
1 
 

Velocity M2T Tool Tutorial 
Model to Text Transformation 

 
Group 1: Robert Berg (robert.berg@utexas.edu), Eric Huneke (QualityCan@gmail.com),  

Amin Shali (amshali@cs.utexas.edu), Joyce Ho (joyceho@utexas.edu) 
 

Date: May 11, 2012 
Revised: September 2012 

 

Problem Introduction 
Model Driven Engineering (MDE) is a methodology used in software design to simplify the goals, 
ideas, and design of domain specific applications. Generally, these models are developed to give all 
parties (including engineers and scientists) working in the domain easier conceptual access to 
applications. For instance, the Unified Modeling Language (UML) is used to represent the set of 
classes and relationships in an object oriented-system. While the source code underlying a UML model 
can be complex, the visual representation of the model provides a simpler view to anyone working in the 
domain who isn’t familiar with coding practices. Thus, the benefit of MDE is clear. 
 
MDE becomes an even more powerful tool if the model in question can be translated into different 
representations. While this idea is simple to understand conceptually, it is not trivial to implement. In 
transforming models, three main problems arise. First, the source model must be transformed into the 
target model. Such an example might be the transformation between a truth table (the source model) 
and a binary decision tree (the target model). Second, the transformation must be validated to ensure 
the target model is correct within the new application domain while still encompassing the rules and 
restrictions that applied in the source domain. Finally, for a complete transformation, we want to 
translate the target model into source code automatically, such as a Java classes containing all the 
information encoded in the target model. The focus of this paper is on the third task of Model to Text 
(M2T) generation. In the sections that follow, a description of M2T transformations is given, including its 
uses and importance. Finally, a M2T tool, called Velocity Model-to-Text (VM2T), based on Apache 
Velocity is presented and used in two M2T transformation examples. These examples transformation 
are presented in a tutorial manner, detailing how to use the tool while also illuminating the concepts and 
process of model-to-text transformations. 

 
  



2 
 

Model-to-Text Transformations 
Overview 
Model-to-text transformations are concerned with converting a given model structure (UML, XML, XMI, 
etc.) into some text-based representation. The output text can be anything from Java source code files 
(.java), to MySQL scripts (.sql), to XML structures (.xml); the options are limitless. A tractable example of 
M2T transformation is that of a UML class diagram transformed to Java source code (note that 
performing this transformation is detailed in the Tutorial section below). To briefly illustrate the example, 
assume we want to transform the UML class diagram of Figure M1 to its associated java classes. 
 

 
Figure M1. Example UML class diagram of which we would like to transform 

to java source code 
 
Performing an M2T transformation on the UML class diagram in Figure M1 should produce two Java 
class: Event.java and Alarm.java. In each case, the output source code for each class should 
include all information provided in the UML class diagram. For instance, Alarm.java should contain the 
data fields perceivedSeverity and acknowledged in addition to specifying that Alarm.java extends 
Event.java. As UML diagrams don’t contain implementation details of class or instance methods, those 
details are left to the engineer utilizing the source code. The desired output for Event.java is shown 
below in Figure M2. 
 

public class Event { 
  // Define the class data fields 
  public String ID; 
 
  // Class constructor 
  public Event (String ID) { 
    this.ID = ID; 
  } 
} 
 

public class Alarm extends Event { 
  // Define the class data fields 
  public boolean acknowledged; 
  public String perceivedSeverity; 
 
  // Class constructor 
  public Alarm (String ID, 
      boolean acknowledged, 

 String perceivedSeverity) { 
    super(ID); 
    this.acknowledged = acknowledged; 
    this.perceivedSeverity = perceivedSeverity; 
  } 
} 

Figure M2. The output java code of Alarm .java and Event.java after performing the M2T transformation 
of the UML class diagram of Figure M1. 



3 
 

Motivation and Value of M2T Transformations 
In many domains, automation is generally superior to manual construction; M2T is no exception. In M2T, 
we want to produce source code from a model input with minimal effort (i.e. maximum automation). The 
key idea is that a relatively small piece of transformation code will generate much larger pieces of output 
code that is syntactically correct.  This process provides several benefits.  First, it allows for the rapid 
creation of redundant or boiler-plate code (e.g. hundreds of class templates from a large UML model).  
Second, given that the transformation code is correct, the automation process in M2T minimizes bug 
propagation because output source code is generated automatically rather than by hand. Finally, the 
M2T process is versatile in its output; if something needs to be changed in the generated output, such 
as a data structure or design pattern, the engineer need only manipulate the transformation code.  In 
summation, it is believed that M2T decreases development costs while also providing the engineer with 
the means to easily maintain his project’s source code base. 

M2T Challenges 
For robust transformations, the M2T tool must be flexible and able to handle several types of model 
inputs. Similarly, the tool must be able to output in an arbitrary target language. Finally, the text 
generation should be simpler than writing the code by hand, especially when scaled to large projects. 
The following sections investigate our M2T tool that we believe addresses these limitations. We describe 
the structure, input and output domains, and usage of the tool with emphasis on usability. For simplicity, 
all input models to the M2T tool developed are encoded as Prolog tables. 

VM2T Tool 
The M2T tool we developed contains many components, each playing an important role in the 
transformation process. These components are described in the subsections below followed by a brief 
overview of the tool’s architecture.  

Velocity (Apache) 
At the heart of our tool is the Apache Velocity engine, a Java-based template engine designed to access 
and print data stored within Java classes. While Velocity was developed primarily for web applications, 
its Java foundation allows for versatility lending itself to M2T and source code generation. The engine 
has the flexibility to handle any input or output format and is moderately straightforward to use. In 
addition, Velocity documentation is plentiful, with developer guides, wikis, articles, and books. 
 
Velocity is built around three structures: a context, a template, and an engine. The context contains 
objects of various types and is the framework for holding well-formatted input data which Velocity can 
later access via the Velocity template. In addition to accessing data from the context, the template, 
written in Velocity Template Language (VTL), also describes the rules for output code generation. The 
Velocity engine takes the information provided by a context and template and generates the output text. 
Figure V1 illustrates a category that summarizes the basics of M2T generation using Velocity. 
  



4 
 

 
Figure V1: Category of M2T generation using Velocity. C is the set of velocity contexts, V is the set of 

velocity templates and T is the set of output text from the M2T transformations.  
 
As stated in the caption of Figure V1, 𝐶 is the set of Velocity contexts, 𝑉 is the set of Velocity templates, 
and 𝑇 is the set of output texts generated from the Velocity engine. More specifically, an element of 
𝐶 and an element of 𝑉 are fed to the Velocity engine where they are composed and transformed to the 
desired output text. This process can be represented as the function: 

 
𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝐸𝑛𝑔𝑖𝑛𝑒:𝐶 × 𝑉 → 𝑇 (1) 

 
Strictly speaking, this functional representation is not how Velocity’s software is structured. For more 
information on the inner workings of Velocity, we refer the reader to the Velocity Developer Guide.1 
 
With a high level understanding of Velocity fresh in our minds, we turn our attention to VTL. VTL is a 
simple and powerful scripting language. A VTL statement begins with a # character and contains a 
directive. Commonly used directives are set, foreach, if, and else. References to the current context 
are denoted by the $ character. Variables, properties, and methods are the different types of VTL 
references. Any text that does not have the # or $ character is automatically added/printed to the output 
(file or console). The text shown below is a simple Velocity template (hello.html.vm) that generates a 
customized HTML page for the value of person in the context. 
 

