
Catalina Manual
September 14, 2014

MDELite is a proposal to make tools for developing MDE applications – at least in a classroom setting –

easier to use and less heavy-weight than Eclipse. Catalina is its 2nd-generation. MDELite was a code

generator; Catalina is an interpreter. The difference in infrastructure is a growth from MDELite’s miniscule

core ~500 LOC to Catalina’s ~5600 lines. Of course, there is quite a difference in appearance, but whether

these extra capabilities were worth the effort remain to be seen.

This document presents a quick overview of Catalina, its fundamentals, and how to use it. Installation is

described in a separate document.

1. Fundamentals: Part 1

MDE tools are normally based on class diagram metamodels. That is, you create a class diagram to define

your metamodel, and voila! A customized tool is produced to allow you to draw instances of your

metamodel, complete with automatic constraint checking. Of course, you need to provide the

conformance rules for the class diagram, but this is expected.

Catalina is based on metamodels of categories. An MDE application is a set of domains and arrows (a.k.a.

transformations). For each domain, you may need to define its class diagram and constraints (much like

MDE tools above). Cosmically, the overall process is similar, except that the definition of an MDE

application has been elevated from the structure of an individual domain to, basically, a program, rather

than just a module in a program.

There are three sets of tools in a Catalina distribution:

 Core – the framework (NOT an MDE application)

 Catalina – a tool that allows engineers to define a category (a Catalina MDE application)

 MDE – a tool that encodes the original MDELite application, in terms of Catalina tools. Another

Catalina MDE application.

The metamodel for Catalina is shown below:1 It is drawn in the Violet UML diagram editor as a “state

diagram” that has nodes, arcs, and notes.

1 This is actually a simplification of the real Lite category: there are many more domains (intermediate results) and
arrows, but the essential concepts are the same.

Figure 1 Catalina MetaModel

Each rounded-edge box is a domain; each directed edge is an arrow -- a function from a domain to

codomain. Arrows with multiple input domains are represented as cross-products of domains, as in (A*B)

in the figure below, which is the cross product of the domain of A and B. Arrow 𝑚𝑎𝑘𝑒 maps (𝑎, 𝑏) ∈ 𝐴 ×

𝐵 to 𝑐 ∈ 𝐶:

Here’s a tour of the Catalina metamodel. When you see a category drawn in this fashion (which, by the

way, is called an external diagram of a category), just think of it as a flowchart. Nodes are placeholders

for values and arrows are programs that take node inputs and produce node outputs.2

Everything starts by defining a category: the domains and arrows that define an MDE application. As a

general rule, every arrow is a stand-alone program, typically a Java program, but not always. An instance

of every domain is a file (or in special cases, a file directory). Every domain has a name and a file extension,

which is used to distinguish files from different domains. In fact, all file names in Catalina are triples,

𝑁. 𝐷. 𝐸, where 𝑁 is the name of an application; 𝐷 is a domain name, and 𝐸 is an extension.

Example: the file app.lite.pl belongs to application ‘app‘; in particular it is the domain

‘lite’ representation, which is of type ‘pl’ (Prolog). To see why this naming scheme is needed,

consider the category below:

2 At present, Catalina does not work for multiple outputs. In the interim, an arrow of the form → 𝛼: 𝑋 → 𝐴 ∗ 𝐵 is
written as a pair of arrows 𝛼1: 𝑋 → 𝐴 and 𝛼2: 𝑋 → 𝐵.

It has 3 domains (𝐴, 𝐵, 𝐶) and two arrows (𝑝𝑎𝑟𝑠𝑒, 𝑡𝑜𝑐𝑜𝑑𝑒). Arrow 𝑝𝑎𝑟𝑠𝑒 transforms an 𝐴 instance

into a 𝐵 instance. Arrow 𝑡𝑜𝑐𝑜𝑑𝑒 transforms a B instance into a C instance.

Suppose we have two instances of domain 𝐴 that we want to transform into code, namely app1

and app2. Their files are app1.A.xml and app2.A.xml. Program/arrow 𝑝𝑎𝑟𝑠𝑒 converts

app1.A.xml into app1.B.pl, and program/arrow 𝑡𝑜𝑐𝑜𝑑𝑒 converts app1.B.pl into

app1.C.java.

Similarly, 𝑝𝑎𝑟𝑠𝑒 and 𝑡𝑜𝑐𝑜𝑑𝑒 map app2.A.xml to app2.B.pl and then to app2.C.pl. Each

application (e.g. app1) has 3 different representations: a domain 𝐴 representation

(app1.A.xml), a domain 𝐵 representation (app1.B.pl) and a domain 𝐶 representation

(app1.C.java). Every application has multiple representations. This file naming scheme

allows you to recognize files that belong to an application and to distinguish their different

representations.

