Chapter 5 - Vector Spaces: Theory and Practice

Maggie Myers Robert A. van de Geijn The University of Texas at Austin

Practical Linear Algebra – Fall 2009

Vector Spaces

Examples of vector spaces:

- \bullet R:
- \mathbb{R}^2 :
- \mathbb{R}^3 :

•
$$
\mathbb{R}^n
$$
: Set of vectors of the form $x = \begin{pmatrix} \chi_0 \\ \vdots \\ \chi_{n-1} \end{pmatrix}$, where
\n $\chi_0, \chi_1, \ldots, \chi_{n-1} \in \mathbb{R}$.

Direction (vector) from the origin (the point $0 =$ $\overline{\mathcal{L}}$. . . \int to

 θ

the point
$$
x = \begin{pmatrix} \chi_0 \\ \vdots \\ \chi_{n-1} \end{pmatrix}
$$
.

A direction is position independent: You can think of it as a direction anchored anywhere in \mathbb{R}^n .

Definition

 \bullet Let S be a set.

• This set is called a space if

- There is a notion of multiplying an element in the set by a scalar: if $x \in S$ and $\alpha \in \mathbb{R}$ then αx is defined.
- Scaling an element in the set always results in an element of that set: if $x \in S$ and $\alpha \in \mathbb{R}$ then $\alpha x \in S$.
- There is a notion of adding elements in the set by a scalar: if $x, y \in S$ then $x + y$ is defined.
- Adding two elements in the set always results in an element of that set: if $x, y \in S$ then $x + y \in S$.

Note

A space has to have the notion of a zero element.

Let $x, y \in \mathbb{R}^2$ and $\alpha \in \mathbb{R}$. Then $z = x + y \in \mathbb{R}^2;$ $\alpha \cdot x = \alpha x \in \mathbb{R}^2$; and $0 \in \mathbb{R}^2$ and $0 \cdot x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ θ .

Vector spaces

We will talk about vector spaces because the spaces have vectors as their elements.

- Consider the set of all real valued $m \times n$ matrices, $\mathbb{R}^{m \times n}$.
- Together with matrix addition and multiplication by a scalar, this set is a vector space.
- Note that an easy way to visualize this is to take the matrix and view it as a vector of length $m \cdot n$.

- Not all spaces are vector spaces.
- \bullet The spaces of all functions defined from $\mathbb R$ to $\mathbb R$ has addition and multiplication by a scalar defined on it, but it is not a vectors space.
- It is a space of functions instead.

Subspaces

- Recall the concept of a subset, B , of a given set, A .
- All elements in B are elements in A .
- \bullet If A is a vector space we can ask ourselves the question of when B is also a vector space.

Answer

The answer is that B is a vector space if

- $x, y \in B$ implies that $x + y \in B$
- $x \in B$ and $\alpha \in B$ implies $\alpha x \in B$
- \bullet 0 \in B (the zero vector).

We call a subset of a vector space that is also a vector space a subspace.

Definition

Let A be a vector space and let B be a subset of A . Then B is a subspace of A if

- $x, y \in B$ implies that $x + y \in B$.
- $x \in B$ and $\alpha \in R$ implies that $\alpha x \in B$.

Note

One way to describe a subspace is that it is a subset that is *closed* under addition and scalar multiplication.

Example

The empty set is a subset of \mathbb{R}^n . Is it a subspace? Why?

Exercise

What is the smallest subspace of \mathbb{R}^n ? (Smallest in terms of the number of elements in the subspace.)

Why Should We Care?

Consider

$$
A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \quad b_0 = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix}, \quad \text{and} \quad b_1 = \begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}.
$$

• Does $Ax = b_0$ have a solution?

Consider

$$
A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \quad b_0 = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix}, \quad \text{and} \quad b_1 = \begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}
$$

• Does
$$
Ax = b_0
$$
 have a solution?

The answer is yes: $x =$ $\sqrt{ }$ $\overline{1}$ 1 −1 2 \setminus \cdot

Consider

$$
A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \quad b_0 = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix}, \quad \text{and} \quad b_1 = \begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}
$$

1

 \setminus \cdot

2

 $\sqrt{ }$

• Does
$$
Ax = b_0
$$
 have a solution?

