GPUs going once...
GPUs going twice...
you get the idea

Chris Rossbach
cs3/8

LD/ LD/ LD/
ST ST 1)

D/
3T

LD/ LD/ LD/
1) ST ST SFU

Register File (16,384 x 32-bit)

rrr Outline for Today

e (Questions?

FF T I
* Administrivia
* Start thinking about Projects!
J * Exam not quite done...Tuesday for sure!
LD * Agenda
=T * GPU performance

* GPU advanced topics
¢ Divergence
* Device APIs vs Dataflow

* Coherence
Acknowledgements:

e http://developer.download.nvidia.com/compute/developertrainingmaterials/presentatio
ns/cuda_language/Introduction_to_CUDA_C.pptx

e http://www. . nn. ~ci LECTURE DA%20Tricks.pptx
tp://www.cs.utexas.edu/~pingali/CS378/2015sp/lectures/GPU%20Programming.p ptx

. Toﬁ#oﬁrdt’s 2013 paper

ol | T
| [.
T

http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/cuda_language/Introduction_to_CUDA_C.pptx
http://developer.download.nvidia.com/compute/developertrainingmaterials/presentations/cuda_language/Introduction_to_CUDA_C.pptx
http://www.seas.upenn.edu/~cis565/LECTURES/CUDA%20Tricks.pptx
http://www.cs.utexas.edu/~pingali/CS378/2015sp/lectures/GPU%20Programming.pptx

Faux Quiz Questions

* How is occupancy defined (in CUDA nomenclature)?
 What’s the difference between a block scheduler (e.g. Giga-Thread Engine) and a warp scheduler?

* Modern CUDA supports UVM to eliminate the need for cudaMalloc and cudaMemcpy*. Under
what conditions might you want to use or not use it and why?

* What is control flow divergence? How does it impact performance?

* What is a bank conflict?

* What is work efficiency?

* What is the difference between a thread block scheduler and a warp scheduler?
* How are atomics implemented in modern GPU hardware?

* Howis _shared_ memory implemented by modern GPU hardware?

* Whyis shared memory necessary if GPUs have an L1 cache? When will an L1 cache provide
all the benefit of __shared memory and when will it not?

* |s cudaDeviceSynchronize still necessary after copyback if | have just one CUDA stream?

How many threads/blocks?

cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice) ;

add<<< >>>(d a, d b, d c);
cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost)

free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d _b); cudaFree(d c);
0;

How many threads/blocks?

// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice) ;

// Laun ot
add<€< >>(d a, d b, d c);

// Copy result back to host

cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost)

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d _b); cudaFree(d c);

return 0;

How many threads/blocks?

// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice) ;

// Laun Thel on GPU
add<&< >>»(d_a, d_b, d ¢c);

// Copy result back to host

cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost)

// Cleanup
free(a); free(b); free(c);
cudaFree(d_a); cudaFree(d _b); cudafFree(d c);

return 0;

e Usually things are correct if grid*block dims >= input size
* Getting good performance is another matter

Review:

Internals

| host
void wvecAdd ()

{
dim3 DimGrid =
dim3 DimBlock

}

(ceil (n/256,1,1) ;
= (256,1,1);

addKernel<<<DGrid,DBlock>>>(A d4,B d,C d,n);

| global

void addKernel (float *A d,
float *B d,
float *C_d,
int n) {

int 1 = blockIdx.x * blockDim.x
+ threadlIdx.x;
if(i<n) C_d[i] = A_d[i]+B_d[i];

Review: Internals

| _host | _global
void vecAdd() void addKernel (float *A d,
{ float *B d,
dim3 DimGrid = (ceil(n/256,1,1); float *C_d,
dim3 DimBlock = (256,1,1); int n) {
addKernel<<<DGrid,DBlock>>>(A d4,B d,C d,n); int i = blockIdx.x * blockDim.x
} + threadIdx.x;
if(i<n) C_d[i] = A _d[i]+B_d[i];
}

Kernel

Schedule onto multiprocessors

MO Mk

Review: Internals

| _host | _global
void vecAdd() void addKernel (float *A d,
{ float *B d,
dim3 DimGrid = (ceil(n/256,1,1); float *C_d,
dim3 DimBlock = (256,1,1); int n) {
addKernel<<<DGrid,DBlock>>>(A d4,B d,C d,n); int i = blockIdx.x * blockDim.x
} + threadIdx.x;
if(i<n) C_d[i] = A _d[i]+B_d[i];
}

Schedule onto multiprocessors

How are threads

MO L scheduled?

IThread Blocks, Warps, Scheduling

IThread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

IThread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

Register File

SMs

Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory

L1 Cache/Shared Memory

SM_0 SM_1 SM_12

e SMs split blocks into warps

e Unit of HW scheduling for SM
e 32 threads each

IThread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

Register File Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory

L1 Cache/Shared Memory

SM_0 SM_1 SM_12

e SMs split blocks into warps

e Unit of HW scheduling for SM
e 32 threads each

IThread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

Register File Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory

L1 Cache/Shared Memory

SM_0 SM_1 SM_12

e SMs split blocks into warps

e Unit of HW scheduling for SM
e 32 threads each

IThread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks

wn
wn

Register File Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory

L1 Cache/Shared Memory

SM_0 SM_1 SM_12

SMs split blocks into warps

Unit of HW scheduling for SM
32 threads each

IThread Blocks, Warps, Scheduling

Suppose one TB (threadblock) has 64 threads (2 warps)

Thread Blocks Remaining TBs are queued

wn
wn

Register File Register File Register File

L1 Cache/Shared Memory L1 Cache/Shared Memory

L1 Cache/Shared Memory

SM_0 SM_1 SM_12

SMs split blocks into warps

Unit of HW scheduling for SM
32 threads each

GPU Performance Metric: Occupancy

GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel @S e ey
* Enables device-specific online tuning of kernel parameter{ ilEEEEEEelease)

A Taco Bar

A Taco Bar

A Taco Bar

Where is the parallelism here?

GPU: a multi-lane Taco Bar

GPU: a multi-lane Taco Bar

GPU: a multi-lane Taco Bar

¥
mlll.lu,,
= Tieopg >
- v,
L3}

a multi-lane Taco Bar

GPU

o
—

a multi-lane Taco Bar

GPU

o
—

-
(0]
| -
(]

<
=

2

o

‘©
{ .
©
o
(]

e

=

A
(0]
| -
(]

=

a multi-lane Taco Bar

GPU

GPU: a multi-lane Taco Bar

: 'v- N

Where is the parallelism here?

There’s none!

This only works if you can keep
every lane full at every step
Throughput == Performance
Goal: Increase Occupancy!