Finally in a Catalina category specification, every domain has a name and an extension. Instances of

domain 𝐴, above, are xml files. Instances of domain 𝐵 are Prolog files (with pl extensions). Instances

of domain 𝐶 are java files. So as a computation proceeds in Catalina, a series of files with the same

prefix are produced (ex. “app1”), each having a distinct 2-part suffix (e.g. “B.pl”).

Let’s now return to Figure 1 to interpret it. Basically it says: if you want to create a MDE application, you

have to define its category, which is instance of domain “state.violet”. I use Violet, a free UML

diagram drawing tool, to draw Figure 1. It produces a file 𝑁.state.violet, where 𝑁 is the name that

I gave to my application. Violet always produces xml files with suffix “.violet”.

The first transformation (𝑝𝑎𝑟𝑠𝑒) maps a violet state file (which is an XML document) to an instance of a

Prolog database of type lite.pl (the name of the codomain of 𝑝𝑎𝑟𝑠𝑒).3 The schema for lite

databases has yet to be defined – we’ll deal with that shortly. So when arrow 𝑝𝑎𝑟𝑠𝑒 is executed, it maps

file N.state.violet to N.lite.pl (a lite Prolog database). Similarly, transformation 𝑡𝑜𝑐𝑜𝑑𝑒

maps N.lite.pl to a Java file N.C.java. That’s how to think about arrows and their inputs and

outputs.

Every category has a set of database domains – these are recognized by domains with “pl” extensions.

Three database domains appear in Figure 1. Namely, lite, vpl, and schema. Every database in

Catalina needs a schema. A schema is specified Figure 1 as Violet class diagram, from which a Prolog

schema is computed. A violet class diagram is an XML file that is an instance of domain class.violet.

Its Prolog schema is an instance of domain schema.pl. As an example, Figure 2 Schema

Specificationsbelow shows the Violet class diagram for vpl and its derived database schema

(vpl.schema.pl). Again, I draw the pretty Violet picture on the left, and its schema is automatically

computed on the right using program 𝑝𝑎𝑟𝑠𝑒 (which I have to write). You’ll see how this computation is

invoked soon.

3 Violet does not distinguish standard “state chart” drawings from “Catalina category” drawings. Both such drawings

are stored in .state.violet files. You, as a designer, should remember which files are which.

http://alexdp.free.fr/violetumleditor/page.php
http://alexdp.free.fr/violetumleditor/page.php

Figure 2 Schema Specifications

Given schemas for all Prolog databases, the last thing to specify in a category is how to implement each

arrow. That’s the purpose of the notes in Figure 1, which I reproduce below:

Each arrow has an entry in the Arrows note: its name, type, and executable. Arrow 𝑝𝑎𝑟𝑠𝑒 is the first

listed. It is a java executable (that’s the purpose of the “:java:” syntax) and the executable is the Java

program “Catalina.categoryViolet.Parser.Main” that someone has to write. According to the

category diagram, it takes a violet .state.violet file as input and produces a vpl database as output

(whose Prolog schema was just discussed – see Figure 2).

Now skip on down to the vpl2schema arrow. It is a Velocity template (designated by “:vm” and by

default whose file is “vpl2schema.vm”) that defines a model-to-text mapping. According to the category

diagram, it takes a Prolog vpl database and this template (vpl2schema.vm) as input, and produces an

instance of the schema database as output.

The Paths note defines arrow compositions that are convenient. Only one is defined, called makeSchema.

It is the composition of arrows class2vpl and vpl2schema. Invoking the makeSchema arrow is

equivalent to invoking class2schema and vpl2schema in that order.

At present, Catalina arrows are of type java (java executables), pl (Prolog database-to-database

mappings), vm (Velocity templates), or exe (any Windows executables).

To recap, a Catalina application is defined by a Violet category diagram, which contains domains and

arrows. Each domain is typed – is it a violet xml document? is it a Prolog database? Is it a text file? If it is

a Prolog database, you will have to draw a Violet class diagram for Catalina tools to compute its Prolog

schema. For each arrow, you must specify the executable (program) that maps arrow inputs to the arrow

output. Unless you are lucky, you will have to write a program for each arrow. As a general rule, an arrow

program has the command line arguments:

> arrow_program.exe one-or-more-file-inputs lone-file-output

The computation of a Catalina category is to transcribe all of this into an internal (Prolog database) form

that is suitable for execution by the Catalina interpreter.

The next section presents other fundamental ideas behind Catalina. After that, we present the Catalina

GUI to specify these computations, and the last sections will step through an example Catalina

application.