The answer is yes: $x =$ $\overline{1}$ −1

• Does $Ax = b_1$ have a solution?

Consider

$$
A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \quad b_0 = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix}, \quad \text{and} \quad b_1 = \begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}
$$

• Does
$$
Ax = b_0
$$
 have a solution?

The answer is yes: $x =$ $\sqrt{ }$ $\overline{1}$ 1 −1 2 \setminus \cdot

• Does $Ax = b_1$ have a solution? The answer is no.

Consider

$$
A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \quad b_0 = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix}, \quad \text{and} \quad b_1 = \begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}
$$

• Does
$$
Ax = b_0
$$
 have a solution?

• The answer is yes:
$$
x = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}
$$
.

• Does $Ax = b_1$ have a solution? The answer is no.

• Does $Ax = b_0$ have any other solutions?

Consider

$$
A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \quad b_0 = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix}, \quad \text{and} \quad b_1 = \begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}
$$

• Does $Ax = b_0$ have a solution?

- The answer is yes: $x =$ $\sqrt{ }$ $\overline{1}$ 1 −1 2 \setminus \vert
- Does $Ax = b_1$ have a solution? The answer is no.
- Does $Ax = b_0$ have any other solutions? The answer is yes.

Consider

$$
A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \quad b_0 = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix}, \text{ and } b_1 = \begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}
$$

• Does
$$
Ax = b_0
$$
 have a solution?

• The answer is yes:
$$
x = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}
$$
.

- Does $Ax = b_1$ have a solution? The answer is no.
- Does $Ax = b_0$ have any other solutions? The answer is yes.
- How do we characterize all solutions?

Consider the points $(1, 3)$, $(2, -2)$, $(4, 1)$.

- Is there a straight line through these points?
- Under what circumstances is there a straight line through these points?

Let
$$
A \in \mathbb{R}^{m \times n}
$$
, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, and $Ax = b$. Partition
\n
$$
A \rightarrow (a_0 \mid a_1 \mid \cdots \mid a_{n-1}) \text{ and } x \rightarrow \begin{pmatrix} \chi_0 \\ \chi_1 \\ \vdots \\ \chi_{n-1} \end{pmatrix}.
$$
\nThen

$$
\chi_0 a_0 + \chi_1 a_1 + \cdots + \chi_{n-1} a_{n-1} = b.
$$

Definition

Let $\{a_0, \ldots, a_{n-1}\} \subset \mathbb{R}^m$ and $\{\chi_0, \ldots, \chi_{n-1}\} \subset \mathbb{R}$. Then

$$
\chi_0 a_0 + \chi_1 a_1 + \cdots + \chi_{n-1} a_{n-1}
$$

is said to be a *linear combination* of the vectors $\{a_0, \ldots, a_{n-1}\}.$

Note

- Consider $Ax = b$.
- Solution x exists if and only if b equals a linear combination of the columns of A.
- \bullet This observation answers the question "Given a matrix A, for what right-hand side vector, b, does $Ax = b$ have a solution?"
- \bullet The answer is that there is a solution if and only if b is a linear combination of the columns (column vectors) of A .

Definition

The column space of $A \in \mathbb{R}^{m \times n}$ is the set of all vectors $b \in \mathbb{R}^m$ for which there exists a vector $x \in \mathbb{R}^n$ such that $Ax = b$.

Theorem

The column space of $A \in \mathbb{R}^{m \times n}$ is a subspace (of \mathbb{R}^m).

Proof

- \bullet The column space of A is closed under addition:
	- Let $b_0, b_1 \in \mathbb{R}^m$ be in the column space of A.
	- Then there exist $x_0, x_1 \in \mathbb{R}^n$ such that $Ax_0 = b_0$ and $Ax_1 = b_1$.
	- But then $A(x_0 + x_1) = Ax_0 + Ax_1 = b_0 + b_1$ and thus $b_0 + b_1$ is in the column space of A.

