] | stezr iz || 5100 ks | [EEBEr Ao TEeferis | cR: | cRs |
ZMMA YNMA XPRA]| ZMMS YMME Zums] 5 [EES e Rox SEewop1e| TR oAl | CR2 | CRE
ZWME_ YMME Kie ||| ZMMT _ YMMT gb7 | ST(7) WM7 | [efeiafoxROX SF ARl S doRls | CR3 | CRT
ZHME_ YMME xvms [[ZMNS _ YMMI s | JpriepeseRen] [edo eniRD] e ee RIP | CR3 CRE
ZwM1a__vwmI10 Xwio]| ZuMLL | vMmLl wawna] | cw | e |FF_OF|FP_cs| Jais os|Rs| mlshrseRse " RS
ZMMLZ YNMI1Z XPRLE| ZMML3 _YMMLI @umid] | 5w CR1D
211 TS avns_ TG | el btrouil-ivtesonliC
e rean][7w g e s e CR1Z
e s wrae] 7o) [porc Fp_DP[FP_P| [cs 55 |[DS | GDTR_IDTR_ [DRO_ DR6 | CRI3
s || o5 TR LOTR [DRI DR7 | CR14
o orriags | DR? | DRe | CRIE sk
DRI DRS
DR4_ DR10] DR12][DA14
DRy | DR1L|[DR13][DR1S
-
-
ZMMO YPM weno [zMmML [vMmL x| [s1o) Mo | Cporaz) [CRD | CR4
ZVMM2 YUMZ_RVMZ]| ZMM3 [YMM3_EMEG] [STiz} M2]| ST(3) B3 | B RBA] e A5 fedeeRly | CRI | CRS
ZVMa WA XA | zMms (YWWE RG] | STie) a]| sTis) s | [EERGFarRcx The a0 TR | CR2 | CRE
IVME YNMG XVMG || ZMMT [vam7 xwa7 | [STiel MMe [|[STi7) kT | [mibox D% Sh o1l S deoils | CR3 | CRT
TNME WME e [[ZMMS | VMM e | JFEPEcPREF] [odo colRD] __w ar RIP Cre
ZVML0 YPM1D memLo][ZMMIL | ymmil kil [cw [Pip]FRoFF |[EEEEE B CRE
Zvmiz vz K| zmmis [vamia m | se cR1D
Zv1a i omm]| zmws TS | T W Gitregiste B GGyt [O0bitregister [Z5SbEmaster o
e e L W b regerer b reqiste [Les-b repster [l bLeE register
T B s R Fros
ERs B ECE| [Fr orc [FP_DF][FP_F €5 55 | DS | GOTR IDTR [DRO | DRE | CR13
Fs | 55| TR oA | DAL | DR7 | CR14
oR2 | DRe | CRIS [uxcsh
nR3 | PRs

i |

ZMML

AL o |

YMM3_ XS

ST{0 MM ST{L) WML | b Rax| =Juud ne Feerfrz R1Z

FeoR1a

ST{2) M2]| 5T(3) MM3 T e Fo

TR

ZMMZ _YNMMZ_XEHE || ZMM3
ZMMA YNMA_ XU |ZMMS [YMME XWRE]| | STi4: MMa || sTis) Mms | EESterRex Shad e R1e TRkl | CR2 | CRE
ZMME YWME XUMs || ZMMT VMW7 XMWT | [STU61 WM& [|[ST(T) MMT | [RDE S} ooR1L b AeoR1S | RS CRT
TNME vWE waws (| ZMMS | YMMB s | JpuepesrRee] [edo colRD] @ o RIP | A3 | CRE
ZVMML0 Mo xwwiol|[zMmLL [ymmid xwanal| [cw [rr_p|FP_oplFe_cs] s ssips| [mlsreseRsE| M CRE
IMMLZ YNM1Z XUWLE| ZMM13 [YMML13 emig] | 5w CR1D
ZvML VAT L 2Mvs YEE T | Te e ot W Bevregster [l 2SBS0
_— - W obitregierer [sebit resister [12s-bit ronister [l b1t reqister
TR Bt e FPos
T B Frorcfrorrre] [<5 55| 0s] ooh o [GRo ORe
EE TR TR [DR1 | DRT
o wriacs | OR2 | ORe | cais fwcsa
o2 | DR%
CR4 | DR10 |[DR1Z [DR14
GRS | DR1L[DALS [DR1S

Hardware multi-threading

* Address memory bottleneck

i Share exec unit across
* |nstruction streams
e Switch on stalls

* Looks like multiple cores to the OS

ZMMO viemo xwma | zmmL YMML [oam1 | [sTioy Mmo | sTin ML | l|,|l-n,\xbv R -
[zwmz vwmz e]| zmms YMMS Jms] | sTez) iz || 5100 ks | [EEeEe e Foenis 1
ZMMA YNMA XPRA]| ZMMS YMME Zums] £Ti5) MM | BT Cx Rox SEeop1e TR oAl | CR2 | CRE
ZWME_ YMME Kie ||| ZMMT _ YMMT gb7 | ST(7) WM7 | [efeiafoxROX SF ARl S doRls | CR3 | CRT
ZHME_ YMME xvms [[ZMNS _ YMMI s | JpriepeseRen] [edo eniRD] e ee RIP | CR3 CRE
ZMMLa_ vwMID Xm0 ZuMLL | vMML1 ianta] | cw | p P _OF|FP_cs| Jas ss|Rs) [slspeseR RS
ZMMLZ YNM1Z XPRLE| ZMM13 _YMML3 Zamig] | s CR1D
211 ST S| 2wns_ S | titursdl-Fosindl-FerfesulliCI}
e rean][7w g o[7ura [zes) [FP DS CR1Z
714 7 us| Zawze o 7 awee] 7ol awea [eorc P DP[FP_P| [c5 55 |[D5 | GOTR _IDTR_ [DRO_ DR6 | CRI3
s || o5 TR LOTR [DRI DR7 | CR14
o orriags | DR? | DRe | CRIE sk
DRI DRS
DR4_ DR10] DR12][DA14
DRy | DR1L|[DR13][DR1S
Thread 0
-
-
2MMo YMMa xweno [[TzMML [YMML e || [s1o) Mma || pudmoR1z CR4
[zvMz PMZ WD]| ZMM [vAME e]| | STz FMZ VT | [ELeEEsn Rox e = A5 LEodeorla | CRL | CRS
ZVMa WA XA | zMms (YWWE RG] | STie) a]| sTis) s | [EERGFarRcx The a0 TR | CR2 | CRE
IVME YNMG XVMG || ZMMT [vam7 xwa7 | [STiel MMe [|[STi7) kT | [mibox D% Sh o1l S deoils | CR3 | CRT
TNME WME e [[ZMMS | VMM e | JFEPEcPREF] [odo colRD] __w ar RIP
ZVML0 YPM1D memLo][ZMMIL | ymmil kil [cw [Pip]FRoFF |[EEEEE B
zZvmiz TWMLz M| zmvins [Fmia e | s
. SiTa x| zm1s (TARIEA | Tw W Boitregizze W St reiste [BObIE rsgister [256 ragister
e e L W b regerer b reqiste [Les-b repster [l bLeE register
T B s R
ERs B ECE| [Fr orc [FP_DF][FP_F €5 55 | DS | GOTR IDTR [RO | DRE
Fs | s | TR oA [DAL DR
oR2 | DRE [paxcse
nR3 | PRs
Thread 0
—— e, —_—
4
LY
:- - -
Thread 1 ’
%
—— ——
ZMMO__ Mg xwmo [[ZMML__ [oamL s || [S1i0) ma [|[sTe1) MM | ek pa Jud Faserazc 12
ZVMZ | _TWMZ XM ZMM5 | YMM3 N]| | STz FME || 50 HMs | Tedeeeraa) | cAz
ZMMA YNMA_ XU |ZMMS [YMME XWRE]| | STi4: MMa || sTis) Mms | EESterRex Shad e R1e TRkl | CR2 | CRE
VMG YNM XN ||| ZMMT_[YMM7 XMWT] [STi6) MM || ST(7) M7 | [ERiapusRDE ShodooR1L SfeoRds | CR3CRT
TNME vWE waws (| ZMMS | YMMB s | JpuepesrRee] [edo colRD] @ o RIP | A3 | CRE
ZVMML0 w10 xwwiol|[zMmLiL [ymmid xwanl| [cw [re_r]FeE_DF]rE. al s cs|Rs | [m]sPese] [CRE
IMMLZ YNM1Z XUMLS)| ZMpM13 [YMML13 a5 CR1D
(s ST s SO v s @ @ e oo o
TR Bt e FPos TRz
T B Frorcfrorrrr] [55 | 0s | ooR 10T [GRO | ORe | cRis
EE TR | LCTR [DR1 | DR7 | CR14
o wriacs | OR2 | ORe | cais fwcsa
o2 | DR%
Cha_ DR10| DRL2[[DATS
GRS | DR1L[DALS [DR1S