2. Fundamentals: Part 2

A fundamental idea in MDE is that of a metamodel (𝑴𝑴) and its model instances. A 𝑀𝑀 is a template

for stamping out instances, much like a Java class definition can be used to stamp out its objects (i.e., class

instances). Diagrammatically, we show this as a cone of instances: the 𝑀𝑀 is the root and its domain of

instances, labeled 𝑑𝑜𝑚(𝑀𝑀), is shown by the population of its models in the large blue oval. In the figure

below, 𝑚1, 𝑚2, 𝑚3 are instances of 𝑑𝑜𝑚(𝑀𝑀). The 𝑚𝑖 can themselves be metamodels, which have their

own cone (domain) of instances, such as 𝑖2,1, 𝑖2,2, 𝑖2,3 ∈ 𝑑𝑜𝑚(𝑚2) in the figure below.

In any MDE implementation, you need a tool 𝒯(𝑥) to create instances of a metamodel 𝑥. Two tools are

commonly used today. One allows users to define their own class diagrams – we call this tool 𝒞(𝑥) given

metamodel 𝑥. Another allows users to create object diagrams – we call this tool 𝒪(𝑥), for metamodel 𝑥

Thus, in the above figure, users create any of the 𝑚𝑖 using tool 𝒞(𝑀𝑀). They then create instances of

these models, such as 𝑚2, using 𝒪(𝑚2).

Ecore is the metamodel of the Eclipse Modeling Framework (EMF) that allows MDE designers to

graphically represent their models. Below is the meta-object facility (MOF) hierarchy:

Figure 3 MOF Hierarchy

The root of this diagram, 𝐸𝑐𝑜𝑟𝑒𝑀𝑀, is the Ecore metamodel – the metamodel whose instances are class

diagrams. In true MDE style, 𝐸𝑐𝑜𝑟𝑒𝑀𝑀 ∈ 𝑑𝑜𝑚(𝐸𝑐𝑜𝑟𝑒𝑀𝑀) – that is, 𝐸𝑐𝑜𝑟𝑒𝑀𝑀 is an instance of itself.

The Diagram Editor is the main model drawing tool in Ecore. This Editor seems to be the union of at least

3 distinct tools: one that allows users to draw class diagrams (our 𝒞 above), another to manually create

(not draw) instances one instance at a time (𝒪1 above), and a third that allows users to draw object

diagrams of a given MM (𝒪2 above). For teeny models, 𝒪1 is sufficient. Otherwise 𝒪2 is preferred.

Question: has 𝒞(𝑥) ever been invoked with 𝑥 ≠ 𝐸𝑐𝑜𝑟𝑒𝑀𝑀? My guess is “yes” or it could be. Imagine

the domain class diagrams that have no associations, 𝑑𝑜𝑚(𝐶𝑎𝑡).4 I can use 𝒞(𝐸𝑐𝑜𝑟𝑒𝑀𝑀) to create

its metamodel 𝐶𝑎𝑡. In principle, I could then use 𝒞(𝐶𝑎𝑡) to create any instance in the domain

of 𝑑𝑜𝑚(𝐶𝑎𝑡).

Figure 4 Another MOF hierarchy

Categories have the following interesting property. The external diagram of a category (where nodes are

domains and edges are arrows) is a multi-graph: a graph where multiple edges can connect the same

nodes – see Figure 5a. An internal diagram of a category shows the cone of instances of selected domains

and the arrows among their instances – see Figure 5b. Both the external diagram (Figure 5a) and the

diagram that is formed by instances and their arrows (green in Figure 5b) are categories, i.e. multi-graphs.

4 Such things are indeed useful – they are called categories – a concept that we have already encountered in this
document.

Figure 5 Categories

This means that a tool, whose metamodel is based on categories, rather than class diagrams, has the

following hierarchy:

Figure 6 Category Hierarchy

A single tool, 𝒦(𝑥), can create instances of domain 𝑥 ∈ 𝑑𝑜𝑚(𝐶𝑎𝑡). A user would specify his/her MDE

application 𝑐2 as a category, using 𝒦(𝐶𝑎𝑡), and then would instantiate that application using 𝒦(𝑐2). This

is fundamental to Catalina tools.

3. The Catalina GUI Tool

Now let’s take a quick tour of the Catalina Gui tool, a prototype for an eventual IDE plug-in. The GUI can

be invoked from a command line by:

> java CatCore.Gui

 whose graphical front-end is shown below:

There are 3 vertical panels: the left displays a set of buttons and tables to execute the arrows of a category.

The other panels are for file viewing. The idea is this: when an arrow is executed, you (as a MDE designer)

want to see the files that were input and the output that is produced. The middle panel shows (in separate

tabs) each file that is input. The right-most panel displays in a single tab the file that was output. So

during a multi-arrow execution, you can step through the execution one arrow at a time and view

individual arrow inputs and outputs. I have found this useful in debugging categories.