 \bullet The column space of A is closed under scalar multiplication:

- Let b be in the column space of A and $\alpha \in \mathbb{R}$.
- Then there exists a vector x such that $Ax = b$.
- \bullet Hence $\alpha Ax = \alpha b$.
- Since $A(\alpha x) = \alpha A x = \alpha b$ we conclude that αb is in the column space of A.

Hence the column space of A is a subspace (of \mathbb{R}^m).

$$
A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \quad b_0 = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix}.
$$

• Set two appended systems:

$$
\left(\begin{array}{ccc|c}3 & -1 & 2 & 8\\1 & 2 & 0 & -1\\4 & 1 & 2 & 7\end{array}\right) \qquad \left(\begin{array}{ccc|c}3 & -1 & 2 & 0\\1 & 2 & 0 & 0\\4 & 1 & 2 & 0\end{array}\right). (1)
$$

• It becomes convenient to swap the first and second equation:

$$
\left(\begin{array}{ccc|c} 1 & 2 & 0 & -1 \\ 3 & -1 & 2 & 8 \\ 4 & 1 & 2 & 7 \end{array}\right) \qquad \left(\begin{array}{ccc|c} 1 & 2 & 0 & 0 \\ 3 & -1 & 2 & 0 \\ 4 & 1 & 2 & 0 \end{array}\right).
$$

Continued

$$
\begin{pmatrix}\n1 & 2 & 0 & -1 \\
3 & -1 & 2 & 8 \\
4 & 1 & 2 & 7\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 2 & 0 & -1 \\
0 & -7 & 2 & 11 \\
0 & -7 & 2 & 11\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 2 & 0 & -1 \\
0 & -7 & 2 & 11 \\
0 & 0 & 0 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 2 & 0 & -1 \\
0 & -7 & 2 & 11 \\
0 & 0 & 0 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 2 & 0 & 0 \\
0 & -7 & 2 & 0 \\
0 & 0 & 0 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 2 & 0 & 0 \\
0 & -7 & 2 & 0 \\
0 & 0 & 0 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 2 & 0 & 0 \\
0 & -7 & 2 & 0 \\
0 & 0 & 0 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 2 & 0 & 0 \\
0 & 1 & -2/7 & 0 \\
0 & 0 & 0 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 2 & 0 & 0 \\
0 & 1 & -2/7 & 0 \\
0 & 0 & 0 & 0\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n1 & 0 & 4/7 & 0 \\
0 & 1 & -2/7 & 0 \\
0 & 0 & 0 & 0\n\end{pmatrix}
$$

$$
\left(\begin{array}{ccc|c} 1 & 0 & 4/7 & 15/7 \\ 0 & 1 & -2/7 & -11/7 \\ 0 & 0 & 0 & 0 \end{array}\right) \qquad \qquad \left(\begin{array}{ccc|c} 1 & 0 & 4/7 & 0 \\ 0 & 1 & -2/7 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right).
$$

 \bullet 0 \times χ ₂ = 0: no constraint on variable χ ₂.

 \bullet χ_2 is a free variable.

•
$$
\chi_1 - 2/7\chi_2 = -11/7
$$
, or,

$$
\chi_1 = -11/7 + 2/7\chi_2
$$

The value of χ_1 is constrained by the value given to χ_2 .

• $\chi_0 + 4/7\chi_2 = 15/7$, or,

$$
\chi_0 = 15/7 - 4/7\chi_2.
$$

Thus, the value of χ_0 is constrained by the value given to χ_2 .

Example (continued) $\sqrt{2}$ $\overline{1}$ $1 \t0 \t4/7 \t15/7$ 0 1 $-2/7$ $-11/7$ $0 \quad 0 \quad 0$ 0 \setminus A $\sqrt{2}$ $\overline{1}$ 1 0 $4/7$ 0 $0 \quad 1 \quad -2/7 \mid 0$ $0 \quad 0 \qquad 0 \mid 0$

•
$$
\begin{pmatrix} 15/7 - 4/7\chi_2 \\ -11/7 + 2/7\chi_2 \\ \chi_2 \end{pmatrix}
$$
 solves the linear system.

