
cs378

Chris Rossbach

Rust

Administrivia
Midterm 1 discussion

Technical Agenda
Rust!

Overview

Decoupling Shared, Mutable, and State

Channels and Synchronization

Rust Lab Preview

Acknowledgements:

• https://www.slideshare.net/nikomatsakis/rust-concurrency-tutorial-2015-1202

• Thanks Nikolas Matsakis!

Outline

https://www.slideshare.net/nikomatsakis/rust-concurrency-tutorial-2015-1202

Rust Motivation

Rust Motivation

Locks’ litany of problems:

Rust Motivation

Locks’ litany of problems:

• Deadlock

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

• Poor composability…

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

• Poor composability…

Solution: don’t use locks
• non-blocking
• Data-structure-centric
• HTM
• blah, blah, blah..

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

• Poor composability…

Solution: don’t use locks
• non-blocking
• Data-structure-centric
• HTM
• blah, blah, blah..

Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

• Poor composability…

Solution: don’t use locks
• non-blocking
• Data-structure-centric
• HTM
• blah, blah, blah..

Shared mutable state requires locks

• So…separate sharing and mutability

• Use type system to make concurrency safe

• Ownership

• Immutability

• Careful library support for sync primitives

Multi-paradigm language modeled after C and C++
Functional, Imperative, Object-Oriented

Primary Goals:
Safe Memory Management

Safe Concurrency and Concurrent Controls

Rust Goals

Multi-paradigm language modeled after C and C++
Functional, Imperative, Object-Oriented

Primary Goals:
Safe Memory Management

Safe Concurrency and Concurrent Controls

Rust Goals

Be Fast: systems programming
Be Safe: don’t crash

Memory Management

Rust: a “safe” environment for memory
No Null, Dangling, or Wild Pointers

Memory Management

Rust: a “safe” environment for memory
No Null, Dangling, or Wild Pointers

Objects are immutable by default
User has more explicit control over mutability

Memory Management

Rust: a “safe” environment for memory
No Null, Dangling, or Wild Pointers

Objects are immutable by default
User has more explicit control over mutability

Declared variables must be initialized prior to execution
A bit of a pain for static/global state

Memory Management

Unsafe

Credit: http://www.skiingforever.com/ski-tricks/

http://www.skiingforever.com/ski-tricks/

Functions determined unsafe via specific behavior
• Deference null or raw pointers

• Data Races

• Type Inheritance

Unsafe

Credit: http://www.skiingforever.com/ski-tricks/

http://www.skiingforever.com/ski-tricks/

Functions determined unsafe via specific behavior
• Deference null or raw pointers

• Data Races

• Type Inheritance

Using “unsafe” keyword → bypass compiler enforcement
• Don’t do it. Not for the lab, anyway

Unsafe

Credit: http://www.skiingforever.com/ski-tricks/

http://www.skiingforever.com/ski-tricks/

Functions determined unsafe via specific behavior
• Deference null or raw pointers

• Data Races

• Type Inheritance

Using “unsafe” keyword → bypass compiler enforcement
• Don’t do it. Not for the lab, anyway

The user deals with the integrity of the code

Unsafe

Credit: http://www.skiingforever.com/ski-tricks/

http://www.skiingforever.com/ski-tricks/

First-Class Functions and Closures
Similar to Lua, Go, …

Algebraic data types (enums)

Class Traits
Similar to Java interfaces

Allows classes to share aspects

Other Relevant Features

First-Class Functions and Closures
Similar to Lua, Go, …

Algebraic data types (enums)

Class Traits
Similar to Java interfaces

Allows classes to share aspects

Other Relevant Features

Hard to use/learn without
awareness of these issues

Concurrency

Tasks → Rust’s threads

Concurrency

Tasks → Rust’s threads

Each task → stack and a heap
Stack Memory Allocation – A Slot
Heap Memory Allocation – A Box

Concurrency

Tasks → Rust’s threads

Each task → stack and a heap
Stack Memory Allocation – A Slot
Heap Memory Allocation – A Box

Tasks can share stack (portions) with other tasks
These objects must be immutable

Concurrency

Tasks → Rust’s threads

Each task → stack and a heap
Stack Memory Allocation – A Slot
Heap Memory Allocation – A Box

Tasks can share stack (portions) with other tasks
These objects must be immutable

Task States: Running, Blocked, Failing, Dead
Failing task: interrupted by another process
Dead task: only viewable by other tasks

Concurrency

Tasks → Rust’s threads

Each task → stack and a heap
Stack Memory Allocation – A Slot
Heap Memory Allocation – A Box

Tasks can share stack (portions) with other tasks
These objects must be immutable

Task States: Running, Blocked, Failing, Dead
Failing task: interrupted by another process
Dead task: only viewable by other tasks

Scheduling
Each task → finite time-slice
If task doesn’t finish, deferred until later
“M:N scheduler”

Concurrency

fn main() {

 println!("Hello, world!")