The file viewing panels are read-only: they’re pretty small. Ideally, what is needed is a file editor, which

can give a designer a general-purpose way to explore, and possibly edit, a file. Invoking such an editor is

accomplished by right clicking the tab of the view file. Catalina currently uses GVIM as its editor. The

figure below shows a GVIM application for editing/exploring a violet category file.

The fun part of CatGui is the Execution panel, whose close-up is shown in the figure below.

The top part allows a designer to select an arrow to execute. A pull-down menu lists defined primitive

arrows or paths in a Catalina category specification. Alternatively, an ad hoc path can be typed into a text

field to be executed.

Arguments to an arrow are specified by entering them in the domain table, which in the above figure has

a row for each non-cross-product domain of Figure 1. You can click on a domain to choose the file instance

for that domain. In the figure, the state domain has instance mdeapp.state.violet and the lite

domain has instance mdeapp.lite.pl. When an arrow is executed, its arguments are taken from this

table. If an argument is missing – the tool tells you the arrow can’t be executed in the CatalinaMsgs tab

at the bottom of the panel. Conformance errors are displayed in the ConformangeMsgs tab; execution

errors (something that is really wrong) appears in the ErrorMsgs tab.5

Now, let’s take a look at the button panel. The first row deals with arrow execution. Once you have
selected an arrow and entered its inputs, you can execute it by clicking Step. Often one enters a path (a
multi-arrow execution). In such cases, you’d like to step through its execution one primitive arrow at a
time. That’s the purpose of StepIn – it expands a path into its constituent arrows. The StepOut button
executes the remaining arrows in that path. Run executes the entire path. StepIn is the most useful of

5 What could be an “error”? A file could be corrupted. All arrows (executables) assume basic conditions are satisfied
– in effect, these are the conformance tests that are applied to a model. But during development, it is easy to forget
an essential condition (or to test for it), so errors do arise, should be reported, and that need to be fixed.

these buttons; the RedoLast button is the next most useful. It says re-execute the last arrow. Before you
re-execute an arrow, you can modify its input files. This is helpful for interactive development. I’ll explain
how this is done shortly.

The second row of buttons save you a lot of clicking. Initializing the domain table for a test and selecting

an arrow to execute takes time. SaveState saves the content of the domain table. RestoreState restores

the last saved content. StartOver clears the table and selected arrow. ClearMsgs clears the message tabs

at the bottom of the panel.

The third row of buttons is useful for editing files. Clicking the EditXform button opens a GVIM window

to allow you to edit the last Prolog or Velocity transformation that was executed.

In the case of a Prolog transformation, a pair of windows is opened: a GVIM window containing the Prolog

text and another window running SWI-Prolog (see figure below). This is a useful configuration where one

can edit a file, reload it in SWI-Prolog and re-execute it, enabling the interactive development of a Prolog

database transformation or Prolog database conformance tests. Essentially, it is a pair of windows that a

designer needs to interactively develop and debug a Prolog application is presented. See the refresh note

discussed later.

For arrows implemented by Velocity, a single GVIM window opens with the text of the Velocity template.

You can edit, save your edits, and click RedoLast to re-execute the Velocity arrow. You can view the

output of the arrow in one of the file view windows, or start a GVIM window to read it (discussed earlier).

As for Java and other executables, not much can be done. If you discover a problem, in that the output is

incorrect, you have to use an IDE to debug your (Java) program. This is the least fun part of Catalina.

The Edit I/O Files button will open a GVIM editor for every input file and the output file of an arrow.

CloseAll closes all editor and SWI windows that were created. (To avoid window pollution, Catalina tools

close all opened windows before executing the next arrow).

Perhaps the most valuable button for a novice is the “Now what do I do?”

I find it bewildering to look at a category diagram (a.k.a. megamodel or tool chain diagram) to know where

to begin its computations. As part of metamodel development, I ask that designers write a simple

program to give advice on how to use the and how to walk novices through the process. The next section

illustrates how to use Catalina and this magic button.6

4. Development of a Catalina Application: Part 1

Here is your assignment. You want to create an MDE application using Catalina that will transform a

beautiful state diagram into Java source code. Here’s how to do it.

a. Create an empty working directory and run CatCore.Gui inside it.

>> mkdir myapp

>> cd myapp

>> CatCore.Gui

The Gui asks you (via a dialog) which metamodel you want to use. Select “Catalina” as you are

going to create a new MDE application.7

b. Now, you’re ready to proceed and don’t know what to do. Answer: click the “Now what do I do?”

button. The response is:

6 Writing an Advice program is tedious. I think its development can be automated. I’m trying to figure out how now.
7 Only Lite and MDE are Catalina applications. Normally, all you want to do is to execute an MDE application with
new input files. You select Lite when you want to create a new MDE application, not run an existing one.