<html> 
<body> 

        Hello $person 
</body> 
</html> 

 
To access data in a template, a context must be created. Velocity includes a basic implementation class 
called VelocityContext for general purpose needs. Objects are added to the context through the Java 
Hashtable class. Figure V2 shows how to add the variable person---associated with the value Jack---to 
the context. Pairing the template created above with the code below will result in an HTML page that 
reads “Hello Jack”. The output of running the code with the context in Figure V2 is shown in Figure V3. 
 
  

                                                
1 Velocity produces a single text file as output.  VM2T extends velocity to output multiple files.   

http://www.google.com/url?q=http%3A%2F%2Fvelocity.apache.org%2Fengine%2Fdevel%2Fdeveloper-guide.html%23How_Velocity_Works&sa=D&sntz=1&usg=AFQjCNEeViPOhj9eSnbHE_yi8ZEkYe5qxw
http://www.google.com/url?q=http%3A%2F%2Fvelocity.apache.org%2Fengine%2Fdevel%2Fdeveloper-guide.html%23How_Velocity_Works&sa=D&sntz=1&usg=AFQjCNEeViPOhj9eSnbHE_yi8ZEkYe5qxw
http://www.google.com/url?q=http%3A%2F%2Fvelocity.apache.org%2Fengine%2Fdevel%2Fdeveloper-guide.html%23How_Velocity_Works&sa=D&sntz=1&usg=AFQjCNEeViPOhj9eSnbHE_yi8ZEkYe5qxw
http://www.google.com/url?q=http%3A%2F%2Fvelocity.apache.org%2Fengine%2Fdevel%2Fdeveloper-guide.html%23How_Velocity_Works&sa=D&sntz=1&usg=AFQjCNEeViPOhj9eSnbHE_yi8ZEkYe5qxw
http://www.google.com/url?q=http%3A%2F%2Fvelocity.apache.org%2Fengine%2Fdevel%2Fdeveloper-guide.html%23How_Velocity_Works&sa=D&sntz=1&usg=AFQjCNEeViPOhj9eSnbHE_yi8ZEkYe5qxw


5 
 

VelocityContext context = new VelocityContext(); 
context.put("person", new String("Jack")); 
template = Velocity.getTemplate("hello.html.vm"); 
StringWriter sw = new StringWriter(); 
template.merge( context, sw ); 

Figure V2: Supplying data through the basic class to the Velocity template 
 

<html> 
<body> 

        Hello Jack 
</body> 
</html> 

Figure V3: The customized HTML Output for Jack based on hello.html.vm 
 
To use Velocity within Eclipse, three Apache .jar files (commons-collections, commons-lang, and 
velocity) need to be included in the Java class path.  There are several Eclipse plugins that can be used 
to format Velocity template code. After evaluating Velocity UI (http://veloedit.sourceforge.net/) and 
VeloEclipse (http://code.google.com/p/veloeclipse/), we did not use them.  

Our Velocity Customization  
Our group has created an Eclipse Java project that contains a Prolog parser, the tool packed in a .jar 
file, and example input and template files. The benefits of using our tool are that it does not require any 
Java coding, automatically accepts Prolog input, allows you to split the output text into multiple files, and 
negates the need to download the Velocity engine. The project can be downloaded from our Github 
repository: https://github.com/amshali/FOSD.  

Prolog Parser 
As the model inputs to our tool are encoded as Prolog facts, we wrote a Prolog parser to access the 
model data and subsequently store it within a VelocityContext. This eliminates the need to write custom 
Java classes to encapsulate the context for each new Prolog input file. The parser takes a Prolog file 
containing Prolog facts as input and gives the template engine direct access to the table data. The 
parser only requires that the Prolog table schemas be defined, as seen in the Prolog comments of 
Figure V4. 

 

% schema: node, id, name, type 
node(1, Start, start). 
node(2, Ready, state). 
node(3, Drink, state). 
node(4, Eat, state). 
node(5, Family, state). 
node(6, Stop, stop). 
 
% schema: edge, id, startsAt, endsAt 
edge(1, Start, Ready). 
edge(2, Ready, Drink). 
edge(3, Drink, Drink). 

http://veloedit.sourceforge.net/
http://veloedit.sourceforge.net/
http://veloedit.sourceforge.net/
http://veloedit.sourceforge.net/
http://veloedit.sourceforge.net/
http://veloedit.sourceforge.net/
http://veloedit.sourceforge.net/
http://veloedit.sourceforge.net/
http://veloedit.sourceforge.net/
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
http://code.google.com/p/veloeclipse/).
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD


6 
 

edge(4, Eat, Drink). 
edge(5, Drink, Eat). 
edge(6, Ready, Eat). 
edge(7, Eat, Eat). 
edge(8, Drink, Family). 
edge(9, Eat, Family). 
edge(10, Family, Stop). 

Figure V4: Family finite-state machine model in Prolog 
 
The first word after the colon is the name of the table, and the remaining words are the names of the 
columns.  With the schema definitions, the tuples in each table are accessible as an iterable list of 
objects appended with the character “S”.  For example, the following template spits back the node tuples 
defined in Figure V4: 
 

#foreach($node in $nodeS) 
node(${node.id}, ${node.name}, ${node.type}). 
#end 

 
Our modified VTL parser has the capability to generate multiple output files. A marker is used to specify 
where the user can split a single template into multiple output files and needs to be set in the first line in 
the template: 
 
 #set($MARKER="//----") 
 
The quoted string can be anything that will not be found at the beginning of any line in the template (i.e. 
//---- must not appear at the beginning of any line in the template).  Markers themselves are of the 
following form: 
 

${MARKER}filename.extension 
 
Each time a marker appears, all text that follows is placed in a new file with the specified name.  For 
example, the following template file would produce two Java files as output: A.java and B.java. each 
containing an empty class. 
 
 #set($MARKER="//----") 
       ${MARKER}A.java 

class A {} 
${MARKER}B.java 

 class B {} 
 
If no marker is specified, the tool will output the result to the standard output.   



7 
 

Tool Architectural Overview 
Figure V5 provides a high-level architectural overview of our M2T tool that illustrates how each 
component described above is connected. 

 
Figure V5. High-level architectural overview of our M2T tool. The dashed box 

represents the M2T portion of the MDE process. 
 
In Figure V5, we see that the tool receives a model input encoded as Prolog tables from some external 
source upstream. These tuples are passed through the back-end into a Prolog parser that stores these 
Prolog table entries into a list of Java objects. This list is placed in the Velocity context where they are 
accessible by any calling Velocity template. The context and template are then fed into the Velocity 
engine to produce the output text specified by the user-written Velocity template code. Incidentally, the 
schematic of Figure V5 can be represented with a category; this is examined below in the subsection A 
Note on M2T in Categories. 
 