}

Hello World

Ownership

Ownership
n. The act, state, or right of possessing something

Ownership

Ownership
n. The act, state, or right of possessing something

Borrow
v. To receive something with the promise of returning it

Ownership

Ownership
n. The act, state, or right of possessing something

Borrow
v. To receive something with the promise of returning it

Ownership/Borrowing →
No need for a runtime

Memory safety (GC)

Data-race freedom

Ownership

Ownership
n. The act, state, or right of possessing something

Borrow
v. To receive something with the promise of returning it

Ownership/Borrowing →
No need for a runtime

Memory safety (GC)

Data-race freedom

Ownership

MM Options:
• Managed languages: GC
• Native languages: manual

management
• Rust: 3rd option: track

ownership

Ownership
n. The act, state, or right of possessing something

Borrow
v. To receive something with the promise of returning it

Ownership/Borrowing →
No need for a runtime

Memory safety (GC)

Data-race freedom

Ownership

MM Options:
• Managed languages: GC
• Native languages: manual

management
• Rust: 3rd option: track

ownership

• Each value in Rust has a variable called its owner.
• There can only be one owner at a time.
• Owner goes out of scope→value will be dropped.

fn main() {

 let name = format!("...");

 helper(name);

}

Ownership/Borrowing

fn main() {

 let name = format!("...");

 helper(name);

}

Ownership/Borrowing

fn main() {

 let name = format!("...");

 helper(name);

}

Ownership/Borrowing

fn helper(name: String) {

 println!(“{}”, name);

}

fn main() {

 let name = format!("...");

 helper(name);

 helper(name);

}

Ownership/Borrowing

fn helper(name: String) {

 println!(“{}”, name);

}

fn main() {

 let name = format!("...");

 helper(name);

 helper(name);

}

Ownership/Borrowing

fn helper(name: String) {

 println!(“{}”, name);

}

Error: use of moved value: `name`

fn main() {

 let name = format!("...");

 helper(name);

 helper(name);

}

Ownership/Borrowing

fn helper(name: String) {

 println!(“{}”, name);

}

Error: use of moved value: `name`

Take ownership of a String

fn main() {

 let name = format!("...");

 helper(name);

 helper(name);

}

Ownership/Borrowing

fn helper(name: String) {

 println!(“{}”, name);

}

Error: use of moved value: `name`

Take ownership of a String

fn main() {

 let name = format!("...");

 helper(name);

 helper(name);

}

Ownership/Borrowing

fn helper(name: String) {

 println!(“{}”, name);

}

Error: use of moved value: `name`

Take ownership of a String

What kinds of problems might this prevent?

fn main() {

 let name = format!("...");

 helper(name);

 helper(name);

}

Ownership/Borrowing

fn helper(name: String) {

 println!(“{}”, name);

}

Error: use of moved value: `name`

Take ownership of a String

Pass without ‘&’ takes “ownership implicitly” in other languages like Java

What kinds of problems might this prevent?

fn main() {

 let name = format!("...");

 helper(&name);

 helper(&name);

}

Shared Borrowing

fn helper(name: &String) {

 println!(“{}”, name);

}

fn main() {

 let name = format!("...");

 helper(&name);

 helper(&name);

}

Shared Borrowing

fn helper(name: &String) {

 println!(“{}”, name);

}

Lend the string

fn main() {

 let name = format!("...");

 helper(&name);

 helper(&name);

}

Shared Borrowing

fn helper(name: &String) {

 println!(“{}”, name);

}

Lend the string

Take a reference to a String

fn main() {

 let name = format!("...");

 helper(&name);

 helper(&name);

}

Shared Borrowing

fn helper(name: &String) {

 println!(“{}”, name);

}

Lend the string

Take a reference to a String

Why does this fix the problem?

fn main() {

 let name = format!("...");

 helper(&name);

 helper(&name);

}

Shared Borrowing with Concurrency

fn helper(name: &String) {

 thread::spawn(||{

 println!("{}", name);

 });

}

fn main() {

 let name = format!("...");

 helper(&name);

 helper(&name);

}

Shared Borrowing with Concurrency

fn helper(name: &String) {

 thread::spawn(||{

 println!("{}", name);

 });

}

Lifetime `static` required

fn main() {

 let name = format!("...");

 helper(&name);

 helper(&name);