Hardware multi-threading

Thread 0

* Address memory bottleneck

i Share exec unit across
Instruction streams
e Switch on stalls

ks like multiple cores to the OS

20 Vg x| ZMML_ (ML x| [S140) 0 | ST{L L | [k e T v ma - edeeniz | Cho | Cha
[Zwmz WMz Xws]| zams YMME ms] | sTez) kmiz || S10) s ez =ERED
ZMMA YMMA P | ZMMs [YMME RuRE] M5 || [EEDFc Ry T kle| ZF R4 | CR2 | CRE.
ZMME YMME Xbie || ZMMT_[YMMT XM | ST(7) WM7 | [efeiafoxROX SF ARl S doRls | CR3 | CRT
ZMME YMME xema [[ZMMS | YMMO xamg | JriopespRRR [odp EniRD P EP RIP | CRI | CRE
ZMMLa_ vwMID Xm0 ZuMLL | vMML1 ianta] | cw | p P _OF|FP_cs| Jas ss|Rs) [slspeseR RS
ZMMLZ YNM1Z XPRLE| ZMM13 _YMML3 Zamig] | s CR1D
211 TS avns_ TG | el btrouil-ivtesonliC
e rean][7w g > o[7mee) [Fp DS CR1Z
T s e s s il e <5 |[0s | ook b [DRo | ore | cRis
s || o5 TR LOTR [DRI DR7 | CR14
DRZ DRE | CRIE[MxCSR
DRI DRS
DR4_ DR10] DR12][DA14
DRy | DR1L|[DR13][DR1S

v

2MMo YMMa xweno [[TzMML [YMML e || [s1o) Mma || {] o pufrecR1z
ZVM2 TPMZ JOR: J[ZMes (TS Ewma] (ST FRZ [ot ST o E R o 3
ZVMa WA XA | zMms (YWWE RG] | STie) a]| sTis) s | [EERGFarRcx The a0 TR | CR2 | CRE
VM6 MM e [|[zmMm7 a7 xmmr | [STi6) MM || ST(7) kM7 | [ERfocRDx Shodoeril Shodeonls | CR3CRT
TNME VWME xma [[ZMMS | YMM3 x| JpriepesrRee] [edo ko ae i
ZuMLe veio sl MM | vamis g | Gw [7Pp|FPorrecs] s smlRs| leesrRs
ECE R ey | BT E R ST T E e |
|oowss v s (o] | e @ B R
T BT
ERs B [Fr orc [FP_DF][FP_F €5 55 | DS | GOTR IDTR [RO | DRE

s |os| ™ o |om | o

— o2 | oRe frxcs
nR3 | nRa

o T

ree variants:
oarse
ine-grain
imultaneous

Thread 0

Thiread 1 ’

ZMMO__ Mg xwmo [[ZMML__ [oamL s || [S1i0) ma [|[sTe1) MM | ek pa Jud FirreeR1Z
2VMz M2 X [zmm3 (¥MM3 R[Stz ez] st s | TJedepaa [Rl
IMMA YNMA XPRA]||ZMMS [YMM5 RWMME] |STi4) MMA MM | [EESFerRCx Shodeor1o TEeek1d | CR2Z | CRE
ZMME YWME XUMs || ZMMT VMW7 XMWT | [STU61 WM& [|[ST(T) MMT | [RDE S} ooR1L b AeoR1S | RS CRT
TNME WM xma [|ZMee | vame s | JpuepesrRee] [edo colRD] @ o RIP | A3 | CRE
ZMMie M0 xemtof[zmmil [yMmLloanans] [cw [rrip[reoefre_cs) Jas msips| [aiseese) [CRE
IMMLZ YNM1Z XUMLS)| ZMpM13 [YMML13 a5 CR1D
(s ST s SO v s @ @ e oo o
TR Bt e Fros iz
T B Frorcfrorrrr] [55 | 0s | ooR 10T [GRO | ORe | cRis
EE TR | LCTR [DR1 | DR7 | CR14
o wriacs | OR2 | ORe | cais fwcsa
o2 | DR%
CR4 | DR10 |[DR1Z [DR14
GRS | DR1L[DALS [DR1S

Hardware multi-threading

* Address memory bottleneck

i Share exec unit across
* |nstruction streams
witch on stalls

ks like multiple cores to the OS

ree variants:
e Coarse

* Fine-grain

e Simultaneous

o T

SIMT = SIMD + Hw MT

Zrio Vw0 e [ZMML [eMmL ml | [STeor e | adqweni2 [cho | cha
[zwmz w2 o] zams [vMMS ams] | stez) ez TEofenis | CRI | CRs
ZMMA YNMA XPRA]| ZMMS YMME Zums] [ioR14) | CR2 | CRe
ZWME YKME Kie ||| ZMMT _ YMMT xami 71 MW7 | b0 ROX SF ekl 5FopooR1s | CR3 | CRT
ZMME_ YMME xema [[ZMNMS | YMM3 s | JrisreseRR] [edo eDiRD] e RIP | CRI | CRe
ZwM1a__vwmI10 Xwio]| ZuMLL | vMmLl wawna] | cw | e |FF_OF|FP_cs| Jais os|Rs| mlshrseRse MsW | CRS
ZMMLZ YWMIZ XU ZMMLE | TMML3 e
2011 VST s _ LT S mn meme
e ez s o] s 7w [FP DS
e S s) B B e s R e I R R
s || o5 TR LOTR [DRI DR7 | CR14
T wriacs | DR DRE | CRIS[xcsR
DRI DRS
DR4_ DR10] DR12][DA14
DRy | DR1L|[DR13][DR1S

L 4

Thread 0

Thraad 1

ZMMO MO em [[[ZMML [YMML vl | [S 1) MM | 1) MML Y bttt RAX, | soof o Tpudmor1z [CRD | CR4
ZMM2 YPMZ XPMG [ZMM3 [YMM3 XMEa] STz FMZ || 5T(3) B | CIERERRReR TIed e RS TEodorlal [CR:
ZnMa WA XA | zmms (YMWS MRS | STia)]| sTis) s | [EER et Rex Sh e alo TR | CA2
ZNME vWiMG Xuie | zMMT vz Dowar || [STis) Mvia || sT7) M7 | [t RO Sh o R1L S s | CR3
TNME_ MM Mz [[ZMME | vMmMe xoums | JpriepesrRee] [edo ko ae i 3
ZVML0 YPM1D memLo][ZMMIL | ymmil kil [cw [Pip]FRoFF |[EEEEE B S
Zvmiz TWMLz XL zmviis [FWMLE BRG] | sw
Zv1a i omm]| zmws TS | T W Boitregizze W St reiste [BObIE rsgister [256 ragister
e e L b regierer b reqiste [Les-b repster [l bLeE register
T B s R
ERs s [z [Fr orc [FP_DF][FP_F €5 55 | DS | GOTR IDTR [RO | DRE
Fs | s | TR oA [DAL DR
oR2 | DRe | CRIS [uxcsh
nR3 | PRs

ZNMO VMO xmmo (|| ZMML ML xm || [sTi0) mma || s1i1) ML | p,wwp.x RAx| = fmd e pudmzcr1z | CAD
ZVM2 YMMZ XPRZ]| ZMM3 MM s] [sTeziemz]| 51z eS| [Rox Jed e s Jedeerls | CRI
ZMMA YNMMA_ XA | ZMMS [YMME XWRE]| |STi4: MMa || sTis) MME | [EEOFeRek Thad 1o TEseokid) | CR2
VMG YNMA XN ||[ZMMT_[YMM7_XwWT] [STi6) MMa || ST(7) M7 | [ERapusRDE Db dooR1L SfdeoRls | RS
TNME vWE waws (| ZMMS | YMMB s | JpepesrREe] [edo colRD] @ ar RIP | cRE
ZVMML0 Mo xwwiol|[zMmLL [ymmid xwanal| [cw [rr_p|FP_oplFe_cs] s ssips| [mlsreseRsE|

ZMMLZ YMM1Z XUMLZ)| ZMML3 [YMmia ey | s

ZNMLY YT | zmmis e o | T Bt reqne titreqste W Bobitreister [l 256 regiter
= e e W b rearer [st ceaiste [l 1280 remster [l 1e-hit reoister
TR Bt e FPos

T

RS B

[Fr orc [FP_DF][FE_P

€5 s | DS

EE

GOTR_ DR [DRO | DRe
T o7R [OA1| DAY

o omriacs | ORZ | DR | cR1s [paxcse
0R3 | DRe

Cha_ DR10| DRL2[[DATS

RS

oR1L DAL [DR1S

SIMD vs. SIMT

Flynn Taxonomy

e.qg., SSE/AVX

Data Streams

SISD SIMD

Synchronous operation

MISD MIMD v v o e\
/ ______

¥

Instruction Streams

SIMT

Loosely synchronized threads
Multiple threads

—> | & & &

e.g., pthreads e.g., PTX, HSA

Review

PCI Express 3.0 Host Interfa

Memory Controller
Je)10nu0d Aowsw

F
<
=
g
E

Memary Contr

+
NVLink NVLink NVLink

Review

PCI Express 3.0 Host Interface

]
£
5
S
5
E
2

£ - e £2 3 i
NVLink NVLink NVLink NVLink

* Each SM has multiple vector units (4)
* 32 lanes wide = warp size

Review

* Each SM has multiple vector units (4)
* 32 lanes wide = warp size

* Vector units use hardware multi-threading

Review

* Each SM has multiple vector units (4)
* 32 lanes wide = warp size

* Vector units use hardware multi-threading

» Execution = a grid of thread blocks (TBs)
e Each TB has some number of threads

L1 Instruction Cache

L]
| '\ e V I e W LO Instruction Cache L0 Instruction Cache
Warp Scheduler (32 threadiclk) ‘Warp Scheduler (32 thread/clk)

