GPUs going once...
GPUs going twice...
you get the idea
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e (Questions?
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* Administrivia
* Start thinking about Projects!
J * Exam not quite done...Tuesday for sure!
LD * Agenda
=T * GPU performance

* GPU advanced topics
¢ Divergence
*  Device APIs vs Dataflow

* Coherence
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Faux Quiz Questions

* How is occupancy defined (in CUDA nomenclature)?
 What’s the difference between a block scheduler (e.g. Giga-Thread Engine) and a warp scheduler?

* Modern CUDA supports UVM to eliminate the need for cudaMalloc and cudaMemcpy*. Under
what conditions might you want to use or not use it and why?

* What is control flow divergence? How does it impact performance?

* What is a bank conflict?

* What is work efficiency?

* What is the difference between a thread block scheduler and a warp scheduler?
* How are atomics implemented in modern GPU hardware?

* Howis _shared_ memory implemented by modern GPU hardware?

* Whyis shared memory necessary if GPUs have an L1 cache? When will an L1 cache provide
all the benefit of __shared  memory and when will it not?

* |s cudaDeviceSynchronize still necessary after copyback if | have just one CUDA stream?



How many threads/blocks?

cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice) ;

add<<< >>>(d a, d b, d c);
cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost)

free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d _b); cudaFree(d c);
0;



How many threads/blocks?

// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice) ;

// Laun ot
add<€< >>(d a, d b, d c);

// Copy result back to host

cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost)

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d _b); cudaFree(d c);

return 0;




How many threads/blocks?

// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice) ;

// Laun Thel on GPU
add<&< >>»(d_a, d_b, d ¢c);

// Copy result back to host

cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost)

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d _b); cudafFree(d c);

return 0;

e Usually things are correct if grid*block dims >= input size
* Getting good performance is another matter



Review:

Internals

| host
void wvecAdd ()

{
dim3 DimGrid =
dim3 DimBlock

}

(ceil (n/256,1,1) ;
= (256,1,1);

addKernel<<<DGrid,DBlock>>>(A d4,B d,C d,n);

| global

void addKernel (float *A d,
float *B d,
float *C_d,
int n) {

int 1 = blockIdx.x * blockDim.x
+ threadlIdx.x;
if( i<n ) C_d[i] = A_d[i]+B_d[i];




Review: Internals

| _host | _global
void vecAdd() void addKernel (float *A d,
{ float *B d,
dim3 DimGrid = (ceil(n/256,1,1); float *C_d,
dim3 DimBlock = (256,1,1); int n) {
addKernel<<<DGrid,DBlock>>>(A d4,B d,C d,n); int i = blockIdx.x * blockDim.x
} + threadIdx.x;
if( i<n ) C_d[i] = A _d[i]+B_d[i];
}

Kernel

Schedule onto multiprocessors

MO Mk




Review: Internals

| _host | _global
void vecAdd() void addKernel (float *A d,
{ float *B d,
dim3 DimGrid = (ceil(n/256,1,1); float *C_d,
dim3 DimBlock = (256,1,1); int n) {
addKernel<<<DGrid,DBlock>>>(A d4,B d,C d,n); int i = blockIdx.x * blockDim.x
} + threadIdx.x;
if( i<n ) C_d[i] = A _d[i]+B_d[i];
}

Schedule onto multiprocessors

How are threads

MO L scheduled?
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Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

Register File

SMs

Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory

L1 Cache/Shared Memory

SM_0 SM_1 SM_12

e SMs split blocks into warps

e Unit of HW scheduling for SM
e 32 threads each
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Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

wn
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Register File Register File Register File
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SMs split blocks into warps
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IThread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks Remaining TBs are queued

wn
wn

Register File Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory

L1 Cache/Shared Memory

SM_0 SM_1 SM_12

SMs split blocks into warps

Unit of HW scheduling for SM
32 threads each
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* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters
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GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel @S e ey
* Enables device-specific online tuning of kernel parameter{ ilEEEEEEelease)
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A Taco Bar

Where is the parallelism here?
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GPU: a multi-lane Taco Bar

: 'v- N

Where is the parallelism here?