}

Shared Borrowing with Concurrency

fn helper(name: &String) {

 thread::spawn(||{

 println!("{}", name);

 });

}

Lifetime `static` required

fn main() {

 let name = format!("...");

 helper(&name);

 helper(&name);

}

Shared Borrowing with Concurrency

fn helper(name: &String) {

 thread::spawn(||{

 println!("{}", name);

 });

}

Lifetime `static` required

Does this prevent the exact same class of problems?

fn main() {

 let name = format!("...");

 helper(name.clone());

 helper(name);

}

Clone, Move

fn helper(name: String) {

 thread::spawn(move || {

 println!("{}", name);

 });

}

fn main() {

 let name = format!("...");

 helper(name.clone());

 helper(name);

}

Clone, Move

fn helper(name: String) {

 thread::spawn(move || {

 println!("{}", name);

 });

}

Explicitly take ownership

fn main() {

 let name = format!("...");

 helper(name.clone());

 helper(name);

}

Clone, Move

fn helper(name: String) {

 thread::spawn(move || {

 println!("{}", name);

 });

}

Explicitly take ownership

Ensure concurrent owners
Work with different copies

fn main() {

 let name = format!("...");

 helper(name.clone());

 helper(name);

}

Clone, Move

fn helper(name: String) {

 thread::spawn(move || {

 println!("{}", name);

 });

}

Is this better?

Explicitly take ownership

Ensure concurrent owners
Work with different copies

fn main() {

 let name = format!("...");

 helper(name.clone());

 helper(name);

}

Clone, Move

fn helper(name: String) {

 thread::spawn(move || {

 println!("{}", name);

 });

}

Is this better?

Explicitly take ownership

Ensure concurrent owners
Work with different copies

Copy versus Clone:

Default: Types cannot be copied

• Values move from place to place

• E.g. file descriptor

Clone: Type is expensive to copy

• Make it explicit with clone call

• e.g. Hashtable

Copy: type implicitly copy-able

• e.g. u32, i32, f32, …

#[derive(Clone, Debug)]

struct Structure {

 id: i32,

 map: HashMap<String, f32>,

}

impl Structure {

 fn mutate(&self, name: String, value: f32) {

 self.map.insert(name, value);

 }

}

Mutability

struct Structure {

 id: i32,

 map: HashMap<String, f32>,

}

impl Structure {

 fn mutate(&self, name: String, value: f32) {

 self.map.insert(name, value);

 }

}

Mutability

Error: cannot be borrowed as mutable

struct Structure {

 id: i32,

 map: HashMap<String, f32>,

}

impl Structure {

 fn mutate(&self, name: String, value: f32) {

 self.map.insert(name, value);

 }

}

Mutability

Error: cannot be borrowed as mutable

struct Structure {

 id: i32,

 map: HashMap<String, f32>,

}

impl Structure {

 fn mutate(&mut self, name: String, value: f32){

 self.map.insert(name, value);

 }

}

Mutability

struct Structure {

 id: i32,

 map: HashMap<String, f32>,

}

impl Structure {

 fn mutate(&mut self, name: String, value: f32){

 self.map.insert(name, value);

 }

}

Mutability

struct Structure {

 id: i32,

 map: HashMap<String, f32>,

}

impl Structure {

 fn mutate(&mut self, name: String, value: f32){

 self.map.insert(name, value);

 }

}

Mutability

Key idea:
• Force mutation and ownership to be explicit
• Fixes MM *and* concurrency in fell swoop!

Sharing State: Channels

fn main() {

Sharing State: Channels

fn main() {

 let (tx0, rx0) = channel();

Sharing State: Channels

fn main() {

 let (tx0, rx0) = channel();

 thread::spawn(move || {

 let (tx1, rx1) = channel();

 tx0.send((format!("yo"), tx1)).unwrap();

 let response = rx1.recv().unwrap();

 println!("child got {}", response);

 });

Sharing State: Channels

fn main() {

 let (tx0, rx0) = channel();

 thread::spawn(move || {

 let (tx1, rx1) = channel();

 tx0.send((format!("yo"), tx1)).unwrap();

 let response = rx1.recv().unwrap();

 println!("child got {}", response);

 });

 let (message, tx1) = rx0.recv().unwrap();

 tx1.send(format!("what up!")).unwrap();

 println("parent received {}", message);

}

Sharing State: Channels

fn main() {

 let (tx0, rx0) = channel();

 thread::spawn(move || {

 let (tx1, rx1) = channel();

 tx0.send((format!("yo"), tx1)).unwrap();

 let response = rx1.recv().unwrap();

 println!("child got {}", response);