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

PCI Express 3.0 Host Interface

FP32 FP32 FP32 FP32
FP32 FP32 FP32 FP32
FP32 FP32 FP32 FP32

FRRZFFS2 TENSOR TENSOR FP2FFS2 TENSOR TENSOR

tpa2 Py | CORE | CORE Fp32Ep3s | CORE | CORE

J9(j0u0D Aiowen

FP32 FP32 FP32 FP32

i

FP32 FP32 FP32 FP32

saijonuo] Aioway

FP32 FP32 INT FP32 FP32

LD/ Lo/ LD/ LD/ SFU LD/ LD/ LD/ LD/ Lor
ST ST ST ST ST ST ST ST ST ST

L0 Instruction Cache L0 Instruction Cache
Warp Scheduler (32 threadiclk) ‘Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Memory Controller

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT INT FP32 FP32 FP64. INT FP32 FP32
FP64 INT INT FP32 FP32 FP64 INT FP32 FP32
- N " .
NVLink Lk NVLink FP64 INT INT |FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

TENSOR TENSOR TENSOR TENSOR

FP64 INT FP32 FP32 CORE CORK FP64 INT FP32 FP32 CORE CORE

FP64 INT FP32 FP32 FP64 INT FP32 FP32

* Each SM has multiple vector units (4)

FP64 INT INT FP32 FP32 FP64 INT FP32 FP32

* 32lanes wide - warp size CEEr R R
* Vector units use hardware multi-threading

» Execution = a grid of thread blocks (TBs)
e Each TB has some number of threads

128KB L1 Data Cache / Shared Memory

Tex Tex

Thread block scheduler

L]
| '\ e V I e W LO Instruction Cache L0 Instruction Cache
Warp Scheduler (32 threadiclk) ‘Warp Scheduler (32 thread/clk)

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

PCI Express 3.0 Host Intarface

FP32 FP32 FP32 FP32
FP32 FP32 FP32 FP32
FP32 FP32 FP32 FP32

FRRZFFS2 TENSOR TENSOR FP2FFS2 TENSOR TENSOR

tpa2 Py | CORE | CORE Fp32Ep3s | CORE | CORE

J9(j0au0D Aiows |

FP32 FP32 FP32 FP32

i

FP32 FP32 FP32 FP32

saijonuo] Aioway

FP32 FP32 INT FP32 FP32

LD/ Lo/ LD/ LD/ SFU LD/ LD/ LD/ LD/ Lor
ST ST ST ST ST ST ST ST ST ST

L0 Instruction Cache L0 Instruction Cache
Warp Scheduler (32 threadiclk) ‘Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Memory Controller

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT INT FP32 FP32 FP64. INT FP32 FP32
FP64 INT INT FP32 FP32 FP64 INT FP32 FP32
- N " .
NVLink Lk NVLink FP64 INT INT |FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 TENSOR TENSOR FP64 INT FP32 FP32 TENSOR TENSOR

FP64 INT FP32 FP32 CORE CORK FP64 INT FP32 FP32 CORE CORE

FP64 INT FP32 FP32 FP64 INT FP32 FP32

* Each SM has multiple vector units (4)

FP64 INT INT FP32 FP32 FP64 INT FP32 FP32

* 32lanes wide - warp size CEEr R R
* Vector units use hardware multi-threading

» Execution = a grid of thread blocks (TBs)
e Each TB has some number of threads

128KB L1 Data Cache / Shared Memory

Tex Tex

Thread block schedulerwarp (thread) scheduler

° a
| {e V I e W L0 Instruction Cache
‘Warp Scheduler (32 thread/clk)

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

PCI Express 3.0 Host Intarface

FP32 FP32 INT FP32 FP32
FP32 FP32 INT FP32 FP32
FP32 FP32 INT FP32 FP32

FRRZFFS2 TENSOR TENSOR INT FFS2FF52 TENSOR TENSOR

PR FR [COREY FCORE INT [FPs2Fpez CORE | CORE

s8ij0au0D Aiows |

FP32 FP32 INT FP32 FP32

FP32 FP32 INT [FP32 FP32

saijonuo] Aioway

FP32 FP32 INT FP32 FP32

LD/ Lo/ LD/ LD/ SFU LD/ LD/ LD/ LD/ Lor
ST ST ST ST ST ST ST ST ST ST

L0 Instruction Cache L0 Instruction Cache
Warp Scheduler (32 threadiclk) ‘Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Memory Controller

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT FP32 FP32 FP64 INT FP32 FP32
FP64 INT FP32 FP32 FP64 INT FP32 FP32

e = o : e
NVLink NVLink NVLink FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 TENSOR TENSOR FP64 INT FP32 FP32 TENSOR TENSOR

FP64 INT FP32 FP32 CORE CORK FP64 INT FP32 FP32 CORE CORE

FP64 INT FP32 FP32 FP64 INT FP32 FP32

* Each SM has multiple vector units (4)

FP64 INT FP32 FP32 FP64 INT FP32 FP32

* 32lanes wide - warp size L EE R
* Vector units use hardware multi-threading

» Execution = a grid of thread blocks (TBs)
e Each TB has some number of threads

128KB L1 Data Cache / Shared Memory

Tex Tex

GPU Performance Metric: Occupancy

GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kerne| @seSirreTs ey
* Enables device-specific online tuning of kernel parameterQlEeEEER Jebx:

Hardware Resources Are Finite

l

Kernel , Thread Block Control
Distributor =
J TB O JJJ
SM '
Scheduler I,’I Warp Schedulers

‘L ‘L ‘1' ‘1' I/l Warp Context

1
1
SM SM SM SM
| | | [\ sp || sp || sp || sP
\
.2 ' sp || sp|]sp|]spP
\
' sp || sp || sp || sP
DRAM \
\
sp || sp || sp || sP

Register File

SM — Stream Multiprocessor

SP — Stream Processor Y L1/Shared Memory

Hardware Resources Are Finite
|

Kernel
Distributor

v

SM
Scheduler

v v

v

Thread Block Control

Limits the #thread blocks

TBO

)

Warp Schedulers

Warp Context

SM SM

SM

v

DRAM

SM — Stream Multiprocessor

SP — Stream Processor

SP SP SP SP
SP SP SP SP
SP SP SP SP
SP SP SP SP

Register File

L1/Shared Memory

>

Hardware Resources Are Finite
|

Kernel
Distributor

v

SM
Scheduler

v v

v

Thread Block Control

Limits the #thread blocks

TBO

)

Warp Schedulers

Warp Context

SM SM

SM

v

DRAM

SM — Stream Multiprocessor

SP — Stream Processor

SP SP SP SP
SP SP SP SP
SP SP SP SP
SP SP SP SP
Register File

L1/Shared Memory

>

Limits the #threads
S

Hardware Resources Are Finite
|

Kernel ,’I Thread Block Control
Distributor .- Limits the #thread blocks
J T8O JJJ >
SM
Scheduler / Warp Schedulers

Limits the #threads

‘L ‘L ‘1' ‘1' ,'I | Warp Context -|-_|

1

SM SM SM SM '
| | | [\ sp || sp || sPp || sP
.2 ' sp || sp|]sp|]spP
DRAM \ SP SP SP SP
" sp |[sp || sp][sp

Limits the #threads
| Register File -_>
SM — Stream Multiprocessor \

SP — Stream Processor Y L1/Shared Memory

l

Kernel
Distributor

v

SM
Scheduler

Hardware Resources Are Finite

Thread Block Control

Limits the #thread blocks

TBO

)

Warp Schedulers

v

v

v

v

Warp Context

SM

SM

SM

SM

I I I |
v

DRAM

SM — Stream Multiprocessor

SP — Stream Processor

SP SP SP SP
SP SP SP SP
SP SP SP SP
SP SP SP SP
Register File

L1/Shared Memory

>

Limits the #threads
S

Limits the #threads
—

Limits the #thread blocks

>

Hardware Resources Are Finite

l

Distributor ;

SM ;
Scheduler)

v v v v/

Occupancy:
* (#Active Warps) /(#MaximumActive Warps)

e Limits on the numerator:

* Registers/thread
* Shared memory/thread block
* Number of scheduling slots: blocks, warps

e Limits on the denominator:
* Memory bandwidth
e Scheduler slots

Kernel ;

Thread Block Control

Limits the #thread blocks
>

TBO

)

Warp Schedulers

Warp Context

Limits the #threads

'|—>

SP SP SP SP
SP SP SP SP
SP SP SP SP
SP SP SP SP
Register File

L1/Shared Memory

Limits the #threads
—>

Limits the #thread blocks
>

Hardware Resources Are Finite

Kernel ,’I Thread Block Control
Distributor A Limits the #thread blocks
/ . >
J ,' TB O J—'J
SM
Scheduler ; Warp Schedulers
‘1’ ‘1’ \1’ \1’ Warp Context .|_ Limits the #threads
II L -| ﬁ
[| | | | | | | C
Occupancy: SP SP SP SP
* (#Active Warps) /(#MaximumActive Warps) o 1 1= 15

SP SP SP SP

e Limits on the numerator:
* Registers/thread

SP SP SP SP

Limits the #threads

* Shared memory/thread block —
* Number of scheduling slots: blocks, warps Register File]
' ’ Limits the #thread blocks
L1/Shared Memory >

e Limits on the denominator:
* Memory bandwidth
e Scheduler slots

What is the performance impact of varying kernel resource demands?