We can rewrite this as

$$
\left(\begin{array}{c} 15/7 \\ -11/7 \\ 0 \end{array}\right) + \chi_2 \left(\begin{array}{c} -4/7 \\ 2/7 \\ 1 \end{array}\right).
$$

 \setminus $\vert \cdot$

• So, for each choice of χ_2 , we get a solution to the linear system.

Note

$$
\begin{pmatrix}\n3 & -1 & 2 \\
1 & 2 & 0 \\
4 & 1 & 2\n\end{pmatrix}\n\begin{pmatrix}\n15/7 \\
-11/7 \\
0\n\end{pmatrix} = \begin{pmatrix}\n8 \\
-1 \\
7\n\end{pmatrix}.
$$
\n
\n• x_p is a particular solution to $Ax = b_0$. (Hence the *p* in the
\n x_p .)\n
\n• Note that $\begin{pmatrix}\n3 & -1 & 2 \\
1 & 2 & 0 \\
4 & 1 & 2\n\end{pmatrix}\n\begin{pmatrix}\n-4/7 \\
2/7 \\
1\n\end{pmatrix} = \begin{pmatrix}\n0 \\
0 \\
0\n\end{pmatrix}.$
\n• For any α , $(x_p + \alpha x_n)$ is a solution to $Ax = b_0$:
\n $A(x_p + \alpha x_n) = Ax_p + A(\alpha x_n) = Ax_p + \alpha Ax_n = b_0 + \alpha \times 0 = b_0$.

Example (continued)

- The system $Ax = b_0$ has an infinite number of solutions.
- To characterize all solutions, it suffices to find one (nonunique) particular solution x_p that satisfies $Ax_p = b_0$.
- Now, for any vector x_n that has the property that $Ax_n = 0$, we know that $x_p + x_n$ is also a solution.

Definition

Let $A \in \mathbb{R}^{m \times n}$. Then the set of all vectors $x \in \mathbb{R}^n$ that have the property that $Ax = 0$ is called the *null space* of A and is denoted by $\mathcal{N}(A)$.

Theorem

The null space of $A \in \mathbb{R}^{m \times n}$ is indeed a subspace of \mathbb{R}^n .

Proof

- Clearly $\mathcal{N}(A)$ is a subset of \mathbb{R}^n .
- Show that it is closed under addition:
	- Assume that $x, y \in \mathcal{N}(A)$.
	- Then $A(x + y) = Ax + Ay = 0$
	- Therefore $(x + y) \in \mathcal{N}(A)$.
- **•** Show that it is closed under addition:
	- Assume that $x \in \mathcal{N}(A)$ and $\alpha \in \mathbb{R}$.
	- Then $A(\alpha x) = \alpha A x = \alpha \times 0 = 0$
	- Therefore $\alpha x \in \mathcal{N}(A)$.
- \bullet Hence, $\mathcal{N}(A)$ is a subspace.

The zero vector (of appropriate length) is always in the null space of a matrix A.

[http://z.cs.utexas.edu/wiki/pla.wiki/](#page-0-0) 31

Systematic Steps to Finding All Solutions

Reduction to Row-Echelon Form

$$
\left(\begin{array}{ccc|c} 1 & 3 & 1 & 2 & 1 \\ 2 & 6 & 4 & 8 & 3 \\ 0 & 0 & 2 & 4 & 1 \end{array}\right) \longrightarrow \left(\begin{array}{ccc|c} 1 & 3 & 1 & 2 & 1 \\ 0 & 0 & 2 & 4 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right).
$$

Identify the pivots

The pivots are the first nonzero elements in each row to the left of the line:

$$
\left(\begin{array}{cc|cc}\n\boxed{1} & 3 & 1 & 2 & 1\\
0 & 0 & \boxed{2} & 4 & 1\\
0 & 0 & 0 & 0 & 0\n\end{array}\right).
$$

Give the general solution to the problem

$$
\left(\begin{array}{cc|cc}\n\boxed{1} & 3 & 1 & 2 & 1\\
0 & 0 & \boxed{2} & 4 & 1\\
0 & 0 & 0 & 0 & 0\n\end{array}\right).
$$

- Identify the free variablese (the variables corresponding to the columns that do not have pivots in them):
	- \bullet y and t
- A general solution can be given by