There’s none!

This only works if you can keep
every lane full at every step
Throughput == Performance
Goal: Increase Occupancy!
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* Where is the parallelism here?

There’s none!

This only works if you can keep
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GPU: a multi-lane Taco Bar

* Where is the parallelism here?

There’s none!

This only works if you can keep
every lane full at every step
Throughput == Performance
Goal: Increase Occupancy!
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* which resources can be dynamically shared
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Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

e Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel @Seirea ey
* Enables device-specific online tuning of kernel parameter{ ilEEEEEEelease)




Hardware Resources Are Finite
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Hardware Resources Are Finite
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Warp Context

Occupancy:
e (#Active Warps) /(#MaximumActive Warps)

* Limits on the numerator:
* Registers/thread
* Shared memory/thread block
* Number of scheduling slots: blocks, warps

e Limits on the denominator:
* Memory bandwidth
e Scheduler slots
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Hardware Resources Are Finite
|

Kernel ,'I Thread Block Control
Distributor ! Limits the #thread blocks
! ~ TBO JJJ >
SM
Scheduler I,’I Warp Schedulers
¢ T T l Warp Context Limits the #threads
| || || | |

Occupancy:

e (#Active Warps) /(#MaximumActive Warps)

* Limits on the numerator:

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

* Registers/thread sp || sp || sp |] sp
» Shared memory/thread block m——— Limits the #threads
. _ egister File ——
Number of scheduling slots: blocks, warps Limits the #thread blocks
* Limits on the denominator: L1/Shared Memory >

* Memory bandwidth

* Scheduler slots What is the performance impact of varying kernel resource demands?
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Impact of Thread Block Size

Example: v100:

* max active warps/SM == 64 (limit: warp context)
* max active blocks/SM == 32 (limit: block control)
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* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
e With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads =
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* Max active warps * threads/warp = 64*32 = 2048 threads =
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* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
e With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads =
e With 128 threads/block? =
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* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
e With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads =
* With 128 threads/block? =
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* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
e With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads =
e With 128 threads/block? =
e Consider HW limit of 32 thread blocks/SM @ 32 threads/block:

* Blocks are maxed out, but max active threads = 32*32 = 1024
e Occupancy =.5(1024/2048)
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* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
e With 512 threads/block how many blocks can execute (per SM) concurrently?
* Max active warps * threads/warp = 64*32 = 2048 threads =

* With 128 threads/block? =
e Consider HW limit of 32 thread blocks/SM @ 32 threads/block:

* Blocks are maxed out, but max active threads = 32*32 = 1024
e Occupancy =.5(1024/2048)

* To maximize utilization, thread block size should balance

e Limits on active thread blocks vs.
* Limits on active warps
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Registers/thread can limit number of active threads!
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Registers/thread can limit number of active threads!
V100:
* Registers per thread max: 255

* 64K registers per SM
Assume a kernel uses 32 registers/thread, thread block size of 256
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Kernel
Distributor

Impact of #Registers Per Thread &z
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Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
* Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
e FULLY Occupied!

15
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CiRA R

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
* Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
e FULLY Occupied!

* What is the impact of increasing number of registers by 2?

15



Impact of #Registers Per Thread &z

CiRA R

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
* Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
e FULLY Occupied!

* What is the impact of increasing number of registers by 2?
e Recall: granularity of management is a thread block!
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Impact of #Registers Per Thread

CiRA R

Registers/thread can limit number of active threads!

V100:
* Registers per thread max: 255

* 64K registers per SM
Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
* Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
e FULLY Occupied!

* What is the impact of increasing number of registers by 2?
e Recall: granularity of management is a thread block!

* Loss of concurrency of 256 threads!
» 34regs/thread * 256 threads/block * 7 blocks/SM = 60k registers,

* 8 blocks would over-subscribe register file
e Occupancy drops to .875!

