Chapter 5 - Vector Spaces: Theory and Practice

Maggie Myers Robert A. van de Geijn The University of Texas at Austin

Practical Linear Algebra - Fall 2009

http://z.cs.utexas.edu/wiki/pla.wiki/

Vector Spaces

Examples of vector spaces:

- R:
- \mathbb{R}^2 :
- \mathbb{R}^3 :

•
$$\mathbb{R}^n$$
: Set of vectors of the form $x = \begin{pmatrix} \chi_0 \\ \vdots \\ \chi_{n-1} \end{pmatrix}$, where $\chi_0, \chi_1, \dots, \chi_{n-1} \in \mathbb{R}$.

• Direction (vector) from the origin (the point $0 = \begin{pmatrix} \vdots \\ 0 \end{pmatrix}$) to

he point
$$x = \begin{pmatrix} \chi_0 \\ \vdots \\ \chi_{n-1} \end{pmatrix}$$

• A direction is position independent: You can think of it as a direction anchored anywhere in \mathbb{R}^n .

Definition

• Let S be a set.

This set is called a space if

- There is a notion of multiplying an element in the set by a scalar: if $x \in S$ and $\alpha \in \mathbb{R}$ then αx is defined.
- Scaling an element in the set always results in an element of that set: if $x \in S$ and $\alpha \in \mathbb{R}$ then $\alpha x \in S$.
- There is a notion of adding elements in the set by a scalar: if $x, y \in S$ then x + y is defined.
- Adding two elements in the set always results in an element of that set: if $x, y \in S$ then $x + y \in S$.

Note

A space has to have the notion of a zero element.

Let $x, y \in \mathbb{R}^2$ and $\alpha \in \mathbb{R}$. Then • $z = x + y \in \mathbb{R}^2$; • $\alpha \cdot x = \alpha x \in \mathbb{R}^2$; and • $0 \in \mathbb{R}^2$ and $0 \cdot x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

Vector spaces

We will talk about *vector spaces* because the spaces have vectors as their elements.

- Consider the set of all real valued $m \times n$ matrices, $\mathbb{R}^{m \times n}$.
- Together with matrix addition and multiplication by a scalar, this set is a vector space.
- Note that an easy way to visualize this is to take the matrix and view it as a vector of length $m \cdot n$.

- Not all spaces are vector spaces.
- The spaces of all functions defined from \mathbb{R} to \mathbb{R} has addition and multiplication by a scalar defined on it, but it is not a vectors space.
- It is a space of functions instead.

Subspaces

- Recall the concept of a subset, B, of a given set, A.
- All elements in B are elements in A.
- If A is a vector space we can ask ourselves the question of when B is also a vector space.

Answer

The answer is that B is a vector space if

- $x, y \in B$ implies that $x + y \in B$
- $x \in B$ and $\alpha \in B$ implies $\alpha x \in B$
- $0 \in B$ (the zero vector).

We call a subset of a vector space that is also a vector space a *subspace*.

Definition

Let A be a vector space and let B be a subset of A. Then B is a subspace of A if

- $x, y \in B$ implies that $x + y \in B$.
- $x \in B$ and $\alpha \in R$ implies that $\alpha x \in B$.

Note

One way to describe a subspace is that it is a subset that is *closed* under addition and scalar multiplication.

Example

The empty set is a subset of \mathbb{R}^n . Is it a subspace? Why?

Exercise

What is the smallest subspace of \mathbb{R}^n ? (Smallest in terms of the number of elements in the subspace.)

Why Should We Care?

Consider

$$A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \quad b_0 = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix}, \quad \text{and} \quad b_1 = \begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}$$

• Does $Ax = b_0$ have a solution?

Consider

$$A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \quad b_0 = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix}, \quad \text{and} \quad b_1 = \begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}$$

/ - >

• The answer is yes:
$$x = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

Consider

$$A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \quad b_0 = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix}, \quad \text{and} \quad b_1 = \begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}$$

• Does
$$Ax = b_0$$
 have a solution?

• The answer is yes: $x = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$.

• Does
$$Ax = b_1$$
 have a solution?

Consider

$$A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \quad b_0 = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix}, \quad \text{and} \quad b_1 = \begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}$$

• Does
$$Ax = b_0$$
 have a solution?

• The answer is yes: $x = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$.

• Does $Ax = b_1$ have a solution? The answer is no.

Consider

$$A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \quad b_0 = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix}, \quad \text{and} \quad b_1 = \begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}$$

/ 1)

• The answer is yes:
$$x = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

- Does $Ax = b_1$ have a solution? The answer is no.
- Does $Ax = b_0$ have any other solutions?