The dashed box represents the boundary of our M2T tool while the orange nodes represent pieces of 
the tool that are automated. We see that the only thing our tool requires for M2T transformations is a 
user-written Velocity template. Many such examples are given in the Tutorials section of this report. 

Running the Tool 
Our tool can generate the output text either by command line invocation or in Eclipse. Our tool takes the 
following parameters: 
 
Command line arguments (has to be in this order): 

           prolog-file template-file 
 

To use our tool via the command line, you simply need to pass the input model and the template to the 
release/vm2t.jar found in our Github project. 
 

java  -jar  m2t-1.0.jar  prologModel.pl  velocityTemplate.vm 

 
In order to import the project into Eclipse, download the latest version of the project in a zip file; you do 
not need to unzip the file. In Eclipse, go to File menu and select Import. From there, choose the Existing 
Projects into Workspace option. Then select the Select archive file and finish by selecting the 
downloaded zip file and clicking on Finish button. The tool requires that the workspace Java Compiler 
Compliance is set to at least 1.6. A tutorial video on this process can be found here. 
 

https://github.com/amshali/FOSD/zipball/master
https://github.com/amshali/FOSD/zipball/master
https://github.com/amshali/FOSD/zipball/master
http://youtu.be/iFGAz3PO1RY


8 
 

In Eclipse, code generation occurs by creating a Java application run configuration. The Main class 
should point to the core.Main file (Figure V5.5), which requires the following program arguments: 
 
          prolog-file template-file 
 

 
Figure V5.5: The run configuration for our tool 

 
 

Figure V6 shows the program arguments to generate the Java code for the Family Finite State Machine 
example in Appendix A in Eclipse’s Run Configuration menu. 
 

 
Figure V6: The program arguments for the Family Finite State machine 

example. 

A Note on Generating Output for All Examples 
A Python script (src/generateExamples.py) will automatically generate the output for all the examples 
included in the Eclipse Project. The following shows how to run the script via the command line: 
 
       python src/generateExamples.py 

 



9 
 

Note that the script requires the user to be in the Eclipse project directory and a Python installation. 

A Note on M2T in Categories 
On a more abstract level, our tool can be thought of as the arrow mapping between objects in a 
category. This is demonstrated in Figure V7 which shows a portion of MDE as a grouping of categories. 
 

 
Figure V7. A portion of MDE as categories. 

 
Shown in Figure V7 are four domains (large circles) containing instances of that domain (small circles): 
models encoded with Prolog (green), HTML (blue), Java (yellow) and SQL (purple). Additionally, we can 
see an example of a category given by: 
 

𝑃 → 𝑃′ → 𝐽 
 

In the above category, one Prolog model P is taken to another Prolog model 𝑃’ by performing a model-
to-model (M2M) transformation. Then, P’ is transformed to an instance of Java source code, J, by 
performing an M2T transformation. Our tool is the arrow mapping between the Prolog model domain to 
one of the remaining domains. More generally, our tool performs an M2T transformation, taking a 
specific Prolog model and mapping it to an instance of another, different domain (inter-domain 
transformation). These right-most instances can be thought of as the output code generated from our 
tool. Incidentally, the Prolog M2M transformation only maps between instances within the Prolog model 
domain (i.e. an endogenous transformation). To round out our understanding of M2T and its relation to 
categories, we can begin to consider some interesting properties of the figure above. For instance, we 
may want to know if the M2T mapping is injective (i.e. there is a single instance in the target domain to 
which the prolog model can map). This is important as it informs the shape of our categories. While this 
idea has not been considered in full detail, it may be of interest to the reader. 

  



10 
 

Tutorials 
We present two examples. The paired input and template files are located in the examples folder in the 
Eclipse project. The first is relatively simple while the second is more complex. To handle the complexity 
of the second, the first example is heavily detailed. 

Example 1: Class to Relational 
Class to Relational describes a transformation from a class schema model to a relational database 
structure. For instance, a class with several attributes might be converted to a relational table where the 
class name is the name of the table and the attributes become the table’s data fields. The metamodels 
of both the class schema model and the relational database model can be found here. Though simple, 
this is a practical example of how to learn our tool. As we are concerned with M2T transformations only, 
we begin with the Prolog tables that represent only the relational database model after an M2M 
transformation from the class model. Thus, for this example we take as input the Prolog model for a 
relational database (Class2Relational_2.pl) given below in Figure M3. It should be noted that the M2M 
transformation from the class schema model to the relational database model shown below is assumed 
to have been accurately performed. 
 

% mdelite table declaration for: relation(tableId, classId, tableName)2 
relation(0, c1, family). 
relation(1, d4, members). 
relation(2, c2, person). 
relation(3, d4, emailAddress). 
 
 
% mdelite table declaration for: column(columnId, belongsTo, field, fieldType) 
column(0, 0, primary, integer). 
column(1, 0, name, string). 
column(2, 1, reference, integer). 
column(3, 1, memberId, integer). 
column(4, 2, primary, integer). 
column(5, 2, firstName, string). 
column(6, 2, closestFriendId, integer). 
column(7, 3, reference, integer). 
column(8, 3, emailAddress, string). 

Figure M3. Prolog tables. 
 
Here, we see that there are four tables to be inserted into a relational database: family, members, 
person and emailAddress. Recall, we are not concerned with the class schema model which we can 
assume had information regarding people, families and email addresses; we are only concerned with 
the Prolog tables representing the relational database model. Note that each table has a table ID. Next, 
we see that there is a table called column that contains a column ID, a data field and its type, and the 
table ID to which said data field belongs. With these two tables, we have enough information to convert 
the Prolog tables representing the relational database model into a .sql script that creates these four 
tables with the necessary data fields and keys. With our target source code in mind, we must now create 

                                                
2 The proper MDELite table declarations are described in the MDELite manual. 

http://www.eclipse.org/m2m/atl/atlTransformations/#Class2Relational


11 
 

a Velocity template to perform the M2T transformation. The Velocity template that produces our .sql 
script, Class2Relational_SQL_2.vm, is given in whole in Figure M4; detailed explanation of individual 
lines or portions of code follow. Note that the extracted and explained portions of the code will be 
formatted such that loops and conditional statements will be indented for clarity. These indentations are 
not however present in the overall template for reasons pertaining to the formatting of the output text. 
Additionally, each line in the template in Figure M4 is preceded by a number and colon (e.g. 3: ); this 
dentoes that it is line 3 of the template. These line numbers are shown for clarity/reference and 
should not be present in an actual template. 
 