-
GPU: a multi-lane Taco Bar

There’s none!

This only works if you can keep
every lane full at every step
Throughput == Performance
Goal: Increase Occupancy!

GPU: a multi-lane Taco Bar

* Where is the parallelism here?

3 N

There’s none!

This only works if you can keep
every lane full at every step
Throughput == Performance
Goal: Increase Occupancy!

GPU: a multi-lane Taco Bar

* Where is the parallelism here?

3 N

There’s none!

This only works if you can keep
every lane full at every step
Throughput == Performance
Goal: Increase Occupancy!

GPU: a multi-lane Taco Bar

* Where is the parallelism here?

3 N

There’s none!

This only works if you can keep
every lane full at every step
Throughput == Performance
Goal: Increase Occupancy!

GPU: a multi-lane Taco Bar

* Where is the parallelism here?

3 N

There’s none!

This only works if you can keep
every lane full at every step
Throughput == Performance
Goal: Increase Occupancy!

GPU: a multi-lane Taco Bar

* Where is the parallelism here?

There’s none!

This only works if you can keep
every lane full at every step
Throughput == Performance
Goal: Increase Occupancy!

GPU: a multi-lane Taco Bar

* Where is the parallelism here?

There’s none!

This only works if you can keep
every lane full at every step
Throughput == Performance
Goal: Increase Occupancy!

T ~

GPU: a multi-lane Taco Bar

* Where is the parallelism here?

There’s none!

This only works if you can keep
every lane full at every step
Throughput == Performance
Goal: Increase Occupancy!

N5 | .
= ™

Review: GPU Performance Metric: Occupancy

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

12

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

* Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel
* Enables device-specific online tuning of kernel parameters

Review: GPU Performance Metric: Occupancy

* Occupancy = (#Active Warps) /(#MaximumActive Warps)

* Measures how well concurrency/parallelism is utilized

e Occupancy captures
* which resources can be dynamically shared
* how to reason about resource demands of a CUDA kernel @Seirea ey
* Enables device-specific online tuning of kernel parameter{ ilEEEEEEelease)

Hardware Resources Are Finite

!

Kernel , Thread Block Control
Distributor =
! TBO JJJ
SM
Scheduler I,’I Warp Schedulers

‘1’ ‘1’ ‘1’ ‘1’ /, Warp Context

1
1
SM SM SM SM
| | | . sp ([sp || sp || sp
\
v ' sp || sp || sp || sp
\
‘ sp || sp || sp || sp
DRAM Y
\
sp || sp || sp || sp

Register File

SM — Stream Multiprocessor

SP — Stream Processor \‘\ L1/Shared Memory

Hardware Resources Are Finite

!

Kernel
Distributor

v

SM

Scheduler

Vv

v

Thread Block Control

Limits the #thread blocks

TBO

)

Warp Schedulers

Warp Context

SM SM

SM

v

DRAM

SM — Stream Multiprocessor

SP — Stream Processor

SP SP SP SP
SP SP SP SP
SP SP SP SP
SP SP SP SP

Register File

L1/Shared Memory

>

Hardware Resources Are Finite

Thread Block Control

0

Limits the #thread blocks

>

TBO

Warp Schedulers

Limits the #threads

'|—>

Warp Context

Kernel ,
Distributor
SM
Scheduler
v v v v !
SM SM SM SM
l | | |
v
DRAM

9
SP

SP
SP

SP
SP

SP

SP
SP

SP SP
SP

SP SP

Register File

L1/Shared Memory

SM — Stream Multiprocessor

SP — Stream Processor

Hardware Resources Are Finite

Thread Block Control

—

Limits the #thread blocks

>

TBO

Warp Schedulers

Limits the #threads

'|—>

Warp Context

Kernel ,
Distributor
SM
Scheduler
v v v v !
SM SM SM SM
l | | |
v
DRAM

9
SP

SP SP
SP SP

SP
SP

SP
SP

SP SP
SP SP

Limits the #threads

4

SP SP

Register File

L1/Shared Memory

SM — Stream Multiprocessor

SP — Stream Processor

Hardware Resources Are Finite

Ke\!nel Thread Block Control
Distributor d JJJ Limits the #thread blocks
. >
! TB O
SM
Scheduler Warp Schedulers
0 T T 1 Warp Context Limits the #threads
1 é
SM SM SM SM
| | | | sp || sp || sp || sp
v sp || sp || sp || sp
DRAM SP SP SP SP
sp || sp || sPp || sP
Limits the #threads
SM_S Ml Register File —
~ >tream Multiprocessor Limits the #thread blocks
SP — Stream Processor \ L1/Shared Memory >

Hardware Resources Are Finite
¢ ,,

Kernel J
Distributor !

1
1
1

SM '

Thread Block Control

Limits the #thread blocks

TBO

)

Scheduler

v

v

v

Warp Schedulers

>

Warp Context

Occupancy:
e (#Active Warps) /(#MaximumActive Warps)

* Limits on the numerator:
* Registers/thread
* Shared memory/thread block
* Number of scheduling slots: blocks, warps

e Limits on the denominator:
* Memory bandwidth
e Scheduler slots

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

Register File

L1/Shared Memory

Limits the #threads
—_—

Limits the #threads
—>

Limits the #thread blocks

>

Hardware Resources Are Finite
|

Kernel ,'I Thread Block Control
Distributor ! Limits the #thread blocks
! ~ TBO JJJ >
SM
Scheduler I,’I Warp Schedulers
¢ T T l Warp Context Limits the #threads
| || || | |

Occupancy:

e (#Active Warps) /(#MaximumActive Warps)

* Limits on the numerator:

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

SP

* Registers/thread sp || sp || sp |] sp
» Shared memory/thread block m——— Limits the #threads
. _ egister File ——
Number of scheduling slots: blocks, warps Limits the #thread blocks
* Limits on the denominator: L1/Shared Memory >

* Memory bandwidth

* Scheduler slots What is the performance impact of varying kernel resource demands?