Consider

$$A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \quad b_0 = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix}, \quad \text{and} \quad b_1 = \begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}$$

1 \

• The answer is yes:
$$x = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

- Does $Ax = b_1$ have a solution? The answer is no.
- Does $Ax = b_0$ have any other solutions? The answer is yes.

Consider

$$A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \quad b_0 = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix}, \quad \text{and} \quad b_1 = \begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}$$

/ 1 \

• Does
$$Ax = b_0$$
 have a solution?

• The answer is yes:
$$x = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$
.

- Does $Ax = b_1$ have a solution? The answer is no.
- Does $Ax = b_0$ have any other solutions? The answer is yes.
- How do we characterize all solutions?

Consider the points (1,3), (2,-2), (4,1).

- Is there a straight line through these points?
- Under what circumstances is there a straight line through these points?

Let
$$A \in \mathbb{R}^{m \times n}$$
, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, and $Ax = b$. Partition
 $A \to (a_0 \mid a_1 \mid \dots \mid a_{n-1}) \text{ and } x \to \begin{pmatrix} \chi_0 \\ \chi_1 \\ \vdots \\ \chi_{n-1} \end{pmatrix}$.
Then

$$\chi_0 a_0 + \chi_1 a_1 + \dots + \chi_{n-1} a_{n-1} = b.$$

Definition

Let $\{a_0, \ldots, a_{n-1}\} \subset \mathbb{R}^m$ and $\{\chi_0, \ldots, \chi_{n-1}\} \subset \mathbb{R}$. Then

$$\chi_0 a_0 + \chi_1 a_1 + \dots + \chi_{n-1} a_{n-1}$$

is said to be a *linear combination* of the vectors $\{a_0, \ldots, a_{n-1}\}$.

Note

- Consider Ax = b.
- Solution x exists if and only if b equals a linear combination of the columns of A.
- This observation answers the question "Given a matrix A, for what right-hand side vector, b, does Ax = b have a solution?"
- The answer is that there is a solution if and only if b is a linear combination of the columns (column vectors) of A.

Definition

The column space of $A \in \mathbb{R}^{m \times n}$ is the set of all vectors $b \in \mathbb{R}^m$ for which there exists a vector $x \in \mathbb{R}^n$ such that Ax = b.

Theorem

The column space of $A \in \mathbb{R}^{m \times n}$ is a subspace (of \mathbb{R}^m).

Proof

- The column space of A is closed under addition:
 - Let $b_0, b_1 \in \mathbb{R}^m$ be in the column space of A.
 - Then there exist $x_0, x_1 \in \mathbb{R}^n$ such that $Ax_0 = b_0$ and $Ax_1 = b_1$.
 - But then $A(x_0 + x_1) = Ax_0 + Ax_1 = b_0 + b_1$ and thus $b_0 + b_1$ is in the column space of A.
- The column space of A is closed under scalar multiplication:
 - Let b be in the column space of A and $\alpha \in \mathbb{R}$.
 - Then there exists a vector x such that Ax = b.
 - Hence $\alpha Ax = \alpha b$.
 - Since $A(\alpha x) = \alpha A x = \alpha b$ we conclude that αb is in the column space of A.

Hence the column space of A is a subspace (of \mathbb{R}^m).

$$A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix}, \quad b_0 = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix}.$$

• Set two appended systems:

$$\begin{pmatrix} 3 & -1 & 2 & | & 8 \\ 1 & 2 & 0 & | & -1 \\ 4 & 1 & 2 & | & 7 \end{pmatrix} \qquad \qquad \begin{pmatrix} 3 & -1 & 2 & | & 0 \\ 1 & 2 & 0 & | & 0 \\ 4 & 1 & 2 & | & 0 \end{pmatrix}.$$
(1)

• It becomes convenient to swap the first and second equation:

$$\begin{pmatrix} 1 & 2 & 0 & | & -1 \\ 3 & -1 & 2 & | & 8 \\ 4 & 1 & 2 & | & 7 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & 2 & 0 & | & 0 \\ 3 & -1 & 2 & | & 0 \\ 4 & 1 & 2 & | & 0 \end{pmatrix}.$$