Impact of Thread Block S

1Z€

l

Kernel
Distributor

y

SM
Scheduler

v__¥

Thread Block Control

Limits the #thread blocks

TBO

Warp Schedulers

Warp Context

Limits the #threads

[sm][sm][sm
| | | |
¥

DRAM

SM — Stream Multiprocessor

SP— Stream Processor

[sw]

I

:

Register File

L1/Shared Memory

>

Limits the #threads

|+—>

Limits the #thread blocks

—

Impact of Thread Block S

Example: v100:

1Z€

l

Kernel
Distributor

y

SM
Scheduler

v__¥

Thread Block Control

Limits the #thread blocks

TBO

Warp Schedulers

Warp Context

Limits the #threads

[sm][sm][sm
| | | |
¥

DRAM

SM — Stream Multiprocessor

SP— Stream Processor

[sw]

I

:

Register File

L1/Shared Memory

>

Limits the #threads

|+—>

Limits the #thread blocks

+—

Impact of Thread Block Size

Example: v100:
* max active warps/SM == 64 (limit: warp context)

l

Kernel
Distributor

y

SM
Scheduler

Thread Block Control

Limits the #thread blocks

TBO

Warp Schedulers

Warp Context

Limits the #threads

T

I

[sm]|[sm][sm]][sm |

DRAM

SM — Stream Multiprocessor

SP— Stream Processor

.
:

L1/Shared Memory

>

Limits the #threads
| Register File I——)

Limits the #thread blocks

+—

Impact of Thread Block Size

Example: v100:
* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)

rrrrrrrrrrrrrrrrrr

Kernel
Distributor Limits the #thread blocks
l TBO i
SM
Schedule Warp Schedulers |
»L I ; Warp Context l.n_l Lirnits the #ithreads
sm|[sm]|]sm]|[sm K
Lsw] [sm] [sw] [sm]
‘
DRAM

SM — Stream Multiprocessor

rrrrrrrrrrrrrrrrrr

Register File

Limits the #threads

+—

Limits the #thread blocks

L1/Shared Memory

+—

Thread Block Control

TBO

| Warp Schedulers |

Limits the #thread blocks

Limits the #threads

Warp Context
1|
T

Impact of Thread Block Size

ISM||SM||SM||SM|;

DRAM

SM — Stream Multiprocessor

Example: v100:
* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)

rrrrrrrrrrrrrrrrrr

HEEE
EEEE
BjaEEE
EEEE

Limits the #threads

Register File |+—

* With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads 2>

Limits the #thread blocks

Kernel Thread Block Control
Distributor ‘Lim\'ts the #thread blocks
] / T80 -
SM /
° Scheduler | Warp Schedulers |
Im Pa ct of Thread Block Size e g mper B) W T EE
[sm]|[sm][sm]][sm |
I I I .
¥
DRAM \
Limits the #threads
. | Register File I——)
Exa m | e : V 100 S S swream Multiprocessor Limits the #thread blocks
. . SP— Stream Processor W[w/sharedMemory | o—>

* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
* With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads 2>

Kernel Thread Block Control
Distributor Limits the #thread blocks
l / TBO i
SM]
° Schedul | Warp Schedulers |
Impact of Thread Block Size e e moer S)
[sm]|[sm][sm]][sm | K
I I I .
¥
DRAM \
| Limits the #threads
. | Register File I——)
Exa l I | | e . V 100 . SM = Stream Multiprocessor Limits the #thread blocks
. . SP— Stream Processor 2| Lisharedmemory | 4—>

* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
* With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads 2>
* With 128 threads/block? =

Kernel Thread Block Control
Distributor Limits the #thread blocks
] / TBO -
Y /
° Scheduler | Warp Schedulers |
Impact of Thread Block Size e e moer S)
[sm]|[sm][sm]][sm | E
I I I .
¥
DRAM \
Limits the #threads
. | Register File I——)
Exa m I e : V 100 . SM—Stream Multiprocessor Limits the #thread blocks
. . SP - Stream Processor | L1/Shared Memory | —_

* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
* With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads =
* With 128 threads/block? =

Kernel Thread Block Control
Distributor Limits the #thread blocks
] / T80 -
Y /
° Scheduler | Warp Schedulers |
Impact of Thread Block Size e e moer S)
[sm]|[sm][sm]][sm | K
I I I .
¥
DRAM \
| Limits the #threads
. | Register File I——)
Exa m | e : V 100 S S swream Multiprocessor Limits the #thread blocks
. . SP— Stream Processor 2| Lisharedmemory | 4—>

* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
* With 512 threads/block how many blocks can execute (per SM) concurrently?
* Max active warps * threads/warp = 64*32 = 2048 threads =

* With 128 threads/block? =
e Consider HW limit of 32 thread blocks/SM @ 32 threads/block:

* Blocks are maxed out, but max active threads = 32*32 = 1024

e Occupancy =.5(1024/2048)

Impact of Thread Block Size

Example: v100:

* max active warps/SM == 64 (limit: warp context)
* max active blocks/SM == 32 (limit: block control)

Thread Block Control

Limits the #thread blocks

TBO

| Warp Schedulers

| Warp Context

Limits the #threads

ISM||SM||SM||SM|;

DRAM

SM — Stream Multiprocessor

rrrrrrrrrrrrrrrrrr

:

| Register File

* With 512 threads/block how many blocks can execute (per SM) concurrently?
* Max active warps * threads/warp = 64*32 = 2048 threads =

* With 128 threads/block? =

e Consider HW limit of 32 thread blocks/SM @ 32 threads/block:

* Blocks are maxed out, but max active threads = 32*32 = 1024

e Occupancy =.5(1024/2048)

 To maximize utilization, thread block size should balance

e Limits on active thread blocks vs.
* Limits on active warps

Limits the #threads

Limits the #thread blocks

Impact of

Registers Per Thread

)

Kernel
Distributor

!

SM
Scheduler

SM - Stream Multiprocessor

SP— Stream Processor

Thread Block Control

Limits the #thread blocks

TBO

Warp Schedulers

>

Limits the #threads

Warp Context g

\ Register File b
L1/Shared Memory B E—

Limits the #threads

Limits the #thread blocks

10

Impact of #Registers Per Thread

Registers/thread can limit number of active threads!

)

Kernel
Distributor

!

SM
Scheduler

SM — Stream Multiprocessor

SP— Stream Processor

Thread Block Control

Limits the #thread blocks

TBO

‘Warp Schedulers

>

Limits the #threads

Warp Context g

\ Register File b
L1/Shared Memory B E—

Limits the #threads

Limits the #thread blocks

10

Impact of

Registers Per Thread

Registers/thread can limit number of active threads!

V100:

)

Kernel
Distributor

!

SM
Scheduler

SM — Stream Multiprocessor

SP— Stream Processor

Thread Block Control

Limits the #thread blocks

TBO

‘Warp Schedulers

>

Limits the #threads

Warp Context g

\ Register File b
L1/Shared Memory B E—

Limits the #threads

Limits the #thread blocks

10

rnel J | Thread Block Control
Hbutor / Limits the #thread blocks

SM
Schedul

Impact of #Registers Per Thread

DRAM

Limits the #threads

Limits the #threads

MMMMM X
sssssssssssssssssss Limits the #thread blocks

—>

Registers/thread can limit number of active threads!
V100:
* Registers per thread max: 255

10

Impact of #Registers Per Thread

Registers/thread can limit number of active threads!
V100:

* Registers per thread max: 255

* 64K registers per SM

SM
Schedul

DRAM

SM — Stream Multiprocessor

oooooooooooooooooo

Limits the #thread blocks

Limits the #threads

Limits the #threads

Limits the #thread blocks

—>

10

|

Kernel
Distributor

Scheduler i

Impact of #Registers Per Thread @z@e

SM — Stream Multiprocessor

SP— Stream Processor

Registers/thread can limit number of active threads!
V100:
* Registers per thread max: 255

* 64K registers per SM
Assume a kernel uses 32 registers/thread, thread block size of 256

L1/Shared Memory -

Thread Block Control

Limits the #thread blocks

Limits the #threads

\ Register File b

Limits the #threads

Limits the #thread blocks
—

10

Kernel ; Thread Block Control
Distributor / Limits the #thread blocks
l . TBO -
SM]
] imi
X I IE2 -sp 2]
DRAM
Limits the #threads
| N rrr—
SM - Stream Multiprocessor “_‘ Limits the #thread blocks
5o Seam procesor 4=

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

|

," [l
Kernel ; Thread Block Control

Distributor / Limits the #thread blocks

smitnuler N
Impact of #Registers Per Thread &@de
o |\ N
stream Multiprocessor ““‘-‘ ‘ L::L:St:]::tthhr;eaadd:)\ocks
Registers/thread can limit number of active threads! R (e J5—
V100:

* Registers per thread max: 255
* 64K registers per SM
Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

* What is the impact of increasing number of registers by 2?