Kernel hewad Bock Control
Distributor ..' hLIl'I'IIti the gthread blocks
1 TRO i
5M J
° Scheduler | Warp Schedulers I
Impact or 1 I 1fed d B | OC k Size e e) T |
[st] [sm] [sm] [sm] _
C T T 1.
¥
‘ DRAM
Limits the Sthreads
| Hagrster Fliz | =
SN = Siream Mullpiooessne Limits the Hthread blocks
4P — Siream Progessor i I 1/ 4haren Memory | —_

14

4

Kernel f hewad Bock Control
Distributor i Limits the #thresd blocks
¥ ' [mo m g
5M J
Scheduler | warp Schodulees |

Impact of Thread Block Size o

(][]
‘ DRAM |]
CA 1]

Limits the Sthreads

._ G —
Example: v100: S Lt the #thread blo
i Ethread blocks
. . GF — Streamn Prooessn X I 1/ 5hared Mamory —

14

4

Eernel
Distributor

n.E"—

Sl

Impact of Thread Block Size e

‘ DrRAM

Example: v100:
* max active warps/SM == 64 (limit: warp context)

Impact of Thread Block Size

Example: v100:

* max active warps/SM == 64 (limit: warp context)
* max active blocks/SM == 32 (limit: block control)

W =2
Fh—=
g
o

Scheduler]
[
+ ¥
ma(en|eafen
[I | | I
[]

‘ DrRAM

14

)
Dristribit J :'_||'|1|l:.1.h1.-"||
1 | @l
° Scheduler Wiprp Schachdlers
Impact of Thread Block Size Pl =
5T | Eeen
‘ DRAM - |
II“I"III:' Limits the Sthreads
Example: v100: s, e i et

* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
e With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads =

14

i
Kernel heead Bock Conrol
Distributor I :Lll'ml:.thq.--"ll read blocks
1 | @l
° Schedul Wiprp Schachdlers
Impact of Thread Block Size Pl =
| B
‘ DRAM - I | N
i EI;I[;IE |__I.;n'-|tnhe:n".rl.'ad:-
Example: v100: e |l [T

* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
e With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads =

14

)
Kernel hewad Bock Control
Distributo . ﬁ =L||'|1|l:. the &t
'i1 | — |
° Scheduler Warp Schoculers
Impact of Thread Block Size o
o5 | B
‘ DRAM - I | | |
! II“I'EII:' Limits the
Example: v100: e | T

* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
e With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads =
e With 128 threads/block? =

14

i ;
TBD
5M
° Scheduler f [werpschedtes |
Impact of Thread Block Size EEe =2
7 | B
‘ DRAM - CaCCE0]
. i II“;I:'[IIIE |__L;m|h'lheirl'1ruads
Example: v100: e | P | e sesavic

* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
e With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads =
* With 128 threads/block? =

14

-
pr— heead BMockControl
Dristributor | ﬁ =_.um..l:thu:"l' ead blocks
mpact of Thread Block Si iyl — -
MpPdcCt O rea OCK JSlZe e
: ¥ ' LI
| DRAM - | |
II“I“ZII:' Limits the Sthreads
Example: v100: e) AR

* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
e With 512 threads/block how many blocks can execute (per SM) concurrently?

* Max active warps * threads/warp = 64*32 = 2048 threads =
e With 128 threads/block? =
e Consider HW limit of 32 thread blocks/SM @ 32 threads/block:

* Blocks are maxed out, but max active threads = 32*32 = 1024
e Occupancy =.5(1024/2048)

14

- l hewad Baock Control
Dl'-'l;gll-:;r | @ =__||ml=1h|: Hthread blocks
° Scheduler | Warp Schoduilers |
mpact of Thread Block S s B
pact O red OCK JdlZ€e e
- ¥ ' LI
| DRAM - GG]
II“I“ZII:' Limits the Sthreads
Example: v100: S e I

* max active warps/SM == 64 (limit: warp context)

* max active blocks/SM == 32 (limit: block control)
e With 512 threads/block how many blocks can execute (per SM) concurrently?
* Max active warps * threads/warp = 64*32 = 2048 threads =

* With 128 threads/block? =
e Consider HW limit of 32 thread blocks/SM @ 32 threads/block:

* Blocks are maxed out, but max active threads = 32*32 = 1024
e Occupancy =.5(1024/2048)

* To maximize utilization, thread block size should balance

e Limits on active thread blocks vs.
* Limits on active warps

14

Impact of

Registers Per Thread

M

Schedul

N '
M
heduler I
CiRA R i

15

-

Kernel
Distributor

e |

tcheduler

Impact of #Registers Per Thread s

Registers/thread can limit number of active threads!

15

Impact of

nnnnnn

Registers Per Thread — &@zw

Registers/thread can limit number of active threads!

V100:

15

IIIIII

Impact of #Registers Per Thread —&&ze

Registers/thread can limit number of active threads!
V100:
* Registers per thread max: 255

15

IIIIII

Impact of #Registers Per Thread —&&ze

Registers/thread can limit number of active threads!

V100:
* Registers per thread max: 255

* 64K registers per SM

15

Impact of #Registers Per Thread —&&ze

Registers/thread can limit number of active threads!
V100:
* Registers per thread max: 255

* 64K registers per SM
Assume a kernel uses 32 registers/thread, thread block size of 256

15

Kernel
Distributor

Impact of #Registers Per Thread &z

[=]l=]
CiRA R I:I:
C=1C=]

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
* Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
e FULLY Occupied!

15

Limits the Fthrea

Impact of #Registers Per Thread

CiRA R

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
* Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
e FULLY Occupied!

* What is the impact of increasing number of registers by 2?

15

Impact of #Registers Per Thread &z

CiRA R

Registers/thread can limit number of active threads!

V100:

* Registers per thread max: 255

* 64K registers per SM

Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
* Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
e FULLY Occupied!

* What is the impact of increasing number of registers by 2?
e Recall: granularity of management is a thread block!

15

Impact of #Registers Per Thread

CiRA R

Registers/thread can limit number of active threads!

V100:
* Registers per thread max: 255

* 64K registers per SM
Assume a kernel uses 32 registers/thread, thread block size of 256

* Thus, A TB requires 8192 registers for a maximum of 8 thread blocks per SM
* Uses all 2048 thread slots (8 blocks * 256 threads/block)
» 8192 regs/block * 8 block/SM = 64k registers
e FULLY Occupied!

* What is the impact of increasing number of registers by 2?
e Recall: granularity of management is a thread block!

* Loss of concurrency of 256 threads!
» 34regs/thread * 256 threads/block * 7 blocks/SM = 60k registers,

* 8 blocks would over-subscribe register file
e Occupancy drops to .875!

% the Fthreads
ST

Impact of Shared Memory

 Shared memory is allocated per thread block

* Can limit the number of thread blocks executing concurrently per SM
* Shared mem/block * # blocks <= total shared mem per SM

* gridDim and blockDim parameters impact demand for
* shared memory
* number of thread slots
* number of thread block slots

Balance

Shared

memory/Th
read block

#Threads/Bl
ock

#Thread HRegisters/T
Blocks hread

* Navigate the tradeoffs
maximize core utilization and memory bandwidth utilization
Device-specific

« Goal: Increase occupancy until one or the other is saturated

Balance

template < class T >
__host__ cudakrrg

VRN VRN

t cudaOccupancyMaxActiveBlocksPerMultiprocessor (int* numBlocks, T func, int blockSize, size_t dynamicSMemSize) [inline]

Returns occupancy for a device function.