% the Fthreads
ST



Impact of Shared Memory

 Shared memory is allocated per thread block

* Can limit the number of thread blocks executing concurrently per SM
* Shared mem/block * # blocks <= total shared mem per SM

* gridDim and blockDim parameters impact demand for
* shared memory
* number of thread slots
* number of thread block slots



Balance

Shared

memory/Th
read block

#Threads/Bl
ock

#Thread HRegisters/T
Blocks hread

* Navigate the tradeoffs
maximize core utilization and memory bandwidth utilization
Device-specific

« Goal: Increase occupancy until one or the other is saturated



Balance

template < class T >
__host__ cudakrrg

VRN VRN

t cudaOccupancyMaxActiveBlocksPerMultiprocessor ( int* numBlocks, T func, int blockSize, size_t dynamicSMemSize ) [inline]

Returns occupancy for a device function.

Parameters

numBlocks
- Returned occupancy
func

- Kernel function for which occupancy is calulated
blockSize

- Block size the kernel is intended to be launched with
dynamicSMemSize

- Per-block dynamic shared memory usage intended, in bytes

« Navigate the tradeoffs

\/
0’0

maximize core utilization and memory bandwidth utilization
<+ Device-specific

Goal: Increase occupancy until one or the other is saturated

17



Parallel Memory Accesses

* Coalesced main memory access (16/32x faster)
« HW combines multiple warp memory accesses into a single coalesced access

* Bank-conflict-free shared memory access (16/32)

* No alignment or contiguity requirements
e CC2.x+3.0: 32 different banks + 1-word broadcast each



Parallel Memory Architecture

In a parallel machine, many threads access memory
 Therefore, memory is divided into banks
* Essential to achieve high bandwidth

Each bank can service one address per cycle

* A memory can service as many simultaneous
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict

* Conflicting accesses are serialized

19



Coalesced Main Memory Accesses

single coalesced access

Address 132

Address 136

» Address 148

Address 156

Thread 10

‘ Thread 11 » Address 172 ‘ Thread 11 ¥ Address 172

‘ Tt ¥3 y Address 176 ‘ T iy y Address 176

‘ Thread 13 v Address 180 ‘ Thread 13 Address 180

Thread 14 v Address 184 Thread 14 v Address 184
NVIDIA

‘ Thread 15 » Address 188 ‘ Thread 15 b Address 188

NVIDIA

one and two coalesced accesses*™

+ Address 128 Address 128
v Address 132 b Address 132

v Address 136 Address 136

y Address 140 A Address 140

A Address 144 b Address 144

+ Address 148 L Address 148

+ Address 152 b Address 152

+ Address 156 k Address 156

y Address 160 k Address 160

+ Address 164 b Address 164

+ Address 168 A Address 168

+ Address 172 } Address 172

v Address 176 Thread 12 ! b Address 176

+ Addross 180 [ ol B Address 180

Thread 14 + Address 184 ‘ Thread 14 ™ Address 184

‘ Thread 15 + Address 188 ‘ Thread 15 ’ Address 188
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Bank Addressing Examples

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

e No Bank Conflicts

Linear addressing
stride ==

e No Bank Conflicts
e Random 1:1 Permutation

Bank 15

Thread O

Thread 1 “
Thread 2 ‘

Thread 3 ‘

Thread 4 ‘
Thread 5
Thread 6
Thread 7

Thread 15

|2

Bank 15




Bank Addressing Examples

e 2-way Bank Conflicts  8-way Bank Conflicts
 Linear addressing * Linear addressing
stride == stride ==

Thread O
Thread 1
Thread 2
Thread 3 §
Thread 4

Thread O

Thread 1 ‘
Thread 2 ~
Thread 3 ~"

Thread 4

%,
Thread 8 / N4

Thread 9

Thread 10
Thread 11 Bank 15

Thread 5 !