 
1:  #set($MARKER="//----") 
2:  ${MARKER}src/classToRelational_2.sql 
3:  #foreach($row in $relationS) 
 
4:  CREATE TABLE ${row.tableName}( 
5:  ## Determine the number of fields in the current table #### 
6:  #set($fieldCount=0) 
7:  #foreach($col in $columnS) 
8:  #if(${col.belongsTo} == ${row.tableId}) 
9:  #set($fieldCount=$fieldCount + 1) 
10: #end 
11: #end 
    ############################################################ 
12: #set($colCount = 0) 
13: #foreach($col in $columnS) 
14: #if(${col.belongsTo} == ${row.tableId}) 
15: #set($colCount=$colCount + 1) 
16: #if(${col.fieldType} == "integer") 
17: #if(${col.field} == "primary") 
18:   ${col.field} INT NOT NULL, PRIMARY KEY(${col.field})#if(${colCount} == ${fieldCount})  
19: );#else, 
20: #end 
21: #else 
22:    ${col.field} INT NOT NULL#if(${colCount} == ${fieldCount}));#else, 
23: #end 
24: #end 
25: #end 
26: #if(${col.fieldType} == "string") 
27:    ${col.field} VARCHAR(50)#if(${colCount} == ${fieldCount}));#else, 
28: #end 
29: #end 
30: #end 
31: #end 
32: #end 

Figure M4. Velocity template for the Class to Relational model to text transformation example. 
 
Line 1: #set($MARKER="//----") 
This line uses Velocity’s #set tag to set a variable called MARKER (denoted $MARKER) to the string “//---
-”. While the #set tag can be used to set variables of any string or integer variable type, the string given 
(//----) has a special meaning for our tool; it says that whenever we see the variable $MARKER, we will 



12 
 

output a new file at the location/path specified directly after that variable. This is made more clear after 
observing line 2 below. 
 
Line 2: ${MARKER}src/classToRelational_2.sql 
 
This line says that when the compiler reaches this line, it should create a file called 
classToRelational_2.sql at the location/path ./src/ . 
 
Line 3: #foreach($row in $relationS) 
This line says that we need to loop through each row in the Prolog table relation. This allows us to 
access each row and all its associated information. For instance, recall that the Prolog table relation 
(found in Figure M3) contains three fields: tableId, classId and tableName. Thus, if we want to 
access the tableName of the row in which we are currently accessing (the current loop) within the table 
relation, we only need to use the variable $row.tableName. In the final output, this will be replaced by 
the current rows table name. For example, if we were currently in the second loop (i.e. looking at the 
second row of table), the Velocity variable $row.tableName would be replaced by string members in 
the text output file specified in line 2. With that, we have a nice segway to line 4. 
 
Line 4: CREATE TABLE ${row.tableName}( 
Here we see that the text that will be written to the output file is the first portion of a standard SQL 
command to create a table. However, as stated earlier, the variable ${row.tablename} will be replaced 
with the current table’s actual table name. As a quick note, you’ll notice the use of brackets around the 
variable. This is to remove ambiguity as to what text is actually part of the variable, much like in bash 
scripts. 
 
Lines 5-11: 
## Determine the number of fields in the current table #### 
#set($fieldCount=0) 
#foreach($col in $columnS) 
   #if(${col.belongsTo} == ${row.tableId}) 
      #set($fieldCount=$fieldCount + 1) 
   #end 
#end 
############################################################ 
 
As the comment suggests, this portion of the code determines how many fields are contained within the 
the current table. We do this by first setting a fieldCount variable. Next, using the #foreach tag, we 
loop through each row of the column table. Then we use the #if operator to determine if the belongsTo 
ID of the current column entry matches that of the current table entry. If yes/true, we increment the 
fieldCount variable with another call to #set. As always, each if and foreach statement are closed with 
the #end tag.  Note that these lines generate no code and only compute a property value that we will use 
later. 
 
Thus far, we have only produced one useful line of source code in our .sql script and that is CREATE 
TABLE xxx( . However, anyone familiar with SQL knows that this is an incomplete declaration. We 
must also include information about the fields that will be present within that table. The remaining lines 
deal with this issue. 



13 
 

 
 
Lines 12-32: 
#set($colCount = 0) 
#foreach($col in $columnS) 
#if(${col.belongsTo} == ${row.tableId}) 
#set($colCount=$colCount + 1) 
#if(${col.fieldType} == "integer") 
#if(${col.field} == "primary") 
   ${col.field} INT NOT NULL, PRIMARY KEY(${col.field})#if(${colCount} == ${fieldCount}) 
);#else, 
#end 
#else 
   ${col.field} INT NOT NULL#if(${colCount} == ${fieldCount}));#else, 
#end 
#end 
#end 
#if(${col.fieldType} == "string") 
   ${col.field} VARCHAR(50)#if(${colCount} == ${fieldCount}));#else, 
#end 
#end 
#end 
#end 
#end 
 
To begin, we first set a variable called colCount which will be used later to help correctly print the 
output file. Next, we loop through each entry/row in the column table. If the entry belongs to the current 
table (remember, we are still in the #foreach($row in $relationS) loop as it was never closed), we 
increment the colCount. Next we must determine if the current column entry is an integer. If yes/true, 
we must use another if statement to determine if that integer is the primary key (as specified in the 
Prolog tables). If yes/true again, we can print the SQL statement that instantiates that field in the table 
such as3 
 
fieldName INT NOT NULL, PRIMARY KEY(fieldName) 

 
In the template, this is represented by the line: 
 
${col.field} INT NOT NULL, PRIMARY KEY(${col.field})#if(${colCount} == ${fieldCount}) );#else,#end 
 
Here is where it gets a bit complicated. At the end of a line that looks like that directly above, we have 
two options: one, we can end the statement with a comma which suggests more fields must be 
instantiated in the table, or two, we can end the statement with a right parenthesis. The latter suggests 
no more fields will be instantiated in that table. This is where that variable colCount comes into play. At 
the end of the line is an if statement that checks whether or not our colCount is equal to that of the 
fieldCount. If yes/true, we end the SQL statement with the right parenthesis and semi-colon. If no/false, 
we add a comma as we know there are more fields to follow. Note that while the formatting of the if-
statement looks compact or sloppy, it is only for the preservation of proper formatting in the output file. 
Moving on, if the field is not an integer, it is a string (for now, only two data types were used to minimize 

                                                
3 Note in Oracle schemas, “PRIMARY KEY” is sufficient. 



14 
 

complexity of the example). Using this information, we instantiate the string field in such a way that 
closely resembles that of instantiating an integer field. Thus, this ends the Velocity template. Note that if 
the input Prolog tables contained field types consistent with standard query language, the use of if-
statements in the template could be drastically reduced! This is a good example of how the model 
informs the template. 
 
After running the M2T tool, we obtain the following output .sql script: 
 

CREATE TABLE family( 
  primary INT NOT NULL, PRIMARY KEY(primary), 
  name VARCHAR(50)); 
CREATE TABLE members( 
  reference INT NOT NULL, 
  memberId INT NOT NULL); 
CREATE TABLE person( 
  primary INT NOT NULL, PRIMARY KEY(primary), 
  firstName VARCHAR(50), 
  closestFriendId INT NOT NULL); 
CREATE TABLE emailAddress( 
  reference INT NOT NULL, 
  emailAddress VARCHAR(50)); 

 
The above .sql script does exactly what we proposed it should do at the beginning of the example; 
namely, it builds the four tables present in the Prolog relational database model and includes the 
appropriate fields. If the Prolog model contained information about entries in the relational database 
tables, the template---and as a result, the script---could be modified to use that data to populate the 
database tables. This completes the model to text portion of the Class 2 Relational transformation. 