Parameters

numBlocks
- Returned occupancy
func

- Kernel function for which occupancy is calulated
blockSize

- Block size the kernel is intended to be launched with
dynamicSMemSize

- Per-block dynamic shared memory usage intended, in bytes

« Navigate the tradeoffs

\/
0’0

maximize core utilization and memory bandwidth utilization
<+ Device-specific

Goal: Increase occupancy until one or the other is saturated

17

Parallel Memory Accesses

* Coalesced main memory access (16/32x faster)
« HW combines multiple warp memory accesses into a single coalesced access

* Bank-conflict-free shared memory access (16/32)

* No alignment or contiguity requirements
e CC2.x+3.0: 32 different banks + 1-word broadcast each

Parallel Memory Architecture

In a parallel machine, many threads access memory
 Therefore, memory is divided into banks
* Essential to achieve high bandwidth

Each bank can service one address per cycle

* A memory can service as many simultaneous
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict

* Conflicting accesses are serialized

19

Coalesced Main Memory Accesses

single coalesced access

Address 132

Address 136

» Address 148

Address 156

Thread 10

‘ Thread 11 » Address 172 ‘ Thread 11 ¥ Address 172

‘ Tt ¥3 y Address 176 ‘ T iy y Address 176

‘ Thread 13 v Address 180 ‘ Thread 13 Address 180

Thread 14 v Address 184 Thread 14 v Address 184
NVIDIA

‘ Thread 15 » Address 188 ‘ Thread 15 b Address 188

NVIDIA

one and two coalesced accesses*™

+ Address 128 Address 128
v Address 132 b Address 132

v Address 136 Address 136

y Address 140 A Address 140

A Address 144 b Address 144

+ Address 148 L Address 148

+ Address 152 b Address 152

+ Address 156 k Address 156

y Address 160 k Address 160

+ Address 164 b Address 164

+ Address 168 A Address 168

+ Address 172 } Address 172

v Address 176 Thread 12 ! b Address 176

+ Addross 180 [ol B Address 180

Thread 14 + Address 184 ‘ Thread 14 ™ Address 184

‘ Thread 15 + Address 188 ‘ Thread 15 ’ Address 188

20

Bank Addressing Examples

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

e No Bank Conflicts

Linear addressing
stride ==

e No Bank Conflicts
e Random 1:1 Permutation

Bank 15

Thread O

Thread 1 “
Thread 2 ‘

Thread 3 ‘

Thread 4 ‘
Thread 5
Thread 6
Thread 7

Thread 15

|2

Bank 15

Bank Addressing Examples

e 2-way Bank Conflicts 8-way Bank Conflicts
 Linear addressing * Linear addressing
stride == stride ==

Thread O
Thread 1
Thread 2
Thread 3 §
Thread 4

Thread O

Thread 1 ‘
Thread 2 ~
Thread 3 ~"

Thread 4

%,
Thread 8 / N4

Thread 9

Thread 10
Thread 11 Bank 15

Thread 5 !

Thread 6 »

Thread 7

Thread 15

22

Linear Addressing

e Q@Given:

shared float shared[256];

float foo =

shared|[baselndex + s *
threadIdx.x];

* This is only bank-conflict-free if s
shares no common factors with the
number of banks

e 16 on G80, so s must be odd

23

Thread O
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread O
Thread 1
Thread 2
Thread 3

Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

Bank 15

IGPU Atomics & Divergence

24

IGPU Atomics & Divergence

Race conditions —
 Traditional locks: avoid!
* How do we synchronize?

Read-Modify-Write — atomic

atomicAdd () atomicInc ()
atomicSub () atomicDec ()
atomicMin () atomicExch ()
atomicMax () atomicCAS ()

Implemented as write-through to L2
 “Fire-and-forget”

double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(&locked, 1) != 0)

>

L. double old = *data;
Race conditions — *data = old + val;

locked = 0;
* Traditional locks: avoid!
* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()
atomicSub () atomicDec ()
atomicMin () atomicExch ()
atomicMax () atomicCAS ()

Implemented as write-through to L2
 “Fire-and-forget”

double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(&locked, 1) != 0)

>

L. double old = *data;
Race conditions — *data = old + val;

locked = 0;
* Traditional locks: avoid!
* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()
atomicSub () atomicDec ()
atomicMin () atomicExch ()
atomicMax () atomicCAS ()

Implemented as write-through to L2
 “Fire-and-forget”

double atomicAdd(double *data, double val)
{

IGPU Atomics & DiverEECEEECIGESIRENEEE

>

L. double old = *data;
Race conditions — *data = old + val;

locked = 0;
* Traditional locks: avoid!
* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()

¢ Warp of Threads R {_dev1ce_ void example(bool condition)

& ataeve [T TTITTITIIIIT] $#(condition)

Some active F;’g?jﬁﬂﬂﬁﬁ%llllllll run_this_first();

I else

nthersactive | | | | | | | | PAAAAAAZAZA7 then_run_this();

Atactve [TTTTTTTTTTTTITTIT] converged_again();

double atomicAdd(double *data, double val)
{

IGPU Atomics & Diver while(atomicExch(&locked, 1) != 0)

>

L. double old = *data;
Race conditions — *data = old + val;

locked = 0;
* Traditional locks: avoid!
* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () atomicInc ()
atomicSub () atomicDec ()
atomicMin () atomicExch ()
atomicMax () atomicCAS ()

Implemented as write-through to L2
 “Fire-and-forget”

double atomicAdd(double *data, double val)
{

IGPU AtOmICS & D|Ve r While.(atomicExch(&1ocked, 1) 1= @)

>

L. double old = *data;
Race conditions — *data = old + val;

locked = 0;
 Traditional locks: avoid!
* How do we synchronize?

return old;

Read-Modify-Write — atomic

Every thread
tries to lock !