Continued

$$\begin{pmatrix} 1 & 2 & 0 & | & -1 \\ 3 & -1 & 2 & | & 8 \\ 4 & 1 & 2 & | & 7 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 0 & | & -1 \\ 0 & -7 & 2 & | & 11 \\ 0 & -7 & 2 & | & 11 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 0 & | & -1 \\ 0 & -7 & 2 & | & 11 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 0 & | & -1 \\ 0 & -7 & 2 & | & 11 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 0 & | & -1 \\ 0 & 1 & -2/7 & | & -11/7 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 4/7 & | & 15/7 \\ 0 & 1 & -2/7 & | & -11/7 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 4/7 & | & 15/7 \\ 0 & 1 & -2/7 & | & -11/7 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 4/7 & | & 0 \\ 0 & 1 & -2/7 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} .$$

$$\begin{pmatrix} 1 & 0 & 4/7 & | & 15/7 \\ 0 & 1 & -2/7 & | & -11/7 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & 0 & 4/7 & | & 0 \\ 0 & 1 & -2/7 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}.$$

• $0 \times \chi_2 = 0$: no constraint on variable χ_2 .

• χ_2 is a free variable.

•
$$\chi_1 - 2/7\chi_2 = -11/7$$
, or,

$$\chi_1 = -11/7 + 2/7\chi_2$$

The value of χ_1 is constrained by the value given to χ_2 .

• $\chi_0 + 4/7\chi_2 = 15/7$, or,

$$\chi_0 = 15/7 - 4/7\chi_2.$$

Thus, the value of χ_0 is constrained by the value given to χ_2 .

Example (continued)

$$\left(\begin{array}{ccc|c} 1 & 0 & 4/7 & 15/7 \\ 0 & 1 & -2/7 & -11/7 \\ 0 & 0 & 0 & 0 \end{array} \right) \qquad \qquad \left| \qquad \qquad \left(\begin{array}{ccc|c} 1 & 0 & 4/7 & 0 \\ 0 & 1 & -2/7 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right).$$

•
$$\begin{pmatrix} 15/7 - 4/7\chi_2 \\ -11/7 + 2/7\chi_2 \\ \chi_2 \end{pmatrix}$$
 solves the linear system.

• We can rewrite this as

$$\begin{pmatrix} 15/7 \\ -11/7 \\ 0 \end{pmatrix} + \chi_2 \begin{pmatrix} -4/7 \\ 2/7 \\ 1 \end{pmatrix}.$$

• So, for each choice of χ_2 , we get a solution to the linear system.

Note

•
$$\begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix} \underbrace{\begin{pmatrix} 15/7 \\ -11/7 \\ 0 \end{pmatrix}}_{x_p} = \begin{pmatrix} 8 \\ -1 \\ 7 \end{pmatrix}.$$

• x_p is a *particular* solution to $Ax = b_0$. (Hence the p in the x_p .)

• Note that
$$\begin{pmatrix} 3 & -1 & 2 \\ 1 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} -4/7 \\ 2/7 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

• For any α , $(x_p + \alpha x_n)$ is a solution to $Ax = b_0$:

 $A(x_p + \alpha x_n) = Ax_p + A(\alpha x_n) = Ax_p + \alpha Ax_n = b_0 + \alpha \times 0 = b_0.$

Example (continued)

- The system $Ax = b_0$ has an infinite number of solutions.
- To characterize all solutions, it suffices to find one (nonunique) particular solution x_p that satisfies Ax_p = b₀.
- Now, for any vector x_n that has the property that Ax_n = 0, we know that x_p + x_n is also a solution.

Definition

Let $A \in \mathbb{R}^{m \times n}$. Then the set of all vectors $x \in \mathbb{R}^n$ that have the property that Ax = 0 is called the *null space* of A and is denoted by $\mathcal{N}(A)$.

Theorem

The null space of $A \in \mathbb{R}^{m \times n}$ is indeed a subspace of \mathbb{R}^n .

Proof

- Clearly $\mathcal{N}(A)$ is a subset of \mathbb{R}^n .
- Show that it is closed under addition:
 - Assume that $x, y \in \mathcal{N}(A)$.
 - Then A(x+y) = Ax + Ay = 0
 - Therefore $(x + y) \in \mathcal{N}(A)$.
- Show that it is closed under addition:
 - Assume that $x \in \mathcal{N}(A)$ and $\alpha \in \mathbb{R}$.
 - Then $A(\alpha x) = \alpha A x = \alpha \times 0 = 0$
 - Therefore $\alpha x \in \mathcal{N}(A)$.
- Hence, $\mathcal{N}(A)$ is a subspace.

The zero vector (of appropriate length) is always in the null space of a matrix A.

Systematic Steps to Finding All Solutions

Reduction to Row-Echelon Form

Identify the pivots

The pivots are the first nonzero elements in each row to the left of the line:

Give the general solution to the problem

- Identify the free variablese (the variables corresponding to the columns that do not have pivots in them):
 - $\bullet \ y \ {\rm and} \ t$
- A general solution can be given by