Example 2: UML to Java 
UML to Java describes a transformation from a UML class diagram to a Java source representation. For 
instance, if a class exists in the UML model, the skeleton of this class must be created in Java such that 
it contains the given attributes, constructors, methods, etc. In order to perform this transformation, a 
UML metamodel is required such that Prolog tuples can capture the model structure. The ATL zoo gives 
a nice UML metamodel from which we can base our transformations; this metamodel can be found here. 
As expected, the metamodel provides all the components needed to fabricate a UML class diagram 
such as class names, attributes, attribute types, inheritance, scope and more. Before transforming the 
model to Java code, the UML model information must be encoded as Prolog tables such that they 
capture the structure of the diagram in question (much like XML/XMI might also be used to represent the 
UML diagram). The UML model and the corresponding Prolog input tables for the example implemented 
are shown below in Figures M5 and M6 respectively. 
 
Before continuing, it is important to observe the structure of the Prolog tables/facts in Figure M6 
(UML2Java.pl); many tables are present including class, namespace, attribute, operation and 
parameter. The class table/facts contain information about the desired class name, visibility, 
inheritance and abstraction. Thus, this portion of the model will allow greater specificity in the generated 
java source code (i.e. class templates); with this information, we aren’t limited to to public, concrete 

http://www.eclipse.org/m2m/atl/atlTransformations/UML2Java/ExampleUML2Java%5Bv00.01%5D.pdf
http://www.eclipse.org/m2m/atl/atlTransformations/UML2Java/ExampleUML2Java%5Bv00.01%5D.pdf


15 
 

classes. The namespace and package tables allow for greater control over the location and package 
settings of the java source, respectively. The attributes table defines the visibility, type and ownership 
of data fields within classes. And finally, the operation tables combined with the parameter tables give 
all the information necessary to produce the structure of methods within classes (e.g. type, visibility, 
inputs and output variables). 
 

 

 
Figure M5. UML class diagram that we would like to transform into Java 

source code (i.e. generate Java class templates). 
 

% mdelite table declaration for: class(id, name, visibility, parentId, isAbstract) 
class(1, Class1, public,  2, true). 
class(2, Class2, public,  0, false). 
class(3, Class3, private, 2, false). 
class(4, Class4, public,  1, false). 
 
% mdelite table declaration for:  namespace(id, name, ownerId) 
namespace(1, util, 1). 
namespace(2, util, 2). 
namespace(3, util, 3). 
namespace(3, util, 4). 
 
% mdelite table declaration for: package(id, name, ownerId) 
package(1, java, 1). 
package(1, java, 2). 
package(1, java, 3). 
package(1, java, 4). 
 
% mdelite table declaration for:: attr(id, name, type, pid, ownerScope, 
%      visibility, changeability, ownerId) 
attr(1, name,          String, 1, ,       public, true, 1). 
attr(2, count,         int,    1, static, public, true, 1). 
attr(3, someAttribute, double, 2, static, public, true, 2). 
attr(4, someVector,    Vector, 3,       , public, true, 3). 



16 
 

attr(5, dataField,     double, 4,       , public, true, 4). 
attr(5, dataField2,    double, 4,       ,private, true, 4). 
 
% mdelite table declaration for: operation(id, name, type, pid, ownerScope, 
%         visibility, ownerId) 
operation(1, add,            int,    1, static, private, 1). 
operation(2, speak,          void,   1,       , public,  1). 
operation(3, doSomething,    void,   2,       , public,  2). 
operation(4, multiplyFields, double, 4,       , private, 4). 
 
% mdelite table declaration for:  parameter(id, name, type, operationId) 
parameter(1, foo,         int,       1). 
parameter(2, bar,         int,       1). 
parameter(3, words,       String,    2). 
parameter(4, inputArray,  ArrayList, 3). 
parameter(5, dataField,   double,    4). 
parameter(6, dataField2,  double,    4). 

Figure M6. Input Prolog tables representing the UML model. Each table is an element from the UML 
metamodel 

 
Now, in order to transform the prolog representation of the UML diagram into the representative Java 
classes, we must develop a Velocity template that reads and utilizes all of the aforementioned 
information from the given input tables. A correct template for such a transformation is given in Figure 
M7 (UML2Java.vm). However, as the complete template is quite long, we split it into chunks and analyze 
each portion. Note that each portion will be headed/delimited by a gray comment that is also present 
within the complete template code. This should make cross referencing the template chunks with the 
whole template simple while avoiding the insertion of artificial line numbers into the template code for 
reference where there should be none, such as in the preceding example, Class to Relational. Soon 
after, the aggregate template (Figure M7) should be more easily understood. Note that each chunk is 
indented for clarity though the overall template contains no such formatting. 

## SET VARIABLES ######################## 
#set($MARKER="//----") 
## 
#foreach($class in $classS) 
${MARKER}src/UML2Java/${class.name}.java 
## DETERMINE IF CLASS INHERITS ########## 
#set($extends=0) 
#if(${class.parentId} != "0") 
#set($extends=1) 
#set($superId=${class.parentId}) 
#end 
 
## DECLARE THE PACKAGE ################ 
#foreach($namespace in $namespaceS) 
#foreach($package in $packageS) 
#if(${namespace.ownerId} == ${class.id}) 
#if(${package.ownerId} == ${class.id}) 
package ${namespace.name}.${package.name}; 
#end 



17 
 

#end 
#end ##foreach 
#end ##foreach 
 
## FOR CURRENT CLASS, GET NUMBER OF ATTRIBUTES #################### 
#set($attrSize=0) 
#foreach($attr in $attrS) 
#if(${attr.ownerId} == ${class.id}) 
#set($attrSize=$attrSize + 1) 
#end 
#end 
#set($count1=1) 
## DECLARE THE CLASS AND ATTRIBUTES ############################## 
#if($extends == 0) 
${class.visibility}#if(${class.isAbstract} == true) abstract#end class ${class.name} { 
#else 
${class.visibility}#if(${class.isAbstract} == true) abstract#end class ${class.name} 
extends #foreach($class in $classS)#if(${class.id} == $superId)${class.name}#end#end { 
#end 
 
#foreach($attr in $attrS) 
#if(${attr.ownerId} == ${class.id}) 
${attr.visibility} ${attr.ownerScope} ${attr.type} ${attr.name}; 
#end 
#end 
 
## BUILD THE CONSTRUCTORS ################## 
/** 
* Empty constructor for class ${class.name} 
*/ 
${class.visibility} ${class.name} () { 
} 
 