But only one
succeeds

Locking thread Non-locked

continues threads idle
until unlock

/

double atomicAdd(double *data, double val)
{

IGPU AtOmICS & D|Ve r While.(atomicExch(&1ocked, 1) 1= @)

>

L. double old = *data;
Race conditions — *data = old + val;

locked = 0;
* Traditional locks: avoid!
* How do we synchronize?

return old;

Read-Modify-Write — atomic

atomicAdd () very thread
atomicSub () tries to lock Mm
atomicMin () sutonyane (T T T TTITIIT = ™
atomlcMax () l Locking thread

idles
Implemented as write-throug l
 “Fire-and-forget” Uniock Never

Happens

Advanced Topic: GPU Programming Models

Layered abstractions

2/26/25

Layered abstractions

Hardware

interface ~

/O dev DISK

—ceu_

e

MH

2/26/25

Layered abstractions

Hardware

interface ~—

= C /O dev DISK NIC

2/26/25

Layered abstractions

process files user-mode

LIBC/CLR Runtimes/libs

_ _ OS-level
process files PIpP€s abstractions

vendor driver |l vendor driver l vendor driver S

Joasn

EIEY

2/26/25

Layered abstractions

programmer-
visible interface process files user-mode

Runtimes/libs

Joasn

LIBC/CLR

OS interface " _ _ OS-level
5 process files PIPES D I abstractions

uJo

E

vendor driver |l vendor driver l vendor driver S

* 1:1 correspondence between OS-level and user-level abstractions
* Diverse HW support enabled HAL

2/26/25

GPU abstractions

MH

2/26/25

GPU abstractions

Hardware
interface

wY

2/26/25

GPU abstractions

GPGPU shaders language
% APls kernels integration
m .
- GPU Runtime (e.g. OpenCL)

— Runtime
~ F support
)

: _
®
L
=

2/26/25

GPU abstractions

programmer-
visible interface

GPU Runtime (e.g. OpenCL)

GPGPU shaders language
APls kernels integration

2/26/25

— Runtime
support

GPU abstractions

GPGPU shaders language
APls kernels integration

GPU Runtime (e.g. OpenCL)
1 OS-level

programmer-
visible interface

abstraction! \@-
~

)
.)
Fat driver, >

interfaces

2/26/25

— Runtime
support

GPU abstractions

programmer- =

visible interface —_— GPGPU shaders language
g AP|s kernels integration
- GPU Runtime (e.g. OpenCL)

1 OS-level

abstraction! 3 Lo | F

Fat driver, (5;

proprietary =

interfaces
T
=

No kernel-facing API

OS resource-management limited
Poor composability

2/26/25

— Runtime
support

No OS support > No isolation

GPU benchmark throughput

1200

1000

800

600

400

invocations per second

200

Higher is no CPU load high CPU load
better

* Image-convolution in CUDA
* Windows 7 x64 8GB RAM

* Intel Core 2 Quad 2.66GHz
* nVidia GeForce GT230

2/26/25

No OS support > No isolation

GPU benchmark throughput

1200

o
c
v
. 1000
"
v 800
c
o 600
i
9
EE 400
8=
200
. " O
Higher is no CPU load high CPU load

better

ge-convolutionin CUDA

CPU+GPU schedulers not integrated! dows 7 x64 8GB RAM

))| Core 2 Quad 2.66GHz
...other pathologies abundant fia GeForce GT230

2/26/25

Composition: Gestural Interface

Raw images
“*Hand"

events

noisy point cloud

xform ~ filter

Composition: Gestural Interface

Raw images

“Hand”
events

capture camera
images X

Composition: Gestural Interface

Raw images
“Hand"”

events

noisy point cloud

! xform ~ filter
geometric e i
transformation s AN

Composition: Gestural Interface

Raw images
“*Hand"

events

noisy point cloud

xform ~ fiter |
|

noise filtering

Composition: Gestural Interface

Raw images

“Hand”
events

Composition: Gestural Interface

Raw images
“*Hand"

events

noisy point cloud

xform ~ filter

Composition: Gestural Interface

Raw images
“*Hand"

N ‘:71’".‘

noisy point cloud

xform ~ filter

» Requires OS mediation

» High data rates

» Abundant data parallelism
...use GPUs!

What We’d Like To Do

#> capture | xform | filter | detect &

» Modular design
» flexibility, reuse
» Utilize heterogeneous hardware
» Data-parallel components 2 GPU
» Sequential components =2 CPU
» Using OS provided tools
» processes, pipes

2/26/25

What We’d Like To Do

#> capture | xform | filter | detect &
CPU CPU

» Modular design
» flexibility, reuse
» Utilize heterogeneous hardware
» Data-parallel components 2 GPU
» Sequential components =2 CPU
» Using OS provided tools
» processes, pipes

2/26/25

GPU Execution model

= GPUs cannotrun OS:
= different ISA

* Memories have different coherence guarantees
- (disjoint, or require fence instructions)

* Host CPU must "manage” GPU execution

= Program inputs explicitly transferred/bound at runtime
= Device buffers pre-allocated

Main
memory

Copy inputs Copy outputs Send commands

GPU

2/26/25

GPU
memory

GPU Execution model

= GPUs cannotrun OS:
= different ISA

* Memories have different coherence guarantees
- (disjoint, or require fence instructions)

* Host CPU must "manage” GPU execution

= Program inputs explicitly transferred/bound at runtime
= Device buffers pre-allocated

Main
memory

Copy inputs ‘L T Copy outputs lSend commands

GPU

2/26/25

GPU

memory

user

kernel

HW

Data migration

#> capture | | | detect &

capture

GPU driver

detect

HIDdrv

2/26/25

user

kernel

HW

Data migration

#> capture | | | detect &

capture

GPU driver

detect

HIDdrv

2/26/25

user

kernel

HW

Data migration

#> capture |

capture

| detect &

GPU driver

detect

HIDdrv

2/26/25

user

kernel

HW

Data migration

#> capture |

capture

| detect &

GPU driver

detect

HIDdrv

2/26/25

user

kernel

HW

Data migration

#> capture |

capture

| detect &

GPU driver

detect

HIDdrv

2/26/25

user

kernel

HW

Data migration

#> capture | | | detect &

capture

GPU driver

detect

HIDdrv

2/26/25

user

kernel

HW

Data migration

#> capture | | | detect &

capture

GPU driver

detect

HIDdrv

2/26/25

user

kernel

HW

Data migration

#> capture | | | detect &

capture

GPU driver

detect

HIDdrv

2/26/25

user

kernel

HW

Data migration

#> capture | | | detect &

capture

GPU driver

copy-xfer

detect

HIDdrv

GPU

2/26/25

user

kernel

HW

Data migration

#> capture | |

capture

| detect &

filter

GPU driver

copy-xfer

detect

HIDdrv

GPU

2/26/25

user

kernel

HW

Data migration

#> capture | |

capture

GPU driver

N 7 I

| detect &

filter

detect

HIDdrv

2/26/25

user

kernel

HW

Data migration

#> capture | |

capture

GPU driver

N 7 I

| detect &

filter

detect

HIDdrv

2/26/25

user

kernel

HW

Data migration

#> capture | |

capture

GPU driver

N 7 I

| detect &

filter

copy-xfer

detect

HIDdrv

GPU
Run!