Thus, to create a Catalina MDE application, you have to draw its category diagram using Violet.

Not only that, but the domain table is highlighted to tell you what row (state) to fill in:

c. Recall your task is to develop an MDE application to translate a state diagram to Java code. The

violet category specification for this application is shown below:

That is, you want people to draw a state diagram using violet, have arrow tovpl convert a

diagram into a beautiful Prolog database and then have arrow tocode to produce Java code.

Ok, but why this sequence? A Violet state diagram is an ugly xml file. (You should look at the files

Violet produces). You want a representation of it that is easy to understand and for which you can

write constraints in Prolog. That’s the purpose of the spl database in the above category

diagram. Further, the Velocity tool used in Catalina is tailored for Prolog database input. So a

Velocity template is used to stamp out Java code given an spl database. Hence this category.

So now you draw the above category diagram, save it in file myapp.state.violet, and enter

its name into the domain table. Not knowing what to do next, you click “Now what do I do?” The

advice program responds:

d. To spell it out: if I want to produce a database of Prolog facts, you need to define its schema. As

Catalina requires some consistency in writing and specifying schema, it asks you to draw the class

diagram of its schema in Violet, and Cat tools will produce its schema. So you draw the diagram

which encodes all of the facts I will need about state diagrams:

I enter this violet class diagram into the domain table, and click “Now what do I do?” The

response:

e. Look inside the generated directory myapp. There are several files, one of which is README.txt

with contents:

his directory contains the core definitions of the myapp metamodel.

It is still incomplete. Follow these instructions:

1) rewrite dummy libpl/spl.conform.pl

2) write java application stateVioletParser.Main and place it on your CLASSPATH

3) write the Velocity (M2T) file libvm/tocode.vm

4) post this completed directory in C:/Java/Categories for others to use

5) optionally, write an advice program to make your tool easier for others to use

To spell it out: you have to implement each arrow in my category and to write metamodel constraints

for each Prolog database. (No surprise). There are three programs to write:

1. A Java program, which was defined in the category spec as

“stateVioletParser.Main”, to parse a violet state XMLfile into a Prolog database

whose schema is in libpl/vpl.schema.pl, one of the generated files. Its partial

contents are shown below:

dbase(spl,[transition,state]).

table(state,[id,"iname","name",type]).

table(transition,[id,"name","start","end"]).

The above says the stateVioletParser.Main will produce tuples for two tables:

state and transition. The state table has 4-tuples: manufactured identifier (id), an

internal name given by Violet (iname), a name that the user gave to the state (name), and

its type (start – for start state, end – for an end state, normal – for all other states). The

latter enumeration is not obvious – but it was to me (as I knew exactly the meaning of each

column, although Catalina schemas are a bit too primitive to capture such design information.

The transition table also has 4-tuples: a manufactured identifier (id), the name of the

transition (name), and the user-given names of the starting (start), and ending (end)

state. Again, the meaning of these attributes is what I intended when I defined

spl.state.violet. The above schema was produced when this file was “compiled”.8

When you write stateVioletParser.Main, it must take a state.violet (xml) file

as input, and produce tuples according to the spl schema. This is not a difficult task, but it

is tedious. This is a legacy decision of MDELite. Presumably, there are parsers (and predefined

schemas) that could be reused. Creating a repository of such things will be a task for the

future, so that little or no Java code needs to be written.

2. Replace the dummy libpl/spl.conform.pl file with Prolog constraints that you would

expect all state machines to provide – like no two states have the same name. You can use

CatGui to develop such constraints interactively, as mentioned previously.

3. Replace the dummy Velocity template libvm/tocode.vm with something real. Again, you

can use Cat Tools to develop such files interactively.

f. Finally, if you want others to use your MDE application, you should write a Java Advice program

to tell people how to use your tool. This is a bit more advanced than I want to consider at this

point. All any user has to do is supply a violet state.violet file as input, and your tool will

generate its equivalent Java code.

5. Development of a Catalina Application: Part 2

This is the fun part – writing conformance tests, Prolog M2M (database-to-database) translations, and

Velocity (vm) files.

Note: The ONLY painful task is writing Java code – if you can make due with using only Prolog and

Velocity, you will be that much further ahead. Originally, MDELite stopped at this point, although

there was indeed room for writing Java programs. Catalina makes the use of program executables

much more explicit, because there are applications when Prolog and Velocity simply won’t do.