Thread 6 »

Thread 7

Thread 15

22



Linear Addressing

e Q@Given:

shared  float shared[256];

float foo =

shared|[baselndex + s *
threadIdx.x];

* This is only bank-conflict-free if s
shares no common factors with the
number of banks

e 16 on G80, so s must be odd

23

Thread O
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread O
Thread 1
Thread 2
Thread 3

Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

Bank 15



IGPU Atomics & Divergence

24



IGPU Atomics & Divergence

Race conditions —
 Traditional locks: avoid!
* How do we synchronize?

Read-Modify-Write — atomic

atomicAdd () atomicInc ()
atomicSub () atomicDec ()
atomicMin () atomicExch ()
atomicMax () atomicCAS ()

Implemented as write-through to L2
 “Fire-and-forget”



double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(&locked, 1) != 0)

>

L. double old = *data;
Race conditions — *data = old + val;

locked = 0;
* Traditional locks: avoid!
* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()
atomicSub () atomicDec ()
atomicMin () atomicExch ()
atomicMax () atomicCAS ()

Implemented as write-through to L2
 “Fire-and-forget”



double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(&locked, 1) != 0)

>

L. double old = *data;
Race conditions — *data = old + val;

locked = 0;
* Traditional locks: avoid!
* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()
atomicSub () atomicDec ()
atomicMin () atomicExch ()
atomicMax () atomicCAS ()

Implemented as write-through to L2
 “Fire-and-forget”



double atomicAdd(double *data, double val)
{

IGPU Atomics & DiverEECEEECIGESIRENEEE

>

L. double old = *data;
Race conditions — *data = old + val;

locked = 0;
* Traditional locks: avoid!
* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()

¢ Warp of Threads R {_dev1ce_ void example(bool condition)

& ataeve [T TTITTITIIIIT] $#(condition)

Some active F;’g?jﬁﬂﬂﬁﬁ%llllllll run_this_first();

I else

nthersactive | | | | | | | | PAAAAAAZAZA7 then_run_this();

Atactve [TTTTTTTTTTTTITTIT] converged_again();



double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(&locked, 1) != 0)

>

L. double old = *data;
Race conditions — *data = old + val;

locked = 0;
* Traditional locks: avoid!
* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()
atomicSub () atomicDec ()
atomicMin () atomicExch ()
atomicMax () atomicCAS ()

Implemented as write-through to L2
 “Fire-and-forget”



double atomicAdd(double *data, double val)
{

IGPU AtOmICS & D|Ve r While.(atomicExch(&1ocked, 1) 1= @)

>

L. double old = *data;
Race conditions — *data = old + val;

locked = 0;
 Traditional locks: avoid!
* How do we synchronize?

return old;

Read-Modify-Write — atomic

Every thread
tries to lock !

But only one
succeeds

Locking thread Non-locked

continues threads idle
until unlock

/




double atomicAdd(double *data, double val)
{

IGPU AtOmICS & D|Ve r While.(atomicExch(&1ocked, 1) 1= @)

>

L. double old = *data;
Race conditions — *data = old + val;

locked = 0;
* Traditional locks: avoid!
* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () very thread
atomicSub () tries to lock $M$m
atomicMin () sutonyane (T T T TTITIIT = ™
atomlcMax ( ) l Locking thread

idles
Implemented as write-throug l
 “Fire-and-forget” Uniock Never

Happens



Advanced Topic: GPU Programming Models



Layered abstractions
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Layered abstractions

Hardware

interface ~

/O dev DISK

—ceu_

e

MH
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Layered abstractions

Hardware

interface ~—

= C /O dev DISK NIC
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Layered abstractions

process files user-mode

LIBC/CLR Runtimes/libs

_ _ OS-level
process files PIpP€s abstractions

vendor driver |l vendor driver l vendor driver S

Joasn

EIEY

2/26/25



Layered abstractions

programmer-
visible interface process files user-mode

Runtimes/libs

Joasn

LIBC/CLR

OS interface " _ _ OS-level
5 process files PIPES D I abstractions

uJo

E

vendor driver |l vendor driver l vendor driver S

* 1:1 correspondence between OS-level and user-level abstractions
* Diverse HW support enabled HAL