2/26/25

user

kernel

HW

Data migration

#> capture | | | detect &

capture

GPU driver HIDdrv

copy-xfer

2/26/25

user

kernel

HW

Data migration

#> capture | | | detect &

capture detect
| | NS | '

GPU driver HIDdrv

copy-xfer

2/26/25

user

kernel

HW

Data migration

#> capture |

capture

| | detect &

GPU driver

N 7 I N 7 I

detect

HIDdrv

2/26/25

user

kernel

HW

Data migration

#> capture | |

capture

N 7 I

| detect &

GPU driver

N 7 I

detect

HIDdrv

]

2/26/25

Device-centric APIs considered harmful

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B);
1nvokeGPU() ;
Matrix C = new Matrix();
copyFromGPU(C) ;

C;

2/26/25

Device-centric APIs considered harmful

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B);
invokeGPU() ;
Matrix C = new Matrix();
copyFromGPU(C) ;

C;

What happens if | want the following?
Matrix D=AxB xC

2/26/25

Composed matrix multiplication

Matrix
AXBxC(Matrix A, B, C) {
Matrix AxB = gemm(A,B);
Matrix AxXBxC = gemm(AxB,C);
AXBXC;

2/26/25

Composed matrix multiplication

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix();

Matrix CopyFromGPU(C) ;

AXBxC(Matrix A, B, C) { } ;
Matrix AxB = gemm(A,B);
Matrix AxXBxC = gemm(AxB,C);
AXBXC;

2/26/25

Composed matrix multiplication

Matrix
] gemm(Matrix A, Matrix B) {
AxB copied from COpYTOGPU(A) ;
copyToGPU(B) ;
GPU memory... invokeGPU(Q) ;

] Matrix C = new-Matrix();
MatriX c- '
AXBxC(Matrix*A, B, C) { }

Matrix = gemm(A,B) ;
Matrix AxXBxC = gemm(AxB,C);

AXBXC,

2/26/25

Composed matrix multiplication

Matrix
AxBxC(Matrix A, B, C) {
Matrix AxB = gemm(A,B);
Matrix AXBXC = gemm(
AXBXC;

Matrix
gemm{viatrix A, Matrix B) {

copyToGPU(B) ;

invokesPUQ);

Matrix C = new Matrix();

copyFromGPU(C) ;
C;

,C);

...only to be copied
right back!

2/26/25

What if I have many GPUs?

Matrix

gemm(Matrix A, Matrix B) {
copyToGPU(A) ;
copyToGPU(B);
1nvokeGPU() ;
Matrix C = new Matrix();
copyFromGPU(C) ;

C;

2/26/25

What if I have many GPUs?

Matrix

gemm(GPU dev,Matrix A, Matrix B) {
copyToGPU(dev, A);
copyToGPU(dev, B);
invokeGPU(dev) ;
Matrix C = new Matrix();
copyFromGPU(dev, C);

C;

2/26/25

What if I have many GPUs?

Matrix

gemm(GPU dev,Matrix A, Matrix B) {
copyToGPU(dev, A);
copyToGPU(dev, B);
invokeGPU(dev) ;
Matrix C = new Matrix();
copyFromGPU(dev, C);

C;

What happens if | want the following?
Matrix D=AxB xC

2/26/25

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;
G;

Matrix
AxBxC(Matrix A,B,C) {
Matrix AxB = gemm(, A,B);
Matrix AXBXC = gemm(, AXB,C);
AXBXC;

2/26/25

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;
G;

Matrix
AXBXC(GPU dev, Matrix A,B,C) {
Matrix AxB = gemm(dev, A,B);
Matrix AXBxC = gemm(dev, AXB,C);
AXBXC;

2/26/25

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)
{
copyToGPU(A) ;
Rats...now | can CopyToGPU(B) ;
only use 1 GPU. invokeGPUQ) ; _
How rtition Matrix C = new Matrix();
owtopa ?t 0 copyFromGPU(C) ;
computation? C:
3

Matrix
AxXBxC(GPU dev, Matrix A,B,C) {
Matrix AxXB = gemm(dev, A,B);
Matrix AXBxC = gemm(dev, AXB,C);
AXBXC;

2/26/25

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{
copyToGPU(A) ;
copyToGPU(B) ;
invokeGPU();
Matrix C = new Matrix();
copyFromGPU(C) ;
G;

Matrix
AXBXC(GPU devA, GPU devB, Matrix A,B,C) {
Matrix AXB = gemm(devA, A,B);
Matrix AXBxC = gemm(devB, AxB,C);
AXBXC;

2/26/25

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{

This will never be COPYPEIFD’B Egg ;
copylo y
manageable for many GPUs. invokeGPUQ) ;
Programmer implements Matrix C = new Matrix();
scheduling using static view! copyFromGPU(C) ;
G

Matrix
AXBXC(GPU devA, GPU devB, Matrix A,B,C) {
Matrix AXB = gemm(devA, A,B);
Matrix AXBxC = gemm(devB, AxB,C);
AXBXC;

2/26/25

Composition with many GPUs

Matrix
gemm(GPU dev, Matrix A, Matrix B)

{

This will never be COPYPEEB Egg ;
copylo y
manageable for many GPUs. invokeGPUQ) ;
Programmer implements Matrix C = new Matrix();
scheduling using static view! copyFromGPU(C) ;
G

Matrix
AXBXC(GPU devA, GPU devB, Matrix A,B,C) {
Matrix AXB = gemm(devA, A,B);
Matrix AXBxC = gemm(devB, AxB,C);
AXBXC;

¥ Why don’t we have this problem with CPUs?

2/26/25

Dataftlow: a better abstraction

Matrix: A Matrix: B

Matrix: C

= nodes = computation
= edges = communication

= Expresses parallelism explicitly
= Minimal specification of data movement: runtime does it.

= asynchrony is a runtime concern (not programmer concern)
= No specification of compute—>device mapping: like threads!

2/26/25

Advanced Topic: GPU Coherence

Review: Cache Coherence

Tag State Cata Tag State Cata Tag State Cata

/0 devices

Review: Cache Coherence

Tag State Data Tag State Data Tag State Data
Bl_J:;E-:_I.'LIH:;h Il

|
N \

\
\
PR | |l

E‘u‘lnli.-ﬂl I|II E'LI'!'-L‘IJI..'FIIJ-;h

.III / |I |

o _.J" J
.

Bu'.ﬂd:l:ff ush

—

S .