For this example, I’ve already written the stateVioletParser, and have included that in my

CLASSPATH.

Descend into the generated ma directory, and run CatCore.Gui. Use violet to create a state diagram.

This, after all, is the input to your MDE application. Create the following gorgeous file (called

bStateChart.state.violet):

8 Readers might wonder about the difference between “quoted-attributes” and non-quoted-attributes in schema
declarations. Quoted-attributes have single-quoted values in Prolog, e.g., ‘a’, ‘b’. Non-quoted attributes have
unquoted values in Prolog, e.g. a, 1, z, 2. There are only 2 kinds of attributes in Catalina Prolog tables: quoted and
non-quoted. The reasons for this distinction are that they are the two atom types in Prolog.

And enter it into the domain table and select the tovpl arrow. The domain table appears below:

Note the coloring – rows that are input are in yellow; the row that is to be produced are in orange.9 This

is a nice, albeit flashy, feature of CatGui. Press any of the execution buttons (Step, StepIn, Run) and the

arrow is executed. Doing so you’ll get:

Something is wrong – either an error occurred in executing the stateVioletParser or a

conformance error occurred, as something was wrong with the generated Prolog database. Clicking OK,

you’ll see it is a conformance error (in the ConformanceMsgs tab):

Click the EditConform button, which spawns two windows – a GVIM editor that allows you to

write/update spl conformance rules and a swi-Prolog execution window (from which you can reload and

run and debug your conformance rules).

Hint: edit the rules in your GVIM window, and save the result. Move over to the SWI-Prolog

window and type the rule-name refresh. This rule reads in your file (along with others),

compiles it, alerts you to errors, and otherwise allows you to run your ruleset interactively on the

current database you are using to debug your rules.

When you’re finished – which takes a wee bit of time, especially when you forget some basic commands

(as I do) in Prolog – save the file and go onto the next step.

9 I didn’t mention this before, but this “feature” is present in Catalina.Gui too.

The next step is to convert the spl database into Java text. So dial in the tocode arrow:

press Run, and the output produced (shown in the output file tab) tells you everything:

So, again, you can interactively develop this file by clicking the EditXform button. This time, you are

editing a Velocity file (via a GVIM window). As there is no interactive tool for Velocity, edit the file, save

it, and press RedoLast (to rerun the Velocity execution) and see the results in the output file tab. This

cycle continues until you are done.

At this point, your MDE application is complete. I can drag the myapp folder to the Category Repository

to make it available for others to use. When they start CatCore.Gui, they simply select myapp as the

application to execute. Of course, giving myapp a better, more descriptive name would be the first order

of business if I wanted to post this application to others.

6. Do I have to Use the Catalina Gui?

Not really. You just have to do more work manually. The Gui Advise hand-holds you through the creation

of an MDE application. It makes sure, for example, that you have created schemas properly for every

database. As the Catalina interpreter is prolog-table-driven, it ensures that you have created these tables

correctly. You don’t want to do this by hand. However, once a these tables are created, you can use the

Gui or not to run your applications.

You can simply write MS Dos batch scripts or bash scripts, but it is a bit ugly. In fact, the ugliness and

repetition was the motivation for the Gui development in the first place. Regardless always remember

that every arrow is a stand-alone program in Catalina. So when you execute a Catalina MDE application,

you are invoking a series of programs (arrows). You can execute an arrow by invoking CatCore.Main,

once you have chosen its metamodel. (Think of CatCore.Main as constructor 𝒦(𝑥) above. You have

to specify argument x, which is its metamodel, in file config.properties, which is in the directory that you

run CatCore.Main).

The simplest way to set the metamodel is via this invocation:

> cd test

> java CatCore.Main setMetaModel

By doing so, you will choose among the available (published) metamodels:

And in doing so, will create a config.properties file in the test directory above. Encoded in this

properties file is your metamodel selection. You only have to do this once.

Now, suppose you want to invoke arrow 𝛼: 𝐴 ∗ 𝐵 → 𝐶 using files 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 to produce file 𝑐 ∈ 𝐶.

Let 𝜂(𝑓) denote the filename of 𝑓. You can invoke 𝛼 by the call:

> java CatCore.Main 𝜂(𝑎) 𝜂(𝑏) run 𝜂(𝑐)

If all goes well, this execution is silent – no output will appear. If you do see output, then something is

wrong. (The Catalina Gui will halt when such output occurs). There are three possible outcomes of an

arrow execution – it worked, there were conformance errors, there were execution errors. Look in the

following files:

 conformance.txt – contains the list of conformance errors. Your arrow produced a Prolog

database, and associated with each Prolog database is a list of constraints (conformance rules)

that were defined. Every rule that is violated produces an error describing the violation. All such

violations appear in this file. If there are no errors, this file either does not exist or has length 0.

 error.txt – contains a list of internal errors that were produced during arrow execution.