/** 
* Constructor for class ${class.name} 
*/ 
${class.visibility} ${class.name} (#foreach($attr in $attrS)#if(${attr.ownerId} == 
${class.id})#if($count1 < $attrSize)${attr.type} ${attr.name}, #else${attr.type} 
${attr.name}#end #set($count1=$count1 + 1)#end#end) { 
#foreach($attr in $attrS) 
#if(${attr.ownerId} == ${class.id}) 
this.${attr.name} = ${attr.name}; 
#end 
#end 
} 
 
## BUILD THE GET/SET METHODS ########################## 
// Get/Set methods 
#foreach($attr in $attrS) 
#if(${attr.ownerId} == ${class.id}) 
public ${attr.type} 
get${attr.name.substring(0,1).toUpperCase()}${attr.name.substring(1)}() { 
return this.${attr.name}; 
} 



18 
 

 
public void 
set${attr.name.substring(0,1).toUpperCase()}${attr.name.substring(1)}(${attr.type} 
${attr.name}) { 
this.${attr.name} = ${attr.name}; 
return; 
} 
#end 
#end 
 
## BUILD THE CLASS METHODS ######################### 
// Class methods 
#foreach($operation in $operationS) 
#if(${operation.ownerId} == ${class.id}) 
#set($params=0) 
#set($count1=1) 
#foreach($parameter in $parameterS) 
#if(${parameter.operationId} == ${operation.id}) 
#set($params=$params + 1) 
#end 
#end 
${operation.visibility} ${operation.ownerScope} ${operation.type} 
${operation.name}(#foreach($parameter in $parameterS)#if(${parameter.operationId} == 
${operation.id})#if($count1 < $params)${parameter.type} ${parameter.name}, 
#else${parameter.type} ${parameter.name}#end #set($count1=$count1 + 1)#end#end) { 
// Fill in method implementation details 
} 
 
#end 
#end 
} 
#end 

Figure M7. Velocity template to transform input Prolog tables to Java source code (class skeletons). 
 
The first portion of the Velocity template deals with setting variables: 
 
## SET VARIABLES ######################## 
#set($MARKER="//----") 
## 
#foreach($class in $classS) 
${MARKER}src/UML2Java/${class.name}.java 
   ## DETERMINE IF CLASS INHERITS ####### 
   #set($extends=0) 
   #if(${class.parentId} != "0") 
       #set($extends=1) 
       #set($superId=${class.parentId}) 
   #end 
 
First we set the variable $MARKER as the string “//----”. Every time this variable is seen, an output file 
is created at the location/path that directly follows. Now that we’ve set the marker variable, we must loop 
through each class in the class table; this corresponds to each row in the class table. This is done by 
using the Velocity tag #foreach. NOTE: the #foreach tag must be followed with a #end tag. By doing 



19 
 

so, we can extract all the information pertaining to that class and build the java class skeleton. Before 
continuing, we must first determine if the current class in the loop (given by the variable $class) is a 
subclass. If it is, we set the $extends variable to 1. Now that some of the class specific variables are 
set, we must move on to setting the namespace and package of the current class in the loop: 
 
## DECLARE THE PACKAGE ################# 
#foreach($namespace in $namespaceS) 
   #foreach($package in $packageS) 
      #if(${namespace.ownerId} == ${class.id}) 
         #if(${package.ownerId} == ${class.id}) 
            package ${namespace.name}.${package.name}; 
         #end 
      #end 
   #end 
#end 
 
Though it looks complicated, this portion of the template has a very simple function. First, it loops 
through each namespace and package entry in the namespace and package tables. If the package and 
namespace’s ownerId equals the classId of the current class in the class loop (recall that we hadn’t 
closed the first #foreach that loops through the class), we use the namespace and package names to 
declare the package within the java class. 
 
Next, we need to determine how many attributes the current class contains. This will help in printing the 
constructor of the current java class: 
 
## FOR CURRENT CLASS, GET NUMBER OF ATTRIBUTES #################### 
#set($attrSize=0) 
#foreach($attr in $attrS) 
   #if(${attr.ownerId} == ${class.id}) 
      #set($attrSize=$attrSize + 1) 
   #end 
#end 
 
The above template chunk loops through each entry in the attr table and increments a counter 
$attrSize when an attribute’s ownerId equals the current classes ID--basically, we are counting how 
many fields should exist within the current class; just as in the class to relational example above, this 
attribute counter will be used in building/printing the class constructor. More specifically, it will be used to 
determine if the constructor argument list should be closed with a right parenthesis (i.e. there are no 
more attributes in the class) or with a comma (i.e. more attributes to be declared in the constructor 
argument list). So far, we have only generated the package information of the java class. The next step 
is declaring the class itself and its given data fields: 
 
  



20 
 

## DECLARE THE CLASS AND ATTRIBUTES ############################## 
#if($extends == 0) 
   ${class.visibility}#if(${class.isAbstract} == true) abstract#end class ${class.name} { 
#else 
   ${class.visibility}#if(${class.isAbstract} == true) abstract#end class ${class.name} 
extends #foreach($class in $classS)#if(${class.id} == $superId)${class.name}#end#end { 
#end 
## ATTRIBUTES ########### 
#foreach($attr in $attrS) 
   #if(${attr.ownerId} == ${class.id}) 
     ${attr.visibility} ${attr.ownerScope} ${attr.type} ${attr.name}; 
   #end 
#end 
 
Walking through the above template chunk makes its function clear. First we determine if the current 
class extends another class. If not, we print the standard class declaration (i.e. public class 
className { ) using the information given in the class table (e.g. name which can be extracted with 
$class.name). You’ll notice that there are embedded #if statements within these class declarations. 
This is to insert the word abstract into the declaration if the current class is defined as abstract within 
the Prolog table inputs. 
 
The attributes section is straightforward. Each attribute entry in the attr table is looped through. If the 
attribute’s owner ID is equal to the current class’s ID, we print the attribute and all its associated values 
(e.g. visibility, type, etc) to the java class file. The resulting output will look very familiar and of the form: 
 public static String attributeExample; 
 
Next we move to printing the constructors: 
 
## BUILD THE CONSTRUCTORS ################## 
/** 
 * Empty constructor for class ${class.name} 
 */ 
${class.visibility} ${class.name} () { 
} 
  
/** 
 * Constructor for class ${class.name} 
 */ 
${class.visibility} ${class.name} (#foreach($attr in $attrS)#if(${attr.ownerId} == 
${class.id})#if($count1 < $attrSize)${attr.type} ${attr.name}, #else${attr.type} 
${attr.name}#end #set($count1=$count1 + 1)#end#end) { 
#foreach($attr in $attrS) 
   #if(${attr.ownerId} == ${class.id}) 
      this.${attr.name} = ${attr.name}; 
   #end 
#end 
} 
 
The top portion of the template is simple and creates the empty constructor for the current class. The 
bottom portion is not as simple. Here we first access the class’s visibility and name to provide the usual 
format of a class constructor. However, the difficulty comes when we’re trying to print the parameters of 



21 
 

the non-empty constructor. First, we must loop through each of the attributes and determine which one 
belongs to the current class by checking if the attribute ownership ID matches that of the current class 
ID. If it does, we add it to the argument list as usual by first accessing the attribute type then its name. 
After each iteration of the loop, we iterate the variable called $count1. When $count1 is equal to 
$attrSize (as found using the #if statement) the argument portion of the constructor is closed with a 
right bracket, “)”. If this condition is not satisfied, the attribute loop continues but appends a comma (“,”) 
in anticipation of another argument to follow. Once this is finished, we must again loop through each of 
the attributes, check if they belong to the current class, and set them in the constructor with the standard 
this.fieldName = fieldName syntax. With that, our constructors have been built. 
 