2/26/25



GPU abstractions

MH
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GPU abstractions

Hardware
interface

wY

2/26/25



GPU abstractions

GPGPU shaders language
% APls kernels integration
m .
- GPU Runtime (e.g. OpenCL)

— Runtime
~ F support
)

: _
®
L
=

2/26/25



GPU abstractions

programmer-
visible interface

GPU Runtime (e.g. OpenCL)

GPGPU shaders language
APls kernels integration

2/26/25

— Runtime
support




GPU abstractions

GPGPU shaders language
APls kernels integration

GPU Runtime (e.g. OpenCL)
1 OS-level

programmer-
visible interface

abstraction! \@-
~

)
. )
Fat driver, >

interfaces

2/26/25

— Runtime
support




GPU abstractions

programmer- =

visible interface —_— GPGPU shaders language
g AP|s kernels integration
- GPU Runtime (e.g. OpenCL)

1 OS-level

abstraction! 3 Lo | F

Fat driver, (5;

proprietary =

interfaces
T
=

No kernel-facing API

OS resource-management limited
Poor composability

2/26/25

— Runtime
support




No OS support > No isolation

GPU benchmark throughput

1200

1000

800

600

400

invocations per second

200

Higher is no CPU load high CPU load
better

* Image-convolution in CUDA
* Windows 7 x64 8GB RAM

* Intel Core 2 Quad 2.66GHz
* nVidia GeForce GT230

2/26/25



No OS support > No isolation

GPU benchmark throughput

1200

o
c
v
. 1000
"
v 800
c
o 600
i
9
EE 400
8=
200
. " O
Higher is no CPU load high CPU load

better

ge-convolutionin CUDA

CPU+GPU schedulers not integrated! dows 7 x64 8GB RAM

) )| Core 2 Quad 2.66GHz
...other pathologies abundant fia GeForce GT230

2/26/25



Composition: Gestural Interface

Raw images
“*Hand"

events

noisy point cloud

xform ~ filter




Composition: Gestural Interface

Raw images

“Hand”
events

capture camera
images X




Composition: Gestural Interface

Raw images
“Hand"”

events

noisy point cloud

! xform ~ filter
geometric e i
transformation s AN




Composition: Gestural Interface

Raw images
“*Hand"

events

noisy point cloud

xform ~ fiter |
|

noise filtering




Composition: Gestural Interface

Raw images

“Hand”
events




Composition: Gestural Interface

Raw images
“*Hand"

events

noisy point cloud

xform ~ filter




Composition: Gestural Interface

Raw images
“*Hand"

N ‘:71’".‘

noisy point cloud

xform ~ filter

» Requires OS mediation

» High data rates

» Abundant data parallelism
...use GPUs!




What We’d Like To Do

#> capture | xform | filter | detect &

» Modular design
» flexibility, reuse
» Utilize heterogeneous hardware
» Data-parallel components 2 GPU
» Sequential components =2 CPU
» Using OS provided tools
» processes, pipes

2/26/25



What We’d Like To Do

#> capture | xform | filter | detect &
CPU CPU

» Modular design
» flexibility, reuse
» Utilize heterogeneous hardware
» Data-parallel components 2 GPU
» Sequential components =2 CPU
» Using OS provided tools
» processes, pipes

2/26/25



GPU Execution model

= GPUs cannotrun OS:
= different ISA

* Memories have different coherence guarantees
- (disjoint, or require fence instructions)

* Host CPU must "manage” GPU execution

= Program inputs explicitly transferred/bound at runtime
= Device buffers pre-allocated

Main
memory

Copy inputs Copy outputs Send commands

GPU

2/26/25

GPU
memory




GPU Execution model

= GPUs cannotrun OS:
= different ISA

* Memories have different coherence guarantees
- (disjoint, or require fence instructions)

* Host CPU must "manage” GPU execution

= Program inputs explicitly transferred/bound at runtime
= Device buffers pre-allocated