El.l,J';F!da:flfI:;r:.h Jl|l .|"

P

Review: Cache Coherence

Tag State Cata Tag State Cata Tag State Cata

/0 devices

Each cache line has astate (M, E, S, I)

Review: Cache Coherence

Tag State Cata Tag State Cata Tag State Cata

/0 devices

Each cache line has astate (M, E, S, I)
» Processors “snoop” bus to maintain states

Review: Cache Coherence

Tag State Data Tag State Data Tag State Data

/0 devices

Each cache line has astate (M, E, S, I)

» Processors “snoop” bus to maintain states
= [Initially = 'I' = Invalid

Review: Cache Coherence

Tag State Data Tag State Data Tag State Data

/0 devices

Each cache line has astate (M, E, S, I)
» Processors “snoop” bus to maintain states
= [Initially = 'I' = Invalid
= Readone =2 'E’' 2 exclusive

Review: Cache Coherence

Tag State Data Tag State Data Tag State Data

Bl_J:;E-:_I.'LIH:;h Il

— I
E \ , ||

Privel- 1[' |
E‘u‘lnli.-ﬂl I|II E'LI'!'-L‘IJI..'FIIJ-;h
.III .l'II |I |

A J
|

\e ;u'.ﬂdﬁ:fflu:hf'l S

—

S .

/0 devices

Each cache line has a state (M, E, S, |)
» Processors “snoop” bus to maintain states
= [Initially = 'I' = Invalid
= Readone =2 'E’' 2 exclusive
= Reads =2 'S’ = multiple copies possible

Review: Cache Coherence

Tag State Data Tag State Data Tag State Data

Bl_J:;E-:_I.'LIH:;h Il

— I
E \ , ||

Privel- 1[' |
E‘u‘lnli.-ﬂl I|II E'LI'!'-L‘IJI..'FIIJ-;h
.III .l'II |I |

A J

\e B.u'.ﬂd:l:f;lush;l S

—

S .

/0 devices

Each cache line has astate (M, E, S, I)
» Processors “snoop” bus to maintain states

= [Initially = 'I' = Invalid

= Readone =2 'E’' 2 exclusive

= Reads =2 'S’ = multiple copies possible

= Write = ‘M’ = single copy =2 lots of cache coherence traffic

Review: Cache Coherence

Tag State Data Tag State Data Tag State Data

Bl_J:;E-:_I.'LIH:;h Il

— I
E \ , ||

Privel- 1[' |
E‘u‘lnli.-ﬂl I|II E'LI'!'-L‘IJI..'FIIJ-;h
.III .l'II |I |

A J

\e B.u'.ﬂd:l:f;lush;l S

—

S .

/0 devices

Each cache line has astate (M, E, S, I)
» Processors “snoop” bus to maintain states

= [Initially = 'I' = Invalid

= Readone =2 'E’' 2 exclusive

= Reads =2 'S’ = multiple copies possible

= Write = ‘M’ = single copy =2 lots of cache coherence traffic

GPU Cache Coherence Challenges

« Challenge 1: Coherence traffic

No coherence

I MESI

GPU-VI

Q
o=
-—

1)

—
-—
-—

O

mﬂ

-

=

O

o

—

Q
—
=

o

-

-
o

Do not require
coherence

Recalls

Load C
Load D
Load E
Load F
Load C

45

GPU Cache Coherence Challenges

« Challenge 2: Tracking in-flight requests
« Significant % of L2

MSHR

Background: Directory Protocol

[| FO I eac h b | OC k: Ce nt ra | |Zec P presence bits: indicate whether processor P

hasline in its cache

“directory” for state in caches Processor

Dirty bit: indicates block is dirty
in one of the processors’ caches

= Directory is co-located with Loca Cache
some global view of memory

Onedirectoryentryper — |0 CLT T T T T T 1]

cache line of memory

" Requests dare no Ionger seen
by eve ry0ne One cache line of memory ———J

Writes are serialized through

directory

2/26/25

GPU-VI

GPU-VI Coherence
» Directory-Based

Different from snoop-model

Global directory metadata at L2
= Two states

Valid

Invalid

S
o
a
@
=
c
e
=
@
®
o

= Writes invalidate other copies

2/26/25

Temporal Coherence (TC)

GPU-VI Coherence Temporal Coherence

OIoad, : B
predict|R, S . Local Timestamp
9 +5 T=15 load® |
, predict
R

T=20 — > Global Time - VALID
Core 1 '
L L1D
NGl A=0 |

Interconnect

read-only epoch

invalidate

invalidate

read-only epoch

Global Timestamp

~ S
v |G
whet

L2 Bank

lﬁ < Global Time =>

NO L1 COPIES

TC-Strong vs TC-Weak

D Write stalling at L2 (TC-Strong)

H]]]]] Fence waiting for pending requests (both)
D Fence waiting for GWCT (TC-Weak)

TC-Strong TC-Weak

ciff L2 ez c1)f L2 oz

081 flag data flag data
9F1 \l;‘[/""* NULL | 60| | OLD | 30 NULL | 60| | OLD | 30

ENO-L1 zZNO-COH OMESI mGPU-VI sGPU-VIni mTCW

FFFFTFTFITITIFFFFITIFIFITITTT
FFFF T FFFIFFIFFFIFFFFTIFF I

I O m =
m O E' T

self-
invalidate

(a) Inter-workgroup comm. (b) Intra-workgroup comm.

Cl's requests C2's private cache Cl's requests C2's private cache
blocks state blocks state
(value | timestamp) (value | timestamp)