Typically such errors are reserved for something egregious – like parsing errors and the like.

Something is really wrong that you need to fix.

So, always check these two files after every arrow execution.

Catalina category path specifications are of the form 𝑝 = 𝛼. 𝛽. 𝛾. Assume 𝛼: 𝐴 → 𝐵, 𝛽: 𝐵 → 𝐶, 𝛾: 𝐶 → 𝐷

and the input to 𝛼 is 𝑎 ∈ 𝐴. Effectively, CatCore.Gui translates this into the following calls:

>> java CatCore.Main 𝜂(𝑎) run 𝛼
>> (check for errors)

>> java CatCore.Main 𝜂(𝑏) run 𝛽
>> (check for errors)

>> java CatCore.Main 𝜂(𝑐) run 𝛾
>> (check for errors)

Or equivalently:

> java java CatCore.Main 𝜂(𝑎) run 𝛼. 𝛽. 𝛾

Where the (check for errors) is:

 halt if execution is not silent

 halt if conformance.txt has non-zero length

 halt if error.txt has non-zero length

7. Some Built-In Arrows I Haven’t Told You About (Yet)

Catalina has several built-in arrows that you can use, or are automatically invoked.

 Whenever you produce a Prolog database, its Prolog rules are automatically checked. For all other

domains, there is no implicit conformance checking. If you have a program that checks a non-

Prolog domain, you have to encode it as an explicit arrow to execute. Typically I write this as an

arrow 𝑐𝑜𝑛𝑓𝑜𝑟𝑚: 𝐷 → 𝑏𝑜𝑜𝑙.txt, where 𝐷 is the domain whose file I want to check and bool.txt

is a domain where a zero-length file means true and a non-zero-length file (containing the

conformance errors) is false. The domain “bool” is built-into Catalina, and has this semantics.

 Rename – occasionally it is useful to rename files, just to distinguish them. Consider the category

below:

A typical way to debug arrows is to evaluate the pseudo-identity transformation: 𝑡𝑜𝑣𝑑𝑏 followed

by 𝑡𝑜𝑉𝑖𝑜𝑙𝑒𝑡 (i.e. the path 𝑡𝑜𝑣𝑑𝑏. 𝑡𝑜𝑣𝑖𝑜𝑙𝑒𝑡). I call them pseudo-identities in that the files that are

input and produced are not syntactically identical, but are semantically equivalent. (Often,

transformations lose irrelevant bits of information, and this is OK). So for all 𝑎 ∈ 𝑐𝑙𝑎𝑠𝑠. 𝑣𝑖𝑜𝑙𝑒𝑡,

𝑎 ≡ 𝑡𝑜𝑣𝑖𝑜𝑙𝑒𝑡(𝑡𝑜𝑣𝑑𝑏(𝑎)). The problem with executing the path tovdb.toViolet is that Catalina

overwrites the input file a. That is, arrow tovdb maps a.class.violet to a.vdb.pl and

arrow toViolet maps a.vdb.pl to a.class.violet. You don’t want to do that. So one

way is to simply rename the file along the way. The “rename” arrow has the syntax:

 domainName+Extra

where domainName is the name of a domain in the MDE category and Extra is a string (typically

just a single character) that is appended to a file name. Here’s the path that I would use in this

situation:

tovdb.vdb+S.toViolet

where the file that is produced by the 𝑡𝑜𝑉𝑖𝑜𝑙𝑒𝑡 arrow is 𝑎𝑆. 𝑐𝑙𝑎𝑠𝑠. 𝑣𝑖𝑜𝑙𝑒𝑡 given that the input file

was named 𝑎. 𝑐𝑙𝑎𝑠𝑠. 𝑣𝑖𝑜𝑙𝑒𝑡.

 Move – sometimes Rename is not sufficient. Here’s an example: you have two databases 𝑎. 𝐷. 𝑝𝑙

and 𝑏. 𝐷. 𝑝𝑙 that you want ‘merge’. The way the domain table works is that only one file is

“current” in a domain at a time. Here you need 2 files in the same domain to be current. Here’s

a simple way to deal with this: create a “copy” domain.