Main
memory

Copy inputs ‘L T Copy outputs lSend commands

GPU

2/26/25

GPU

memory




user

kernel

HW

Data migration

#> capture | | | detect &

capture

GPU driver

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | | | detect &

capture

GPU driver

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture |

capture

| detect &

GPU driver

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture |

capture

| detect &

GPU driver

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture |

capture

| detect &

GPU driver

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | | | detect &

capture

GPU driver

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | | | detect &

capture

GPU driver

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | | | detect &

capture

GPU driver

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | | | detect &

capture

GPU driver

copy-xfer

detect

HIDdrv

GPU
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user

kernel

HW

Data migration

#> capture | |

capture

| detect &

filter

GPU driver

copy-xfer

detect

HIDdrv

GPU
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user

kernel

HW

Data migration

#> capture | |

capture

GPU driver

N 7 I

| detect &

filter

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | |

capture

GPU driver

N 7 I

| detect &

filter

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | |

capture

GPU driver

N 7 I

| detect &

filter

copy-xfer

detect

HIDdrv

GPU
Run!
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user

kernel

HW

Data migration

#> capture | | | detect &

capture

GPU driver HIDdrv

copy-xfer
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user

kernel

HW

Data migration

#> capture | | | detect &

capture detect
| | NS | '

GPU driver HIDdrv

copy-xfer
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user

kernel

HW

Data migration

#> capture |

capture

| | detect &

GPU driver

N 7 I N 7 I

detect

HIDdrv
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user

kernel

HW

Data migration

#> capture | |

capture

N 7 I

| detect &

GPU driver

N 7 I

detect

HIDdrv

]

2/26/25



Device-centric APIs considered harmful

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B);
1nvokeGPU() ;
Matrix C = new Matrix();
copyFromGPU(C) ;

C;

2/26/25



Device-centric APIs considered harmful

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B);
invokeGPU() ;
Matrix C = new Matrix();
copyFromGPU(C) ;

C;

What happens if | want the following?
Matrix D=AxB xC

2/26/25



Composed matrix multiplication

Matrix
AXBxC(Matrix A, B, C) {
Matrix AxB = gemm(A,B);
Matrix AxXBxC = gemm(AxB,C);
AXBXC;

2/26/25



Composed matrix multiplication

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix();

Matrix CopyFromGPU(C) ;

AXBxC(Matrix A, B, C) { } ;
Matrix AxB = gemm(A,B);
Matrix AxXBxC = gemm(AxB,C);
AXBXC;

2/26/25



Composed matrix multiplication

Matrix
] gemm(Matrix A, Matrix B) {
AxB copied from COpYTOGPU(A) ;
copyToGPU(B) ;
GPU memory... invokeGPU(Q) ;

] Matrix C = new-Matrix();
MatriX c- '
AXBxC(Matrix*A, B, C) { }

Matrix = gemm(A,B) ;
Matrix AxXBxC = gemm(AxB,C);

AXBXC,

2/26/25



Composed matrix multiplication

Matrix
AxBxC(Matrix A, B, C) {
Matrix AxB = gemm(A,B);
Matrix AXBXC = gemm(
AXBXC;

Matrix
gemm{viatrix A, Matrix B) {

copyToGPU(B) ;

invokesPUQ);

Matrix C = new Matrix();

copyFromGPU(C) ;
C;

,C);

...only to be copied
right back!

2/26/25



What if I have many GPUs?

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B);
1nvokeGPU() ;
Matrix C = new Matrix();
copyFromGPU(C) ;

C;

2/26/25



What if I have many GPUs?

Matrix

gemm(GPU dev,Matrix A, Matrix B) {
copyToGPU(dev, A);
copyToGPU(dev, B);
invokeGPU(dev) ;
Matrix C = new Matrix();
copyFromGPU(dev, C);

C;

2/26/25



What if I have many GPUs?