Kernel ; Thread Block Control
Distributor / Limits the #thread blocks
l i TBO -
SM]
] imi
X I IE2 -sp 2]
DRAM
Limits the #threads
| N rrr—
SM - Stream Multiprocessor “_‘ Limits the #thread blocks
5o Seam procesor 4=

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

* What is the impact of increasing number of registers by 2?
* Recall: granularity of management is a thread block!

)

," [l
Kernel ; Thread Block Control

Distributor / Limits the #thread blocks

I i TBO
] Schatuler ——
Impact of #Registers Per Thread @@z
o |\ N
‘ ::::: : :::::Z locks
Registers/thread can limit number of active threads! e (e J5—
V100:

* Registers per thread max: 255
* 64K registers per SM
Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
» Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
* FULLY Occupied!

* What is the impact of increasing number of registers by 2?
* Recall: granularity of management is a thread block!
e Loss of concurrency of 256 threads!
34 regs/thread * 256 threads/block * 7 blocks/SM = 60k registers,
8 blocks would over-subscribe register file
* Occupancy drops to .875!

Control Flow Divergence

 Performance concern with branching: divergence
 Threads within a single warp take different paths

* Different execution paths are serialized

 The control paths taken by the threads in a warp are traversed one at a
time until there is no more.

e Common case: branch condition is a function of thread ID

 Example with divergence:
e If (threadIdx.x > 2) { }
e This creates two different control paths for threads in a block

e Branch granularity < warp size; threads 0, 1 and 2 follow different path
than the rest of the threads in the first warp

 Example without divergence:
* If (threadIdx.x / WARP SIZE > 2) { }
e Also creates two different control paths for threads in a block

* Branch granularity is a whole multiple of warp size; all threads in any
given warp follow the same path

11

FPGAs/Verilog

FPGAs/Verilog

* CLB, BRAM, and LUT?

FPGAs/Verilog

* CLB, BRAM, and LUT?
* CLB: combinational logic block

FPGAs/Verilog

* CLB, BRAM, and LUT?
* CLB: combinational logic block
* BRAM: block random access memory

FPGAs/Verilog

* CLB, BRAM, and LUT?

* CLB: combinational logic block

* BRAM: block random access memory
e LUT: lookup table

FPGAs/Verilog

* CLB, BRAM, and LUT?

* CLB: combinational logic block

* BRAM: block random access memory
e LUT: lookup table

e Other questions?

Blocking vs Non-blocking Behavior

* A sequence of nonblocking assignments don’t communicate

a=1; a<=1;

b =a; b <=a;

c=b; c<=b;

Blocking assignment: Nonblocking assignment:
a=b=c=1 a=1

b = old value of a
c = old value of b

I v

I v

[memory | [memory

interconnection network

] [

I v

Distributed Memory
Multiprocessor

Messaging between nodes

[memory | [memory

interconnection network

] [

I v

Distributed Memory
Multiprocessor

Messaging between nodes

[memory | [memory

interconnection network

] [

Massively Parallel Processor (MPP)
Many, many processors

I v

Distributed Memory
Multiprocessor

Messaging between nodes

[memory | [memory

interconnection network

] [

Massively Parallel Processor (MPP)
Many, many processors

I v

Distributed Memory Cluster of SMPs
Multiprocessor * Shared memory in SMP
Messaging between nodes node

* Messaging €<—> SMP nodes

memory memory
o =
\ /
interconnection network network
interface

_ — ieteonnecton neer

memory memory E E
M M

Massively Parallel Processor (MPP)
Many, many processors

* also regarded as MPP if
processor # is large

I v

Distributed Memory Cluster of SMPs Multicore SMP+GPU Cluster
Multiprocessor * Shared memory in SMP * Shared mem in SMP node
Messaging between nodes node « Messaging between nodes

* Messaging €<—> SMP nodes

memory memory

M M M M

. . =] E
interconnection network network

interface

men|10ry merLory E E m I I @
M M

Massively Parallel Processor (MPP)
Many, many processors

* also regarded as MPP if

processor # is large * GPU accelerators attached

I v

Distributed Memory Cluster of SMPs Multicore SMP+GPU Cluster W e/ARIEN Lol g 1d[e) 1o Ne]le))o]]
Multiprocessor * Shared memory in SMP * Shared mem in SMP nff6 1o [o [(=X 010 [o/=
Messaging between nodes node VS How is that different from
* Messaging €<—> SMP nodes)
shared nothing?

memory memory

M M M M

. . =] E
interconnection network network

interface

merLory mer|nory E E m I I @
M M

Massively Parallel Processor (MPP)
Many, many processors

* also regarded as MPP if

processor # is large * GPU accelerators attached

What is NoSQL?

. Next Generation Compute/Storage engines (databases)
. non-relational

. distributed

- open-source

. horizontally scalable
. One view: “no” = elide SQL/database functionality to achieve scale

. Another view: “NoSQL” is actually misleading.

. more appropriate term is actually “Not Only SQL”

What is NoSQL?

. Next Generation Compute/Storage engines (databases)

. non-relational
. distributed

- open-source
P What NoSQL gives up in exchange for scale:

- horizontally scalable Relationships between entities are non-existent

. One view: “no” = elide SQL/da' Limited or no ACID transactions

No standard language for queries (SQL)

. Another view: “NoSQL”" is actua
Less structured

. more appropriate term is actually "Not Unly SQL"

What is NoSQL?

. Next Generation Compute/Storage engines (databases)
. non-relational
. distributed

- open-source
P What NoSQL gives up in exchange for scale:

- horizontally scalable Why talk about NoSQL in concurrency class?
. One view: “no” = elide SQL/da Principle

Most tradeoffs are a direct result of concurrency

. . V7
. Another view: “NoSQL” is actua Practice

. more appropriate term is actually “No RESQESyStemSaEibIGHIONE

Relevant aspects
scale/performance tradeoff space
Correctness/programmability tradeoff space

Review: noSQL Taxonomy

Review: noSQL Taxonomy

Consistency

Review: noSQL Taxonomy

Consistency

Data Model

Review: noSQL Taxonomy

Consistency

Data Model

16

Review: noSQL Taxonomy

< Strong: ACID Consistency

Eventual: BASE

Data Model

16

Review: noSQL Taxonomy

* Atomicity

* Consistency
Isolation
Durability

Data Model

Strong?ACID Consistency

Eventual: BASE

<

>y

16

Review: noSQL Taxonomy

9
S
@)
<
Atomicity -E * Basically Available
Consistency d° Soft State
Isolation ¢ Eventually Consistent
Durability
Strong/ACID Consistency Eventual: BASE

»Y

C)
Ny

<

16

Review: noSQL Taxonomy

Data Model

Strong: ACID Consistency Eventual: BASE

< Q4

Review: noSQL Taxonomy

Data Model

Strong: ACID Consistency Eventual: BASE>v

16

Review: noSQL Taxonomy

Data Model

Strong: ACID Consistency Eventual: BASE>v

16

Review: noSQL Taxonomy

Strong: ACID Consistency

Data Model

16

Review: noSQL Taxonomy

Wide-Column Stores

Strong: ACID Consistency Eventual: BASE

16

Review: noSQL Taxonomy

Data Model

Strong: ACID

16

Review: noSQL Taxonomy

Data Model

Wide-Column Stores
Strong: ACID Consistency Eventual: BASE

16

Review: noSQL Taxonomy

Data Model

Wide-Column Stores
Strong: ACID Consistency Eventual: BASE

16

Review: noSQL Taxonomy

Data Model

Wide-Column Stores
Strong: ACID Consistency Eventual: BASE

Query Support

16

Review: noSQL Taxonomy

Data Model

Wide-Column Stores

Strong: ACID Consistency Eventual: BASE v T,

0Qf’ e Range-Sharding
_____________________ \ * Hash-Sharding
e Consistent Hashing