 });

 let (message, tx1) = rx0.recv().unwrap();

 tx1.send(format!("what up!")).unwrap();

 println("parent received {}", message);

}

Sharing State: Channels

fn main() {

 let (tx0, rx0) = channel();

 thread::spawn(move || {

 let (tx1, rx1) = channel();

 tx0.send((format!("yo"), tx1)).unwrap();

 let response = rx1.recv().unwrap();

 println!("child got {}", response);

 });

 let (message, tx1) = rx0.recv().unwrap();

 tx1.send(format!("what up!")).unwrap();

 println("parent received {}", message);

}

Sharing State: Channels

“yo!”

fn main() {

 let (tx0, rx0) = channel();

 thread::spawn(move || {

 let (tx1, rx1) = channel();

 tx0.send((format!("yo"), tx1)).unwrap();

 let response = rx1.recv().unwrap();

 println!("child got {}", response);

 });

 let (message, tx1) = rx0.recv().unwrap();

 tx1.send(format!("what up!")).unwrap();

 println("parent received {}", message);

}

Sharing State: Channels

“yo!”“what up!”

fn main() {

 let (tx0, rx0) = channel();

 thread::spawn(move || {

 let (tx1, rx1) = channel();

 tx0.send((format!("yo"), tx1)).unwrap();

 let response = rx1.recv().unwrap();

 println!("child got {}", response);

 });

 let (message, tx1) = rx0.recv().unwrap();

 tx1.send(format!("what up!")).unwrap();

 println("parent received {}", message);

}

Sharing State: Channels

fn main() {

 let (tx0, rx0) = channel();

 thread::spawn(move || {

 let (tx1, rx1) = channel();

 tx0.send((format!("yo"), tx1)).unwrap();

 let response = rx1.recv().unwrap();

 println!("child got {}", response);

 });

 let (message, tx1) = rx0.recv().unwrap();

 tx1.send(format!("what up!")).unwrap();

 println("parent received {}", message);

}

Sharing State: Channels

APIs return Option<T>

fn main() {

 let var = Structure::new();

for i in 0..N {

 thread::spawn(move || {

 // ok to mutate var?

 });

 }

}

Sharing State

fn main() {

 let var = Structure::new();

for i in 0..N {

 thread::spawn(move || {

 // ok to mutate var?

 });

 }

}

Sharing State

fn main() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex

fn main() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex

fn main() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex

fn main() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex

fn main() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex

fn main() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex

Key ideas:
• Use reference counting wrapper to pass refs
• Use scoped lock for mutual exclusion
• Actually compiles → works 1st time!

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

Why doesn’t “&” fix it?
(&var_arc, instead of just var_arc)

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

Why doesn’t “&” fix it?
(&var_arc, instead of just var_arc)

Would cloning var_arc fix it?

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc.clone());

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc.clone());

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc.clone());

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

Same problem!

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc.clone());

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

Same problem!

What if we just don’t move?

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(|| {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(|| {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(|| {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

What’s the actual fix?

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

let clone_arc = var_arc.clone();

 thread::spawn(move || {

 let ldata = Arc::clone(&clone_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

let clone_arc = var_arc.clone();

 thread::spawn(move || {

 let ldata = Arc::clone(&clone_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

Compiles! Yay!
Other fixes?

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

Why does this compile?

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

Could we use a vec of JoinHandle
to keep var_arc in scope?

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

Could we use a vec of JoinHandle
to keep var_arc in scope?

for i in 0..N { join(); }

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

Could we use a vec of JoinHandle
to keep var_arc in scope?

for i in 0..N { join(); }

What if I need my lambda to own
some things and borrow others?

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

Could we use a vec of JoinHandle
to keep var_arc in scope?

for i in 0..N { join(); }

What if I need my lambda to own
some things and borrow others?

Parameters!

fn test() {

 let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

 thread::spawn(move || {

 let ldata = Arc::clone(&var_arc);

 let vdata = ldata.lock();

 // ok to mutate var (vdata)!

 });

 }

}

Sharing State: Arc and Mutex, really

Could we use a vec of JoinHandle
to keep var_arc in scope?

for i in 0..N { join(); }

What if I need my lambda to own
some things and borrow others?

Parameters!

Discussion

GC lambdas, Rust C++

• This is pretty nuanced:

• Stack closures, owned closures, managed closures, exchg heaps

Ownership and Macros
Macros use regexp and expand to closures

Summary

Rust: best of both worlds
systems vs productivity language

Separate sharing, mutability, concurrency

Type safety solves MM and concurrency

Have fun with the lab!