5O

	Slide 1: GPUs going once… GPUs going twice… you get the idea
	Slide 2: Outline for Today
	Slide 3: Faux Quiz Questions
	Slide 4: How many threads/blocks?
	Slide 5: How many threads/blocks?
	Slide 6: How many threads/blocks?
	Slide 7: Review: Internals
	Slide 8: Review: Internals
	Slide 9: Review: Internals
	Slide 10: Thread Blocks, Warps, Scheduling
	Slide 11: Thread Blocks, Warps, Scheduling
	Slide 12: Thread Blocks, Warps, Scheduling
	Slide 13: Thread Blocks, Warps, Scheduling
	Slide 14: Thread Blocks, Warps, Scheduling
	Slide 15: Thread Blocks, Warps, Scheduling
	Slide 16: Thread Blocks, Warps, Scheduling
	Slide 17: GPU Performance Metric: Occupancy
	Slide 18: GPU Performance Metric: Occupancy
	Slide 19: GPU Performance Metric: Occupancy
	Slide 20: GPU Performance Metric: Occupancy
	Slide 21: GPU Performance Metric: Occupancy
	Slide 22: A Taco Bar
	Slide 23: A Taco Bar
	Slide 24: A Taco Bar
	Slide 25: GPU: a multi-lane Taco Bar
	Slide 26: GPU: a multi-lane Taco Bar
	Slide 27: GPU: a multi-lane Taco Bar
	Slide 28: GPU: a multi-lane Taco Bar
	Slide 29: GPU: a multi-lane Taco Bar
	Slide 30: GPU: a multi-lane Taco Bar
	Slide 31: GPU: a multi-lane Taco Bar
	Slide 32: GPU: a multi-lane Taco Bar
	Slide 33: GPU: a multi-lane Taco Bar
	Slide 34: GPU: a multi-lane Taco Bar
	Slide 35: GPU: a multi-lane Taco Bar
	Slide 36: GPU: a multi-lane Taco Bar
	Slide 37: GPU: a multi-lane Taco Bar
	Slide 38: GPU: a multi-lane Taco Bar
	Slide 39: GPU: a multi-lane Taco Bar
	Slide 40: GPU: a multi-lane Taco Bar
	Slide 41: Review: GPU Performance Metric: Occupancy
	Slide 42: Review: GPU Performance Metric: Occupancy
	Slide 43: Review: GPU Performance Metric: Occupancy
	Slide 44: Review: GPU Performance Metric: Occupancy
	Slide 45: Review: GPU Performance Metric: Occupancy
	Slide 46: Review: GPU Performance Metric: Occupancy
	Slide 47: Review: GPU Performance Metric: Occupancy
	Slide 48: Review: GPU Performance Metric: Occupancy
	Slide 49: Hardware Resources Are Finite
	Slide 50: Hardware Resources Are Finite
	Slide 51: Hardware Resources Are Finite
	Slide 52: Hardware Resources Are Finite
	Slide 53: Hardware Resources Are Finite
	Slide 54: Hardware Resources Are Finite
	Slide 55: Hardware Resources Are Finite
	Slide 56: Impact of Thread Block Size
	Slide 57: Impact of Thread Block Size
	Slide 58: Impact of Thread Block Size
	Slide 59: Impact of Thread Block Size
	Slide 60: Impact of Thread Block Size
	Slide 61: Impact of Thread Block Size
	Slide 62: Impact of Thread Block Size
	Slide 63: Impact of Thread Block Size
	Slide 64: Impact of Thread Block Size
	Slide 65: Impact of Thread Block Size
	Slide 66: Impact of #Registers Per Thread
	Slide 67: Impact of #Registers Per Thread
	Slide 68: Impact of #Registers Per Thread
	Slide 69: Impact of #Registers Per Thread
	Slide 70: Impact of #Registers Per Thread
	Slide 71: Impact of #Registers Per Thread
	Slide 72: Impact of #Registers Per Thread
	Slide 73: Impact of #Registers Per Thread
	Slide 74: Impact of #Registers Per Thread
	Slide 75: Impact of #Registers Per Thread
	Slide 76: Impact of Shared Memory
	Slide 77: Balance
	Slide 78: Balance
	Slide 79: Parallel Memory Accesses
	Slide 80: Parallel Memory Architecture
	Slide 81: Coalesced Main Memory Accesses
	Slide 82: Bank Addressing Examples
	Slide 83: Bank Addressing Examples
	Slide 84: Linear Addressing
	Slide 85: GPU Atomics & Divergence
	Slide 86: GPU Atomics & Divergence
	Slide 87: GPU Atomics & Divergence
	Slide 88: GPU Atomics & Divergence
	Slide 89: GPU Atomics & Divergence
	Slide 90: GPU Atomics & Divergence
	Slide 91: GPU Atomics & Divergence
	Slide 92: GPU Atomics & Divergence
	Slide 93: Advanced Topic: GPU Programming Models
	Slide 94: Layered abstractions
	Slide 95: Layered abstractions
	Slide 96: Layered abstractions
	Slide 97: Layered abstractions
	Slide 98: Layered abstractions
	Slide 99: GPU abstractions
	Slide 100: GPU abstractions
	Slide 101: GPU abstractions
	Slide 102: GPU abstractions
	Slide 103: GPU abstractions
	Slide 104: GPU abstractions
	Slide 105: No OS support  No isolation
	Slide 106: No OS support  No isolation
	Slide 107: Composition: Gestural Interface
	Slide 108: Composition: Gestural Interface
	Slide 109: Composition: Gestural Interface
	Slide 110: Composition: Gestural Interface
	Slide 111: Composition: Gestural Interface
	Slide 112: Composition: Gestural Interface
	Slide 113: Composition: Gestural Interface
	Slide 114: What We’d Like To Do
	Slide 115: What We’d Like To Do
	Slide 116: GPU Execution model
	Slide 117: GPU Execution model
	Slide 118: Data migration
	Slide 119: Data migration
	Slide 120: Data migration
	Slide 121: Data migration
	Slide 122: Data migration
	Slide 123: Data migration
	Slide 124: Data migration
	Slide 125: Data migration
	Slide 126: Data migration
	Slide 127: Data migration
	Slide 128: Data migration
	Slide 129: Data migration
	Slide 130: Data migration
	Slide 131: Data migration
	Slide 132: Data migration
	Slide 133: Data migration
	Slide 134: Data migration
	Slide 135: Device-centric APIs considered harmful
	Slide 136: Device-centric APIs considered harmful
	Slide 137: Composed matrix multiplication
	Slide 138: Composed matrix multiplication
	Slide 139: Composed matrix multiplication
	Slide 140: Composed matrix multiplication
	Slide 141: What if I have many GPUs?
	Slide 142: What if I have many GPUs?
	Slide 143: What if I have many GPUs?
	Slide 144: Composition with many GPUs
	Slide 145: Composition with many GPUs
	Slide 146: Composition with many GPUs
	Slide 147: Composition with many GPUs
	Slide 148: Composition with many GPUs
	Slide 149: Composition with many GPUs
	Slide 150: Dataflow: a better abstraction
	Slide 151: Advanced Topic: GPU Coherence
	Slide 152: Review: Cache Coherence
	Slide 153: Review: Cache Coherence
	Slide 154: Review: Cache Coherence
	Slide 155: Review: Cache Coherence
	Slide 156: Review: Cache Coherence
	Slide 157: Review: Cache Coherence
	Slide 158: Review: Cache Coherence
	Slide 159: Review: Cache Coherence
	Slide 160: Review: Cache Coherence
	Slide 161: GPU Cache Coherence Challenges
	Slide 162: GPU Cache Coherence Challenges
	Slide 163: Background: Directory Protocol
	Slide 164: GPU-VI
	Slide 165: Temporal Coherence (TC)
	Slide 166: TC-Strong vs TC-Weak