Matrix

gemm(GPU dev,Matrix A, Matrix B) {
copyToGPU(dev, A);
copyToGPU(dev, B);
invokeGPU(dev) ;
Matrix C = new Matrix();
copyFromGPU(dev, C);

C;

What happens if | want the following?
Matrix D=AxB xC

2/26/25



Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;
G;

Matrix
AxBxC(Matrix A,B,C) {
Matrix AxB = gemm( , A,B);
Matrix AXBXC = gemm( , AXB,C);
AXBXC;

2/26/25



Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;
G;

Matrix
AXBXC(GPU dev, Matrix A,B,C) {
Matrix AxB = gemm(dev, A,B);
Matrix AXBxC = gemm(dev, AXB,C);
AXBXC;

2/26/25



Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)
{
copyToGPU(A) ;
Rats...now | can CopyToGPU(B) ;
only use 1 GPU. invokeGPUQ) ; _
How rtition Matrix C = new Matrix();
owtopa ?t 0 copyFromGPU(C) ;
computation? C:
3

Matrix
AxXBxC(GPU dev, Matrix A,B,C) {
Matrix AxXB = gemm(dev, A,B);
Matrix AXBxC = gemm(dev, AXB,C);
AXBXC;

2/26/25



Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;
G;

Matrix
AXBXC(GPU devA, GPU devB, Matrix A,B,C) {
Matrix AXB = gemm(devA, A,B);
Matrix AXBxC = gemm(devB, AxB,C);
AXBXC;
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Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{

This will never be COPYPEIFD’B Egg ;
copylo y
manageable for many GPUs. invokeGPUQ) ;
Programmer implements Matrix C = new Matrix();
scheduling using static view! copyFromGPU(C) ;
G

Matrix
AXBXC(GPU devA, GPU devB, Matrix A,B,C) {
Matrix AXB = gemm(devA, A,B);
Matrix AXBxC = gemm(devB, AxB,C);
AXBXC;

2/26/25



Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{

This will never be COPYPEEB Egg ;
copylo y
manageable for many GPUs. invokeGPUQ) ;
Programmer implements Matrix C = new Matrix();
scheduling using static view! copyFromGPU(C) ;
G

Matrix
AXBXC(GPU devA, GPU devB, Matrix A,B,C) {
Matrix AXB = gemm(devA, A,B);
Matrix AXBxC = gemm(devB, AxB,C);
AXBXC;

¥ Why don’t we have this problem with CPUs?

2/26/25



Dataftlow: a better abstraction

Matrix: A Matrix: B

Matrix: C

= nodes = computation
= edges = communication

= Expresses parallelism explicitly
= Minimal specification of data movement: runtime does it.

= asynchrony is a runtime concern (not programmer concern)
= No specification of compute—>device mapping: like threads!

2/26/25



Advanced Topic: GPU Coherence



Review: Cache Coherence

Tag State Cata Tag State Cata Tag State Cata

/0 devices




Review: Cache Coherence

Tag State Data Tag State Data Tag State Data
Bl_J:;E-:_I.'LIH:;h Il

|
N \

\
\
PR | |l

E‘u‘lnli.-ﬂl I|II E'LI'!'-L‘IJI..'FIIJ-;h

.III / |I |

o _.J" J
.

Bu'.ﬂd:l:ff ush

—

S .

El.l,J';F!da:flfI:;r:.h Jl|l .|"

P




Review: Cache Coherence

Tag State Cata Tag State Cata Tag State Cata

/0 devices

Each cache line has astate (M, E, S, I)



Review: Cache Coherence

Tag State Cata Tag State Cata Tag State Cata

/0 devices

Each cache line has astate (M, E, S, I)
» Processors “snoop” bus to maintain states



Review: Cache Coherence

Tag State Data Tag State Data Tag State Data

/0 devices

Each cache line has astate (M, E, S, I)

» Processors “snoop” bus to maintain states
= [Initially = 'I' = Invalid



Review: Cache Coherence

Tag State Data Tag State Data Tag State Data

/0 devices

Each cache line has astate (M, E, S, I)
» Processors “snoop” bus to maintain states
= [Initially = 'I' = Invalid
= Readone =2 'E’' 2 exclusive



Review: Cache Coherence

Tag State Data Tag State Data Tag State Data

Bl_J:;E-:_I.'LIH:;h Il

— I
E \ , ||

Privel- 1[ ' |
E‘u‘lnli.-ﬂl I|II E'LI'!'-L‘IJI..'FIIJ-;h
.III .l'II |I |

A J
|

\e ;u'.ﬂdﬁ:fflu:hf'l S

—

S .