Query Support

\‘(\Q 16

Review: noSQL Taxonomy

Data Model

Wide-Column Stores
Strong: ACID Consistency Eventual: BASE

Query Support

16

Review: noSQL Taxonomy

Data Model

Wide-Column Stores

Strong: ACID Consistency Eventual: BASE

_____________________ . * Primary-Backup

* Commit-Consensus
————————————————————— . Protocol

* Sync/Async

Query Support

\‘(\Q 16

Review: noSQL Taxonomy

Data Model

Wide-Column Stores
Strong: ACID Consistency Eventual: BASE

Query Support

16

Review: noSQL Taxonomy

Data Model

Wide-Column Stores

Strong: ACID Consistency Eventual: BASE

* Logging
Storage

* Update In Place
Caching
* In-Memory Storage

Query Support

\‘(\Q 16

Review: noSQL Taxonomy

Data Model

Wide-Column Stores
Strong: ACID Consistency Eventual: BASE

Query Support

16

Review: noSQL Taxonomy

Wide-Column Stores

Strong: ACID Consistency Eventual: BAS

Data Model

E

Query Support

Secondary Indexing
Query Planning
Materialized Views
Analytics

16

Review: noSQL Taxonomy

Data Model

Wide-Column Stores
Strong: ACID Consistency Eventual: BASE

Query Support

16

£

:

g

g
Data Model

Consistency

Consistency

Replication

o
B Storage ‘o“
&
’ &
7 Query Suppoart é{\
’ ¥

£

:

g

g
Data Model

Consistency

Replication

O
2 Storage ‘o¢
’ &
7 Query Suppoart &
’ ¥

£

:

g

g
Data Model

Consistency

Consistency

Replication

£

g2

H

g

g
Data Model

Consistency

Consistency

Replication

N S

Partitions

£

g2

H

g

g
Data Model

Consistency

Consistency

Replication

N S

Partitions

Consistency

* Clients perform reads and writes Partitions

Consistency

* Clients perform reads and writes Partitions
* Data is replicated among a set of servers

Consistency

* Clients perform reads and writes Partitions
* Data is replicated among a set of servers

* Writes must be performed at all servers

Consistency

Clients perform reads and writes
Data is replicated among a set of servers
Writes must be performed at all servers

Reads return the result of one or more past writes

Partitions

Consistency

Clients perform reads and writes
Data is replicated among a set of servers

Writes must be performed at all servers
Reads return the result of one or more past writes
How to keep data in sync?

Partitions

Consistency

Clients perform reads and writes Partitions
Dat.a is replicated among a set of servers T e ——
Writes must be performed at all servers « consistency: no internal contradictions

Reads return the result of one or more past writ © Correct: higher-level property
How to keep datain sync? * Inconsistency = code does wrong things

Consistency: CAP Theorem

Data Model

Strong Consistency

2 Replication
e &
s ¥
o e o
’
’ Query Support
A ———————

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:
1. Consistency:

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:

* all nodes see same data at any time

e orreads return latest written value by any client
2. Availability:

* system allows operations all the time,

* and operations return quickly

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:
* system allows operations all the time,
* and operations return quickly

3. Partition-tolerance:

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:
* system allows operations all the time,
* and operations return quickly
3. Partition-tolerance:
e system continues to work in spite of network partitions

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:

* all nodes see same data at any time

e orreads return latest written value by any client
2. Availability:

* system allows operations all the time,

* and operations return quickly
3. Partition-tolerance:

e system continues to work in spite of netwo

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:
 system allows operations all the time, Why care about CAP Properties?

Availability
*Reads/writes complete reliably and quickly.

3. Partition-tolerance: *E.g. Amazon, each ms latency = S6M yearly loss.
Partitions

. Internet router outages

. Under-sea cables cut

. rack switch outage

. system should continue functioning normally!
Consistency
. all nodes see same data at any time, or reads return latest
written value by any client.
. This basically means correctness!

* and operations return quickly

e system continues to work in spite of netwo

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:

* all nodes see same data at any time

e orreads return latest written value by any client
2. Availability:

* system allows operations all the time,

* and operations return quickly
3. Partition-tolerance:

e system continues to work in spite of netwo

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:

« system allows operations all the time, Why is this “theorem” true?
* and operations return quickly

3. Partition-tolerance:
e system continues to work in spite of netwo

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:

« system allows operations all the time, Why is this “theorem” true?
e and operations return quickly Ll

3. Partition-tolerance:
e system continues to work in spite of netwo

-~
-

Write(k,v)

Read(k,v)

‘ writer | ‘ reader ‘

| [

\
=
s f,

I

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:

« system allows operations all the time, Why is this “theorem” true?
e and operations return quickly SO

3. Partition-tolerance:
e system continues to work in spite of netwo

Write(k,v)

Read(k,v)

‘ writer | ‘ reader ‘

| [

\
=
s f,

o o -

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:

« system allows operations all the time, Why is this “theorem” true?
e and operations return quickly SO

3. Partition-tolerance:
e system continues to work in spite of netwo

Write(k,v)

Read(k,v)

‘ writer | ‘ reader ‘

| [

\
=
s f,

o o -

if(partition) { keep going } = !consistent && available

Consistency: CAP Theorem

A distributed system can satisfy at most 2/3 guarantees of:

1. Consistency:
* all nodes see same data at any time
e orreads return latest written value by any client

2. Availability:

« system allows operations all the time, Why is this “theorem” true?
e and operations return quickly SO

3. Partition-tolerance:
e system continues to work in spite of netwo

Write(k,v)

Read(k,v)

‘ writer | ‘ reader ‘

| [

\
=
s f,

o o -

if(partition) { keep going } = !consistent && available
if(partition) { stop } 2 consistent && !available

CAP Implications

e Adistributed storage Consistency

system can achieve at
most two of C, A, and P.

* When partition-
tolerance is important,
you have to choose

between consistency and HBase, HyperTable,
availability BigTable, Spanner

RDBMSs
(non-replicated)

Partition-tolerance Availability

Cassandra, RIAK,
Dynamo, Voldemort

CAP Implications

» Adistributed storage Consistency

system can achieve at
most two of C, A, and P.

* When partition-
tolerance is important,
you have to choose

between consistency and HBase, HyperTable,
availability BigTable, Spanner

RDBMSs
(non-replicated)

CAP is
HEVYL

Partition-tolerance Availability

Cassandra, RIAK,
Dynamo, Voldemort

CAP Implications

PACELC:

if(partition) {

e Adistributed storage -
system can achieve at gonSIStency choose Aor C
} else {

most two of C, A, and P.
choose latency or consistency

}

* When partition-
tolerance is important,
you have to choose

between consistency and HBase, HyperTable,
availability BigTable, Spanner

RDBMSs
(non-replicated)

CAP is
HEVYL

Partition-tolerance Availability

Cassandra, RIAK,
Dynamo, Voldemort

Consistency Spectrum

* Eventual Consistency * Strict:
. . . » Absolute time ordering of all shared accesses, reads always return
* |If writes to a key stop, all replicas of key will last write
converge * Linearizability:
* Originally from Amazon’s Dynamo and LinkedIn’s E
. ach operation is visible (or available) to all other clients in real-time
Voldemort systems order
BASE: . Sequential Consistency [Lamport]:
. . the result of any exec(tjlt/on is the same asllf tge opezlat’/’ons of all the y
: : processors were executed in some sequential order, and the operations o
¢ Basica | Iy Avai |a b I e each individual processor appear in this sequence in the order specified by
its program.
° Soft State * After the fact, find a “reasonable” ordering of the operations (can re-order
operations) that obeys sanity (consistency) at all clients, and across clients.
* Eventually Consistent « ACID properties

Faster reads and writes

More consistency Strong
Eventual (e.g., Sequential)

Consistency Spectrum

* Eventual Consistency

* |If writes to a key stop, all replicas of key will
converge

* Originally from Amazon’s Dynamo and LinkedIn’s
Voldemort systems

BASE:
« Basically Available
e Soft State

* Eventually Consistent

Strict:

. ﬁb?olu’%e time ordering of all shared accesses, reads always return
ast write

Linearizability:

. Eaccj:h operation is visible (or available) to all other clients in real-time
order

Sequential Consistency [Lamport]:

. . the result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by
its program.

* After the fact, find a “reasonable” ordering of the operations (can re-order
operations) that obeys sanity (consistency) at all clients, and across clients.

ACID properties

Eventual: BASE

Strong: ACID

Faster reads and writes

More consistency Strong
Eventual (e.g., Sequential)

Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a
P2 Wb P2. Wix)b
P3 R{x)b R(x)a P3: R(x)b R(x)a

Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a

P2. Wb P2. Wix)b

P3: R{x)b R(x)a P3: R(x)b R(x)a
P4. Rxb R(x)a P4. R(x)a R(x)b

* Why is this weaker than strict/strong?) (b)

Sequential Consistency

» weaker than strict/strong consistency
* All operations are executed in some sequential order
* each process issues operations in program order
* Any valid interleaving is allowed
* All agree on the same interleaving
* Each process preserves its program order

P1: W(x)a P1: Wix)a

P2: Wx)b P2: Wix)b

P3: R{x)b R(x)a P3: R(x)b R(x)a

P4. Rxb R(x)a P4. R(x)a R(x)b
» Why is this weaker than strict/strong?) ()

* Nothing is said about “most recent write”

Causal consistency

Causal consistency

e Causally related writes seen by all processes in same order.

Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

Causal consistency

Causal:

e Causally related writes seer If @ write produces a value that
causes another write, they are causally related

* Causally?
X=1
if(X >0) {
Y=1
}

Causal consistency =2 all see X=1, Y=1 in same order

Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

e Concurrent writes may be seen in different orders on different
machines

Causal consistency

e Causally related writes seen by all processes in same order.

* Causally?
e Concurrent writes may be seen in different orders on different
machines

P1: W(x)a

P2: R(x)a Wb

P3: R(x)b R{)a

P4: R(x)a R{()b
(@)

Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

e Concurrent writes may be seen in different orders on different

machines
P1: W(x)a
P2: R(x)a Wb
P3: R(xX)b R(x)a
P4: R(x)a R()b

(@)

Not permitted

Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

e Concurrent writes may be seen in different orders on different

machines
P1: W()a P1: W(x)a
P2: Rx)a Wi(x)b P2: W(x)b
P3: RO)b Ra P3: Re)b R()a
P4: R(x)a R{()b P4: R(x)a R({x)b

(@) (b)

Not permitted

Causal consistency

e Causally related writes seen by all processes in same order.
* Causally?

e Concurrent writes may be seen in different orders on different

machines
P1: W()a P1: W(x)a
P2: Rx)a Wi(x)b P2: W(x)b
P3: RO)b Ra P3: Re)b R()a
P4: R(x)a R@)b P4: R(x)a R{x)b
(a) (b)
Permitted

Not permitted

Linearizability vs. Serializability

http://www.bailis.org/blog/linearizability-versus-serializability/

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability

* Linearizability assumes sequential consistency and
* |f TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
» Stronger than sequential consistency

http://www.bailis.org/blog/linearizability-versus-serializability/

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability

* Linearizability assumes sequential consistency and
* |f TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
» Stronger than sequential consistency

* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

http://www.bailis.org/blog/linearizability-versus-serializability/

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability

* Linearizability assumes sequential consistency and
* |f TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
» Stronger than sequential consistency

* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

Linearizability:

http://www.bailis.org/blog/linearizability-versus-serializability/

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability

* Linearizability assumes sequential consistency and
* |f TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
» Stronger than sequential consistency

* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

Linearizability:
*Single-operation, single-object, real-time order

http://www.bailis.org/blog/linearizability-versus-serializability/

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability

* Linearizability assumes sequential consistency and
* |f TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
» Stronger than sequential consistency

* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

Linearizability:

*Single-operation, single-object, real-time order
*Talks about order of ops on single object (e.g.
atomic register)

http://www.bailis.org/blog/linearizability-versus-serializability/

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability

* Linearizability assumes sequential consistency and
* |f TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
» Stronger than sequential consistency

* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

Linearizability:
*Single-operation, single-object, real-time order
*Talks about order of ops on single object (e.g.

atomic register)
*Ops should appear instantaneous, reflect real

time order

http://www.bailis.org/blog/linearizability-versus-serializability/

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability

* Linearizability assumes sequential consistency and
* |f TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
» Stronger than sequential consistency

* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

Linearizability: Serializability:
*Single-operation, single-object, real-time order
*Talks about order of ops on single object (e.g.

atomic register)
*Ops should appear instantaneous, reflect real

time order

http://www.bailis.org/blog/linearizability-versus-serializability/

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability

* Linearizability assumes sequential consistency and
* |f TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
» Stronger than sequential consistency

* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

Linearizability: Serializability:
*Single-operation, single-object, real-time order *Talks about groups of 1 or more ops on one or

*Talks about order of ops on single object (e.g. more objects

atomic register)
*Ops should appear instantaneous, reflect real

time order

http://www.bailis.org/blog/linearizability-versus-serializability/

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability

* Linearizability assumes sequential consistency and
* |f TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
» Stronger than sequential consistency

* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

Linearizability: Serializability:
*Single-operation, single-object, real-time order *Talks about groups of 1 or more ops on one or
*Talks about order of ops on single object (e.g. more objects o : :

, , *Txns over multiple items equivalent to serial
atomic register) order of txns

*Ops should appear instantaneous, reflect real
time order

http://www.bailis.org/blog/linearizability-versus-serializability/

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability

* Linearizability assumes sequential consistency and
* |f TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
» Stronger than sequential consistency

* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

Linearizability: Serializability:

*Single-operation, single-object, real-time order *Talks aEOUt groups of 1 or more ops on one or
. . more objects

*Talks about order of ops on single object (e.g.) o : :

_ _ *Txns over multiple items equivalent to serial

atomic register) order of txns

*Ops should appear instantaneous, reflect real *Only requires *some* equivalent serial order

time order

http://www.bailis.org/blog/linearizability-versus-serializability/

http://www.bailis.org/blog/linearizability-versus-serializability/

Linearizability vs. Serializability

* Linearizability assumes sequential consistency and
* |f TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
» Stronger than sequential consistency

* Difference between linearizability and serializability?
e Granularity: reads/writes versus transactions

Linearizability: Serializability:

*Single-operation, single-object, real-time order *Talks aEOUt groups of 1 or more ops on one or
. . more objects

*Talks about order of ops on single object (e.g.) o : :

_ _ *Txns over multiple items equivalent to serial

atomic register) order of txns

*Ops should appear instantaneous, reflect real *Only requires *some* equivalent serial order

time order

Serializability + Linearizability == “Strict Serializability”
* Txn order equivalent to some serial order that respects real time order
* Linearizability: degenerate case of Strict Ser: txns are single op single object

http://www.bailis.org/blog/linearizability-versus-serializability/

http://www.bailis.org/blog/linearizability-versus-serializability/

Some Consistency Guarantees

Strong Consistency See all previous writes.
Eventual Consistency See subset of previous writes.
Consistent Prefix See initial sequence of writes.
Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

Some Consistency Guarantees

Strong Consistency
Eventual Consistency
Consistent Prefix
Bounded Staleness
Monotonic Reads

Read My Writes

See all previous writes.

See subset of previous writes.
See initial sequence of writes.
See all “old” writes.

See increasing subset of writes.

See all writes performed by reader.

'y
NS
g & 8
F © 3
S & 9
S Q 9§
A D F
D A A
C B A
B C D
C B B
C C C

NoSQL faux quiz:

e What is the CAP theorem? What does “PACELC” stand for and how does it
relate to CAP?

e What is the difference between ACID and BASE?

* Why do NoSQL systems claim to be more horizontally scalable than RDMBSes?
List some features NoSQL systems give up toward this goal?

* What is eventual consistency? Give a concrete example of how of why it
cau;els)a complex programming model (relative to a strongly consistent
model).

 Compare and contrast Key-Value, Document, and Wide-column Stores

* Define and contrast the following consistency properties:

* strong consistency, eventual consistency, consistent prefix, monotonic reads, read-my-
writes, bounded staleness

NoSQL faux quiz:

e What is the CAP theorem? What does “PACELC” stand for and how does it
relate to CAP?

e What is the difference between ACID and BASE?

* Why do NoSQL systems claim to be more horizontally scalable than RDMBSes?
L : NSOl ! Lehi ¥
 What is eventual consistency? Give a concrete example of how of why it

caugels)a complex programming model (relative to a strongly consistent
model).

* Define and contrast the following consistency properties:

* strong consistency, eventual consistency, consistent prefix, monotonic reads, read-my-
writes, bounded staleness

Dataflow

Dataflow

* MR is a dataflow engine

Dataflow

* MR is a dataflow engine

Dataflow

* MR is a dataflow engine

* So are Lots of others

* Dryad
DryadLINQ
Dandelion
CIEL
GraphChi/PowerGraph/Pregel
Spark

Dataflow

* MR is a dataflow engine

* So are Lots of others

* Dryad
DryadLINQ
Dandelion
CIEL
GraphChi/PowerGraph/Pregel
Spark

Map Shuffle Reduce

(). (
o SN - - .
Processing”™ =\ T\ (0 /1
i / ANe £ /
Verthes\). ,, < \\\\ / 0 ,-’H, \r‘s Channels
|)\ (ile, pipe,
" B TS - ian IO \ shared

~ ()

.4 . = memory)

Spark faux quiz (5 min, any 2):

* What is the difference between transformations and actions in Spark?

e Spark supports a persist APl. When should a programmer want to use it?
When should she [not] use use the “RELIABLE” flag?

 Compare and contrast fault tolerance guarantees of Spark to those of
MapReduce. How are[n’t] the mechanisms different?

* Is Spark a good system for indexing the web? For computing page rank
over a web index? Why [not]?

* List aspects of Spark’s design that help/hinder multi-core parallelism
relative to MapReduce. If the issue is orthogonal, explain why.