Next, we must include get and set methods within the class so we can access the data fields. This is 
done with the following portion of the template of Figure M7:4 
 
## BUILD THE GET/SET METHODS ########################## 
// Get/Set methods 
#foreach($attr in $attrS) 
  #if(${attr.ownerId} == ${class.id}) 
public ${attr.type} get${attr.name.substring(0,1).toUpperCase()}${attr.name.substring(1)}() { 
        return this.${attr.name}; 
    } 
  
public void set${attr.name.substring(0,1).toUpperCase()}${attr.name.substring(1)}(${attr.type} ${attr.name}) { 
  this.${attr.name} = ${attr.name}; 
        return; 
    } 
  #end 
#end 
 
Since we want a get and set method for each attribute, we start this portion with a #foreach loop that 
loops through each attribute in the attr table. If the attribute ID matches the class ID, we begin to print 
the standard structure of a set and get method using the attribute’s data (e.g. name and type) in the 
standard java form. You’ll notice that when accessing the attribute’s name, some standard java 
operations are called and used on the name string, such as toUpperCase(). This is to ensure that the 
method name adheres to the standard java practice of using camel notation. After the methods are 
described, the method bodies are developed by accessing the information in the attr table (such as 
$attr.name which prints the name of the attribute) in such a way that resembles standard get and set 
methods within a java class. 
 
Finally, we end with printing the class methods themselves given by the operation table: 
 
## BUILD THE CLASS METHODS ######################### 
// Class methods 
#foreach($operation in $operationS) 
#if(${operation.ownerId} == ${class.id}) 
#set($params=0) 

                                                
4 Sadly, there is no line-continuation character in Velocity, so everything that is to appear on one line must be on a 
single VTL line. 



22 
 

#set($count1=1) 
#foreach($parameter in $parameterS) 
#if(${parameter.operationId} == ${operation.id}) 
#set($params=$params + 1) 
#end 
#end 
${operation.visibility} ${operation.ownerScope} ${operation.type} 
${operation.name}(#foreach($parameter in $parameterS)#if(${parameter.operationId} == 
${operation.id})#if($count1 < $params)${parameter.type} ${parameter.name},       
#else${parameter.type} ${parameter.name}#end #set($count1=$count1 + 1)#end#end) { 
// Fill in method implementation details 
} 
 
#end 
#end 
} 
#end ##end to the class foreach loop and end of template 
 
Again, building the portion of the template that consists of printing the class methods seems daunting. 
However, we’ve seen a very similar portion of template code for printing the class constructor. The big 
portion of Velocity code with all the embedded #if’s and #foreach’s is really just a way to print the 
method arguments in a nice way (i.e. when there are no more parameters that belong to the current 
method, cap the printed line with a right bracket “)”; otherwise, print a comma “,” in anticipation of more 
arguments). However this time, instead of comparing the number of parameters counted so far in the 
argument list to a variable called $attrSize (such as in the constructor), we use the variable $params, 
which is determined before we start building the method. The final #end statement is closes the very first 
#foreach loop that was looping through each class in the class tables. As such, the template is 
finished and we are ready to run the tool to perform the M2T transformation. 
 
Once the tool is run (which is as simple as running Main.java with the necessary arguments), four java 
classes will be produced, each corresponding to a class in the UML class diagram given in Figure M5. In 
order to minimize space, only one of the java class---Class1.java---is shown: 
 

package util.java; 
 
public abstract class Class1 extends Class2 { 
 
public String name; 
public static int count; 
 
/** 
* Empty constructor for class Class1 
*/ 
public Class1 () { 
} 
 
/** 
* Constructor for class Class1 
*/ 
public Class1 (String name, int count) { 



23 
 

this.name = name; 
this.count = count; 
} 
 
// Get/Set methods 
public String getName() { 
return this.name; 
} 
 
public void setName(String name) { 

this.name = name; 
return; 
} 
public int getCount() { 
return this.count; 
} 
 
public void setCount(int count) { 
this.count = count; 
return; 
} 
 
// Class methods 
private static int add(int foo, int bar) { 
// Fill in method implementation details 
} 
 
public  void speak(String words) { 
// Fill in method implementation details 
} 
} 

 
 
We see that all information in the input model’s tables are considered; the class is abstract and extends 
Class2, it contains the proper data fields, it has the appropriate constructors and, finally, it contains all 
necessary methods. Note that the fact that this class is abstract is purely illustrative. It is not meant to 
show the actual structure of an abstract class but rather that abstraction can be placed in the class 
definition. 
 
With this example we see the power of M2T transformations. If the UML class diagram is large and 
complex, the M2T transformation given drastically reduces development time as the java classes are 
created quickly, automatically and error-free. 

Additional Examples 
Additional examples---including the input file, Velocity template and output code---are given in the 
Appendix at the end of this report. Some of these examples include transforming a finite state machine 
from a prolog model to both java source code and the Graphviz language. If necessary these examples 
in the appendix provide the user more experience using templates. If additional examples are required, 
the user can find 20 input files and their corresponding templates for M2T transformation within the tool 



24 
 

package itself (again found at https://github.com/amshali/FOSD). Each of these transformations can be 
run from Eclipse (or the command line) using the procedure outlined in the subsection above called 
Running the Tool. 

Conclusion 
We presented an overview of Model to Text (M2T) transformations along with our tool that automates 
much of the M2T process. Our tool, a customization of the Velocity template engine, has several 
benefits: it requires no Java coding, automatically handles Prolog input, allows you to split a single 
template into multiple output files, and negates the need to download the Velocity engine. All that is 
required is a single user-created template file that specifies the transformation, written in the Velocity 
Template Language (VTL). 
 
There are some limitations to our tool. For instance, VTL does not handle complex conditional 
statements or logic containing AND or OR conjunctions. The workaround is to set a variable that 
evaluates the complex logic expression and then test that variable’s value in the conditional statement. 
Additionally, formatting the output layout (indents, spacing, etc) can also be difficult as each space in the 
template is printed verbatim. This is made more complicated as spaces within VTL loops will begin to 
compound, pushing all desired text to the side---a neurosis that becomes clearer when experimenting 
with Velocity. The user is forced to sacrifice template readability for output text readability. Finally, our 
current Prolog parser does not support the capability to join tables. This functionality would require 
additional Java coding by the end user.  (Another way is to start with a different set of Prolog tables 
where these joins have been computed.  Such computations would be written in Prolog and executed 
prior to the use of our tool). 
 