D1 is a “copy” or “clone” of domain D. Simply invoke the “copy” arrow (which does nothing,

really) except change file 𝑎. 𝐷. 𝑝𝑙 to 𝑎. 𝐷_1. 𝑝𝑙, at which point, you can then evoke arrow

𝑡𝑤𝑜𝑖𝑛𝑝𝑢𝑡. The path that you would use in this case is:

 copy1.produceAnotherD.twoInput

copy1 takes the current file in domain 𝐷, 𝑎. 𝐷. 𝑋, and copies it to 𝑎. 𝐷_1. 𝑋. The arrow

𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝐴𝑛𝑜𝑡ℎ𝑒𝑟𝐷 produces another 𝐷 input, say 𝑏. 𝐷. 𝑋, and arrow 𝑡𝑤𝑜𝐼𝑛𝑝𝑢𝑡 would then take

𝑏. 𝐷. 𝑋 and 𝑎. 𝐷_1. 𝑋 to produce 𝑏. 𝑅𝑒𝑠𝑢𝑙𝑡. 𝑌.

A slightly better way is to use the built-in move arrow which has syntax:

 domainName>domainName_extra

where “_extra” is the name that distinguishes the domain “copy”, as “_1” does in the above

figure. The above path would be the same length, but one arrow is predefined:

D>D_1.produceAnotherD.twoInput

8. Other Items

1. Filth
The current version of Catalina is exceptionally dirty. It generates lots of files whose contents you will be

clueless. (They are, in effect, present for debugging Catalina and not for your consumption). To get rid of

them, run:

> java CatCore.Clean

The files that are removed include:

 error.txt – a Catalina arrow may have execution errors. If so, they are reported in this file. An

empty-length error.txt file means (to the Catalina interpreter) that there were no execution errors

 conformance.txt – a Catalina arrow may invoke prolog constraints (typically only when a prolog

database is created). An empty-length conformance.txt file means (to the Catalina interpreter)

that there were no conformance errors. If there are conformance errors, they are reported in this

file.

 Exe.X.pl – this is the prolog file that is executed in a M2M arrow execution.

 Kon.X.pl – this is the prolog file that is executed in a model conformance test

 executedLine.bat – this is a batch file that indicates the last program (arrow) that the Catalina

interpreter executed.

 script.txt – this is an input script to SWIPL_EXE

The above files are produced during Catalina execution. There are additional files that are Catalina-MDE

application specific. In a Catalina category specification, you’ll be generating all sorts of intermediate

results. Chances are, you don’t want to see them once your application is trusted. Here’s how to get rid

of them. Edit the config.properties file of your MDE application. (This file was produced, along with libpl,

libvm, etc). Add the line:

SAVE_LIST = pattern1 pattern2

What CatCore.Clean will do is NOT delete any file whose name includes the text of any pattern listed.

If a file has a name that does NOT include any of the patterns listed, it will be deleted. (There are built-in

patterns for .lite, libpl, libvm, etc, so that inherently “good” files are retained, so you don’t have to specify

them). An example is:

SAVE_LIST = .violet .yuml

All files whose names do not contain strings “.violet” and “.yuml” will be deleted. Use with caution.

2. Validation
Should you create your own MDE application, you’ll want to add it to the Categories/ directory for others

to use. To validate that all files referenced (e.g. vm2t template files, java executables, prolog files) can

actually be referenced, you should cd into the metamodel directory where you will find a cat.lite.pl file.

This is the prolog database that drives the Catalina interpreter. You really shouldn’t change this file at all,

but sometimes adding paths is OK without having to regenerate the entire MDE application. Anyways, to

validate that all files referenced are present, you can run:

> cd mymetamodel

> java CatCore.Validate

This is purely optional – Validate was created by me just for a sanity check.

9. Final Thoughts

Catalina was initially developed a command-line tool to load the internal equivalent of the domain table

and to execute arrows. It worked, but this was hardly better than MDELite.

I discovered that developing Catalina was an extraordinary challenge. Building an IDE prototype that

presents an environment in which to develop, run, and debug MDE applications is really difficult. Having

knowledge of programmatic access to system environments, forking processes, writing non-trivial GUIs,

making sure all execution paths are set (and they can easily differ from one environment to another)

requires monumental hacking. I see no way around it.

MDE additionally imposes its own special problems. Developing an MDE application spans from coding in

the weeds (e.g., a state diagram parser that processes an xml file and produces a file of Prolog well-formed

facts), to debugging arrows – arrows are functions that map complex files as input to complex file(s) as

output – is itself more difficult than typical programming. And the leaps of abstraction, from low-level

Java details to the high-level concepts of arrows, can be particularly intimidating. Sorting out all these

ideas and keeping them straight (without confusing issues) is non-trivial. Using different environments

for different kinds of programming significantly aid this process. One environment is needed for

debugging Prolog, another for Velocity, yet another for Java: this supports separation of concerns. And

understanding that categories are essentially high-level flow charts, and executing the arrows of a

category (with guidance) is an advising program, ties a lot of ideas together.

Catalina is a minimalist attempt to make all of this happen. Comments are welcome.

