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Overview

Decoupling Shared, Mutable, and State

Channels and Synchronization

Rust Lab Preview

Acknowledgements: 
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• Thanks Nikolas Matsakis!
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Rust Motivation

Locks’ litany of problems:

• Deadlock

• Priority inversion

• Convoys

• Fault Isolation

• Preemption Tolerance

• Performance

• Poor composability…

Solution: don’t use locks
• non-blocking
• Data-structure-centric
• HTM
• blah, blah, blah..

Shared mutable state requires locks

• So…separate sharing and mutability

• Use type system to make concurrency safe

• Ownership

• Immutability

• Careful library support for sync primitives
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Multi-paradigm language modeled after C and C++
Functional, Imperative, Object-Oriented

Primary Goals:
Safe Memory Management

Safe Concurrency and Concurrent Controls

Rust Goals

Be Fast: systems programming
Be Safe: don’t crash
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Rust: a “safe” environment for memory
No Null, Dangling, or Wild Pointers

Objects are immutable by default
User has more explicit control over mutability

Declared variables must be initialized prior to execution
A bit of a pain for static/global state

Memory Management



Unsafe

Credit: http://www.skiingforever.com/ski-tricks/
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Functions determined unsafe via specific behavior
• Deference null or raw pointers

• Data Races

• Type Inheritance

Using “unsafe” keyword → bypass compiler enforcement
• Don’t do it. Not for the lab, anyway

The user deals with the integrity of the code

Unsafe

Credit: http://www.skiingforever.com/ski-tricks/

http://www.skiingforever.com/ski-tricks/
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First-Class Functions and Closures
Similar to Lua, Go, …

Algebraic data types (enums)

Class Traits
Similar to Java interfaces

Allows classes to share aspects

Other Relevant Features

Hard to use/learn without 
awareness of these issues
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Tasks → Rust’s threads

Each task → stack and a heap
Stack Memory Allocation – A Slot
Heap Memory Allocation – A Box

Tasks can share stack (portions) with other tasks
These objects must be immutable

Task States: Running, Blocked, Failing, Dead
Failing task: interrupted by another process
Dead task: only viewable by other tasks

Scheduling
Each task → finite time-slice
If task doesn’t finish, deferred until later
“M:N scheduler”

Concurrency



fn main() {

    println!("Hello, world!")

}

Hello World
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Ownership
n. The act, state, or right of possessing something

Borrow
v. To receive something with the promise of returning it

Ownership/Borrowing →
No need for a runtime

Memory safety (GC)

Data-race freedom

Ownership

MM Options:
• Managed languages: GC
• Native languages: manual 

management
• Rust: 3rd option: track 

ownership

• Each value in Rust has a variable called its owner.
• There can only be one owner at a time.
• Owner goes out of scope→value will be dropped.
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}

Ownership/Borrowing

fn helper(name: String) {

  println!(“{}”, name);

}

Error: use of moved value: `name`

Take ownership of a String

Pass without ‘&’ takes “ownership implicitly” in other languages like Java

What kinds of problems might this prevent?
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fn main() {

  let name = format!("...");

  helper(&name);

  helper(&name);

}

Shared Borrowing

fn helper(name: &String) {

  println!(“{}”, name);

}

Lend the string

Take a reference to a String

Why does this fix the problem?
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fn main() {

  let name = format!("...");

  helper(&name);

  helper(&name);

}

Shared Borrowing with Concurrency

fn helper(name: &String) {

  thread::spawn(||{

    println!("{}", name);

  });

}

Lifetime `static` required

Does this prevent the exact same class of problems?
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fn main() {

  let name = format!("...");

  helper(name.clone());

  helper(name);

}

Clone, Move

fn helper(name: String) {

  thread::spawn(move || {

    println!("{}", name);

  });

}

Is this better?

Explicitly take ownership

Ensure concurrent owners 
Work with different copies

Copy versus Clone:

Default: Types cannot be copied

• Values move from place to place

• E.g. file descriptor

Clone: Type is expensive to copy

• Make it explicit with clone call

• e.g. Hashtable

Copy: type implicitly copy-able

• e.g. u32, i32, f32, …

#[derive(Clone, Debug)]



struct Structure {

    id: i32,

    map: HashMap<String, f32>,

}

impl Structure {
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struct Structure {

    id: i32,

    map: HashMap<String, f32>,

}

impl Structure {

    fn mutate(&mut self, name: String, value: f32){

        self.map.insert(name, value);

    }

}

Mutability

Key idea:
• Force mutation and ownership to be explicit
• Fixes MM *and* concurrency in fell swoop!
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fn main() {

  let (tx0, rx0) = channel();

  thread::spawn(move || {

    let (tx1, rx1) = channel();

    tx0.send((format!("yo"), tx1)).unwrap();

    let response = rx1.recv().unwrap();
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Sharing State: Channels

APIs return Option<T>
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fn main() {

  let var = Structure::new();

let var_lock = Mutex::new(var);

let var_arc = Arc::new(var_lock);

for i in 0..N {

    thread::spawn(move || {

      let ldata = Arc::clone(&var_arc);

      let vdata = ldata.lock();

      // ok to mutate var (vdata)!

    });

  }

}

Sharing State: Arc and Mutex

Key ideas:
• Use reference counting wrapper to pass refs
• Use scoped lock for mutual exclusion
• Actually compiles → works 1st time!
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Why doesn’t “&” fix it?
(&var_arc, instead of just var_arc)

Would cloning var_arc fix it?
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Sharing State: Arc and Mutex, really

Same problem!

What if we just don’t move?
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    thread::spawn(|| {

      let ldata = Arc::clone(&var_arc);
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}

Sharing State: Arc and Mutex, really

What’s the actual fix?
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Sharing State: Arc and Mutex, really

Compiles! Yay!
Other fixes?
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Discussion

GC lambdas, Rust C++

• This is pretty nuanced: 

• Stack closures, owned closures, managed closures, exchg heaps

Ownership and Macros
Macros use regexp and expand to closures



Summary

Rust: best of both worlds
systems vs productivity language

Separate sharing, mutability, concurrency

Type safety solves MM and concurrency

Have fun with the lab!
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