In the end, these limitations---which can be circumvented---are outweighed and outnumbered by the 
advantages and functionality of the tool: 

1. Accelerated creation of redundant or boiler-plate code 
2. No back-end Java coding required 
3. Minimization of bug propagation 
4. Enhanced project maintenance through use of templates for code generation (i.e template 

provides single point of change) 
As a result, our tool and its use in M2T transformations decreases development time and cost while 
providing the end user easy access to maintenance and versatility in the source code. 

 

https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD
https://github.com/amshali/FOSD


25 
 

Appendix A: Family Finite-State Machine model 
This example uses a set of Prolog facts (fsm-family.pl) that we used early in the semester, shown 
below.  The node facts represent a state machine with 1 Start node, 1 Stop node, and 4 intermediate 
nodes representing the states Ready, Drink, Eat, and Family.  The edge nodes represent connections 
between the 6 nodes. 
 

% mdelite table declaration for: node(id,name,type) 
node(1, Start, start). 
node(2, Ready, state). 
node(3, Drink, state). 
node(4, Eat, state). 
node(5, Family, state). 
node(6, Stop, stop). 
 
% mdelite table declaration for: edge(id,startsAt,endsAt) 
edge(1, Start, Ready). 
edge(2, Ready, Drink). 
edge(3, Drink, Drink). 
edge(4, Eat, Drink). 
edge(5, Drink, Eat). 
edge(6, Ready, Eat). 
edge(7, Eat, Eat). 
edge(8, Drink, Family). 
edge(9, Eat, Family). 
edge(10, Family, Stop). 

 
We have constructed two examples using this set of Prolog facts.  The first is to automatically generate 
a graph representing the FSM that is similar to the hand-drawn one used in the slides.  To do this, we 
leverage Graphviz (http://www.graphviz.org/), a tool that take a graph encoded in a domain-speicifc 
language and outputs a graph image.  Below is our template (graphviz-fsm.vm) that generates the 
Graphviz code describing the FSM. 

digraph fsm { 
  node [shape=circle]; 
 
#foreach($node in $nodeS)   
  #if ($node.type == "start") 
    ${node.name} [label = "${node.name}", shape=doublecircle]; 
  #elseif ($node.type == "stop") 
    ${node.name} [label = "${node.name}", shape=doubleoctagon]; 
  #else 
    ${node.name} [label = "${node.name}"]; 
  #end 
#end 
     
#foreach($edge in $edgeS) 
  ${edge.startsAt} -> ${edge.endsAt}; 
#end 
} 

http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/


26 
 

 
Below is the output of the template.  For this example, the Graphviz language should be fairly 
straightforward.  We declare a digraph with all the necessary nodes and labels.  After the node 
declarations, the nodes are connected exactly as they are in the input model. 
 

digraph fsm { 
node [shape=circle]; 
rankdir=LR; 
Start [label = "Start", shape=doublecircle]; 
Ready [label = "Ready"]; 
Drink [label = "Drink"]; 
Eat [label = "Eat"]; 
Family [label = "Family"]; 
Stop [label = "Stop", shape=doubleoctagon]; 
 
Start -> Ready; 
Drink -> Drink; 
Eat -> Drink; 
Drink -> Eat; 
Ready -> Eat; 
Eat -> Eat; 
Drink -> Family; 
Eat -> Family; 
Family -> Stop; 
} 

 
Below is the generated code run by Graphviz.  As can be seen, it is a clean representation of the data 
model. 
 

 
 

Our other example using the FSM Prolog model is to generate simple Java skeleton code that might be 
used as a baseline for executing the FSM.  Our template (java-fsm.vm) is shown below. 
 



27 
 

#set($MARKER="//----") 
${MARKER}Current.java 
package fsm; 
 
class Current { 
  public static Current current = new Start();   
#foreach($node in $nodeS) 
  public void goto${node.name}() {} 
#end 
} 
 
#foreach($node in $nodeS)  
${MARKER}${node.name}.java 
package fsm; 
 
class $node.name extends Current { 
#foreach($edge in $edgeS) 
  #if ($edge.startsAt == $node.name) 
   
  public void goto${edge.endsAt}() { 
    current = new ${edge.endsAt}(); 
  }   
  #end 
#end 
} 
#end 

 
For our set of inputs, we generate seven classes.  The first is a “Current” class that holds the node that 
is currently being executed.  The other six subclass Current and define methods that allow correct state 
transitions. 

Appendix B: Static Method Call 
 
For this example we return to this Graphviz language but present a new data model. The model in this 
case is a Prolog file which describes a number of classes and the methods that they have in addition to 
the information which shows what static methods calls there are between different methods. An example 
of such a Prolog model of method call (method-call-1.vm) is shown below: 
 

% mdelite table declaration for: class(id, name) 
class(c1, ClassA). 
class(c2, ClassB). 
class(c3, ClassC). 
 
% mdelite table declaration for: method(id, classid, name) 
method(m1, c1, noCalls). 
method(m2, c1, recursive). 
method(m3, c2, back). 
method(m4, c2, forth). 



28 
 

method(m5, c3, callsEveryone). 
method(m6, c3, everyoneCalls). 
 
% mdelite table declaration for: invocation(caller, callee) 
invocation(m2, m2). 
invocation(m2, m6). 
invocation(m3, m4). 
invocation(m3, m6). 
invocation(m4, m3). 
invocation(m4, m6). 
invocation(m5, m2). 
invocation(m5, m3). 
invocation(m5, m4). 
invocation(m5, m5). 
invocation(m5, m6). 

 
The template (graphviz-method-call.vm) for this transformation is shown below: 
 

digraph G { 
  concentrate=true; 
  overlap=false; 
  splines=true; 
  ranksep=0.7; 
   
#foreach($class in $classS) 
  subgraph cluster_${class.id} { 
    color=grey; 
    labeljust="l"; 
    node [style=dotted, shape=box]; 
    label="${class.name}"; 
  #foreach($method in $methodS) 
    #if(${method.classid} == ${class.id}) 
     
    ${method.id} [label="${method.name}"]; 
    #end 
  #end 
   
  } 
#end 
#foreach($invok in $invocationS) 
  $invok.caller -> $invok.callee ; 
#end 
} 

 
Our model-to-text tool will convert this model into a text which is the encoding of the method call graph. 
The output of our tool is shown in Appendix A. We then use the graphviz tool to convert that text into an 
image which is shown below: 
 



29 
 

 


	Problem Introduction
	Model-to-Text Transformations
	Overview
	Motivation and Value of M2T Transformations
	M2T Challenges

	VM2T Tool
	Velocity (Apache)
	Our Velocity Customization
	Prolog Parser
	Tool Architectural Overview
	Running the Tool
	A Note on Generating Output for All Examples
	Note that the script requires the user to be in the Eclipse project directory and a Python installation.
	A Note on M2T in Categories

	Tutorials
	Example 1: Class to Relational
	Example 2: UML to Java
	Additional Examples

	Conclusion
	Appendix A: Family Finite-State Machine model
	Appendix B: Static Method Call