/0 devices

Each cache line has a state (M, E, S, |)
» Processors “snoop” bus to maintain states
= [Initially = 'I' = Invalid
= Readone =2 'E’' 2 exclusive
= Reads =2 'S’ = multiple copies possible



Review: Cache Coherence

Tag State Data Tag State Data Tag State Data

Bl_J:;E-:_I.'LIH:;h Il

— I
E \ , ||

Privel- 1[ ' |
E‘u‘lnli.-ﬂl I|II E'LI'!'-L‘IJI..'FIIJ-;h
.III .l'II |I |

A J

\e B.u'.ﬂd:l:f;lush;l S

—

S .

/0 devices

Each cache line has astate (M, E, S, I)
» Processors “snoop” bus to maintain states

= [Initially = 'I' = Invalid

= Readone =2 'E’' 2 exclusive

= Reads =2 'S’ = multiple copies possible

= Write = ‘M’ = single copy =2 lots of cache coherence traffic



Review: Cache Coherence
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GPU Cache Coherence Challenges

« Challenge 1: Coherence traffic

No coherence

I MESI

GPU-VI

Q
o=
-—

1)

—
-—
-—

O

mﬂ

-

=

O

o

—

Q
—
=

o

-

-
o

Do not require
coherence

Recalls

Load C
Load D
Load E
Load F
Load C

45



GPU Cache Coherence Challenges

« Challenge 2: Tracking in-flight requests
« Significant % of L2

MSHR




Background: Directory Protocol

[ | FO I eac h b | OC k: Ce nt ra | |Zec P presence bits: indicate whether processor P

hasline in its cache

“directory” for state in caches Processor

Dirty bit: indicates block is dirty
in one of the processors’ caches

= Directory is co-located with Loca Cache
some global view of memory

Onedirectoryentryper — |0 CLT T T T T T 1]

cache line of memory

" Requests dare no Ionger seen
by eve ry0ne One cache line of memory ———J

Writes are serialized through

directory

2/26/25




GPU-VI

GPU-VI Coherence
» Directory-Based

Different from snoop-model

Global directory metadata at L2
= Two states

Valid

Invalid

S
o
a
@
=
c
e
=
@
®
o

= Writes invalidate other copies

2/26/25



Temporal Coherence (TC)

GPU-VI Coherence Temporal Coherence

OIoad, : B
predict|R, S . Local Timestamp
9 +5 T=15 load® |
, predict
R

T=20 — > Global Time - VALID
Core 1 '
L L1D
NGl A=0 |

Interconnect

read-only epoch

invalidate

invalidate

read-only epoch

Global Timestamp

~ S
v |G
whet

L2 Bank

lﬁ < Global Time =>

NO L1 COPIES




TC-Strong vs TC-Weak

D Write stalling at L2 (TC-Strong)

H]]]]] Fence waiting for pending requests (both)
D Fence waiting for GWCT (TC-Weak)

TC-Strong TC-Weak

ciff L2 ez c1)f L2 oz

081 flag data flag data
9F1 \l;‘[/""* NULL | 60| | OLD | 30 NULL | 60| | OLD | 30

ENO-L1 zZNO-COH OMESI mGPU-VI sGPU-VIni mTCW

FFFFTFTFITITIFFFFITIFIFITITTT
FFFF T FFFIFFIFFFIFFFFTIFF I

I O m =
m O E' T

self-
invalidate

(a) Inter-workgroup comm.  (b) Intra-workgroup comm.

Cl's requests C2's private cache Cl's requests C2's private cache
blocks state blocks state
(value | timestamp) (value | timestamp )

5O
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