Collections and lterators

class Collection<T> : I[Enumerable<T>;

A

Collections and Iterators

class Collection<T> : I[Enumerable<T>;

A

public interface IEnumerable<T> {
IEnumerator<T> GetEnumerator();

}

29

Collections and Iterators

class Collection<T> : I[Enumerable<T>;

i

public interface IEnumerable<T> {
IEnumerator<T> GetEnumerator();

}

public interface IEnumerator <T> {
T Current { get; }
bool MoveNext();
void Reset();

29

Collections and Iterators

class Collection<T> : I[Enumerable<T>;

i

public interface IEnumerable<T> {
IEnumerator<T> GetEnumerator();

}

public interface IEnumerator <T> {
T Current { get; }
bool MoveNext();
void(@set();

29

DryadLINQ Data Model

Partition

A

.Net objects

/

III\
)

(// °/f \

1l

) 4

Collection

30

DryadLINQ = LINQ + Dryad

~

[Collection<T> collection;]
(bool IsLegal(Key k); |
| string Hash(Key); |
s N

var results = from c in collection

where IsLegal(c.key)

lect Hash(c.key), c.value};
k select new { Hash(c.key), c.value} /

31

DryadLINQ = LINQ + Dryad

~

Collection<T> collection;]
/ (bool IsLegal(Key k); |
string Hash(Key); |

> <

var results = from c in collection

where IsLegal(c.key)
select new { Hash(c.key), c.value};

Data ‘
I I I I collection

O results

DryadLINQ = LINQ + Dryad

4

~

Collection<T> collection;

)

bool IsLegal(Key k);
string Hash(Key);

N

/

var results = from c in collection

where IsLegal(c.key)
k select new { Hash(c.key), c.value};

=

Data ‘

& &

\

Query
plan
(Dryad job)

collection

results

31

DryadLINQ = LINQ + Dryad

Vertex
code

~

Collection<T> collection;]
bool IsLegal(Key k); |

string Hash(Key); |
> <

var results = from c in collection

where IsLegal(c.key)
select new { Hash(c.key), c.value}; / \ Query

plan
(Dryad job)

() colfection

() results

31

Language Summary

(IINID (HNID) ((HNID)
9

Language Summary

(IINID (HNID) ((HNID)
9

Where

Language Summary

(IINID (HNID) ((HNID)
9

Where g 0l)¢ D) (I)

Language Summary

(IINID (HNID) ((HNID)
9

Where g 0l)¢ D) (I)
Select

Language Summary

QULTTTIETTTIRGLIIT]
3

Where g 0l)¢ I (I)
Select @-----] é[,----] g—---]

Language Summary

(IINID (HNID) ((HNID)

|

¥
Where el N Jg HNN) (i
Select g—----] é[,----] g—---]

GroupBy

32

Language Summary

Where
Select
GroupBy

(IINID (HNID) ((HNID)

Y
i BRI
g—----] ;[----
é[l moooo) é/. =

p
= II
=
S

\.

S

J
(\
< | DEEE
o
= J

(\
o
= O J

32

Language Summary

Where
Select
GroupBy
OrderBy

(IINID (HNID) ((HNID)

Y
i BRI
g—----] ;[----
é[l moooo) é/. =

p
\II
~
S
\.

S

J
(\
< | DEEE
o
= J

(\
o
= O J

32

Language Summary

(IINID (HNID) ((HNID)

$
Where gl HIBEI NG I
Select g—----] ;[----: E:/----:
GroupBy éﬂlﬁllﬁl ooo é/ll: g/llll:
OrderBy | ecma) fannnn) ganll

Language Summary

Where
Select
GroupBy
OrderBy
Aggregate

(IINID (HNID) ((HNID)

=
=

S

¥

(\
<\ J

(N\
E;-----]{----
S)

g;EIEIEI ooo ﬁ/“j

(N\
=\----]§/llll,
S

=
=

S

=
=

S

r
o II
\.

J
(\
< | DEEE
o
= J

(\
o
= O J

(\
\ J

32

Language Summary

Where
Select
GroupBy
OrderBy
Aggregate

LLTLIELIIL]

¥

(\

(3\
E//-----] ;[----
S)

g;EIEIEI ooo ﬁ/“j

(N\
=~ ~
6—---] E[/I..l,
=~ s

QL)

Language summary

Where
Select
GroupBy
OrderBy
Aggregate
Join

QUITINEIIT]

¥

. N\

j)
E;-----]{I---
=)

é[l[l[l 0oo ﬁ/ll:

j N\
=~ E
E;----]é/llll,
= =

QLI

Language Summary

Where
Select
GroupBy
OrderBy
Aggregate

Join gl L™

LLTLIELIIL]

¥

(\

(3\
E//-----] ;[----
S)

g;EIEIEI ooo ﬁ/“j

(N\
=~ ~
6—---] E[/I..l,
=~ s

QL)

Language Summary

Where
Select
GroupBy
OrderBy
Aggregate

LLTLIELIIL]

¥

(\

(3\
6-----] ;[----
S)

éﬂlﬁllﬁl ooo ﬁ/“j

(N\
= ~
6—---] E[/I..l,
=~ s

QL)

Join ¢l (HNEED)

Language Summary

Where
Select
GroupBy
OrderBy
Aggregate

LLTLIELIIL]

¥

(\

(3\
E//-----] ;[----
S)

g;EIEIEI ooo é“:

(N\
=~ ~
6—---] E[/I..l,
=~ s

QL)

Join ¢l (HNEED)

Apply

Language Summary

Where
Select
GroupBy
OrderBy
Aggregate

LLTLIELIIL]

¥

(\

(3\
E//-----] ;[----
S)

g;EIEIEI ooo ﬁ/“j

(N\
=~ ~
6—---] E[/I..l,
=~ s

QL)

Join eIl gl g (HEEED)
‘ E[/IZIIZIIZIIZIIZIIZI

Apply

Language Summary

Where
Select
GroupBy
OrderBy
Aggregate

(IINID (HNID) ((HNID)

¥

(\

(N\
Ig/-----] ;[----
S)

—
o
Q

[EGEhEE) %/“j

=
o
I;

(\
----]é/llll,
=

-
=
o
=

J
(\
< | DEEE
o
= J

(\
o
= O J

(\
o~
o
= J

Join eIl gl g (HEEED)
‘ I/\[/IZIIZIIZIIZIIZIIZI

Apply
Materialize

Language Summary

(IINID (HNID) ((HNID)

¥
Where ¢l 00 g NI g(0n
Select I;{/:-----] ;[----: Ig/----:
GroupBy £1000000] (mnn) c{ennm
OrderBy flocma) feannn) g(unll
Aggregate
Join eIl gl (HEERD)
Apply o) I:[/IZIIZIIZIIZIIZIEI

Materialize Ew Om Omg ;

Example: Histogram

public static IQueryable<Pair> Histogram(
|Queryable<LineRecord> input, int k)
{

var words = input.SelectMany(x => x.line.Split(' '));

var groups = words.GroupBy(x => x);

var counts = groups.Select(x => new Pair(x.Key, x.Count()));
var ordered = counts.OrderByDescending(x => x.count);

var top = ordered.Take(k);

return top;

“A line of words of wisdom”

[“A”, “line”, “of”, “words”, “of”, “wisdom”]

[[“A”], [“line”], [“of”, “of”], [“words”], [“wisdom”]]

[{“A”, 1}, {“line”, 1}, {“of”, 2}, {“words”, 1}, {“wisdom”, 1}]
[{“of”, 2}, {“A”, 1}, {“line”, 1}, {“words”, 1}, {“wisdom”, 1}]
[{“of”, 2}, {“A”, 1}, {“line”, 1}]

iterative Computations: PageRank

Input

1. Start each page with arank of 1
2. On each iteration, update each page’s rank to
ziEnei(_:;hbors ranki / |neighborsi|

Tinks // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
ranks = Tinks.join(ranks).flatmMap {
Curl, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))
}. reduceByKey(_ + _)

7 Output Output

| Output

RDD Operations

Transformations

(define a new RDD)

Parallel operations
(return a result to driver)

map
filter

sample
union
groupByKey
reduceByKey
join
persist/cache

reduce
collect
count
save
lookupKey

RDD Operations

Transformations

Parallel operations

(define a new RDD)

map
filter

sample

union
groupByKey
reduceByKey
join
persist/cache

(return a result to driver)

reduce

collect

count

save

lookupKey where
Select
GroupBy
OrderBy
Aggregate
Join (U {10y
Apply

Materialize

RDD Fault Tolerance

* RDDs maintain lineage information that can be used
to reconstruct lost partitions

* Ex:
cachedMsgs = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))
.persist()

HdfsRDD FilteredRDD MappedRDD
[path: hdfs://... func: contains(...) func: split(...) H CachedRDD }

RDDs vs Distributed Shared Memory

Concern RDDs Distr. Shared Mem.
Reads Fine-grained Fine-grained
Writes Bulk transformations Fine-grained

Consistency

Trivial (immutable)

Up to app / runtime

Fault recovery

Fine-grained and low-
overhead using lineage

Requires checkpoints
and program rollback

Straggler
mitigation

Possible using
speculative execution

Difficult

Work placement

Automatic based on
data locality

Up to app (but runtime
aims for transparency)