	Slide 1: Rust
	Slide 2: Outline
	Slide 54: Rust Motivation
	Slide 55: Rust Motivation
	Slide 56: Rust Motivation
	Slide 57: Rust Motivation
	Slide 58: Rust Motivation
	Slide 59: Rust Motivation
	Slide 60: Rust Motivation
	Slide 61: Rust Motivation
	Slide 62: Rust Motivation
	Slide 63: Rust Motivation
	Slide 64: Rust Motivation
	Slide 65: Rust Motivation
	Slide 66: Rust Goals
	Slide 67: Rust Goals
	Slide 68: Memory Management
	Slide 69: Memory Management
	Slide 70: Memory Management
	Slide 71: Memory Management
	Slide 72: Unsafe
	Slide 73: Unsafe
	Slide 74: Unsafe
	Slide 75: Unsafe
	Slide 76: Other Relevant Features
	Slide 77: Other Relevant Features
	Slide 78: Concurrency
	Slide 79: Concurrency
	Slide 80: Concurrency
	Slide 81: Concurrency
	Slide 82: Concurrency
	Slide 83: Concurrency
	Slide 84: Hello World
	Slide 85: Ownership
	Slide 86: Ownership
	Slide 87: Ownership
	Slide 88: Ownership
	Slide 89: Ownership
	Slide 90: Ownership
	Slide 91: Ownership/Borrowing
	Slide 92: Ownership/Borrowing
	Slide 93: Ownership/Borrowing
	Slide 94: Ownership/Borrowing
	Slide 95: Ownership/Borrowing
	Slide 96: Ownership/Borrowing
	Slide 97: Ownership/Borrowing
	Slide 98: Ownership/Borrowing
	Slide 99: Ownership/Borrowing
	Slide 100: Shared Borrowing
	Slide 101: Shared Borrowing
	Slide 102: Shared Borrowing
	Slide 103: Shared Borrowing
	Slide 104: Shared Borrowing with Concurrency
	Slide 105: Shared Borrowing with Concurrency
	Slide 106: Shared Borrowing with Concurrency
	Slide 107: Shared Borrowing with Concurrency
	Slide 108: Clone, Move
	Slide 109: Clone, Move
	Slide 110: Clone, Move
	Slide 111: Clone, Move
	Slide 112: Clone, Move
	Slide 113: Mutability
	Slide 114: Mutability
	Slide 115: Mutability
	Slide 116: Mutability
	Slide 117: Mutability
	Slide 118: Mutability
	Slide 119: Sharing State: Channels
	Slide 120: Sharing State: Channels
	Slide 121: Sharing State: Channels
	Slide 122: Sharing State: Channels
	Slide 123: Sharing State: Channels
	Slide 124: Sharing State: Channels
	Slide 125: Sharing State: Channels
	Slide 126: Sharing State: Channels
	Slide 127: Sharing State: Channels
	Slide 128: Sharing State: Channels
	Slide 129: Sharing State
	Slide 130: Sharing State
	Slide 131: Sharing State: Arc and Mutex
	Slide 132: Sharing State: Arc and Mutex
	Slide 133: Sharing State: Arc and Mutex
	Slide 134: Sharing State: Arc and Mutex
	Slide 135: Sharing State: Arc and Mutex
	Slide 136: Sharing State: Arc and Mutex
	Slide 137: Sharing State: Arc and Mutex, really
	Slide 138: Sharing State: Arc and Mutex, really
	Slide 139: Sharing State: Arc and Mutex, really
	Slide 140: Sharing State: Arc and Mutex, really
	Slide 141: Sharing State: Arc and Mutex, really
	Slide 142: Sharing State: Arc and Mutex, really
	Slide 143: Sharing State: Arc and Mutex, really
	Slide 144: Sharing State: Arc and Mutex, really
	Slide 145: Sharing State: Arc and Mutex, really
	Slide 146: Sharing State: Arc and Mutex, really
	Slide 147: Sharing State: Arc and Mutex, really
	Slide 148: Sharing State: Arc and Mutex, really
	Slide 149: Sharing State: Arc and Mutex, really
	Slide 150: Sharing State: Arc and Mutex, really
	Slide 151: Sharing State: Arc and Mutex, really
	Slide 152: Sharing State: Arc and Mutex, really
	Slide 153: Sharing State: Arc and Mutex, really
	Slide 154: Sharing State: Arc and Mutex, really
	Slide 155: Sharing State: Arc and Mutex, really
	Slide 156: Sharing State: Arc and Mutex, really
	Slide 157: Sharing State: Arc and Mutex, really
	Slide 158: Discussion
	Slide 159: Summary

