
MDELite Manual

August 2015

1. Introduction
MDELite is an approach for teaching and exploring concepts in
Model Driven Engineering (MDE) as an alternative to Eclipse
tools. Instead of storing models and metamodels as obscure and
unreadable XML documents, it encodes them as readable relational
databases expressed as Prolog facts. Instead of using the convoluted
Object Constraint Language (OCL) to express constraints, it uses
Prolog, a fundamental language in Computer Science. And rather
than using the Atlas Transformation Language (ATL), which is an
outgrowth of OCL, to write model-to-model (M2M) transforma-
tions, MDELite again relies on Prolog. For its model-to-text (M2T)
tool, MDELite uses Apache Velocity, an off the shelf tool used in
industry. The benefits and broad explanation of MDELite are ex-
plained in a 2013 MODELS paper.

This is a manual for MDELite, a Java framework that imple-
ments the MDELite approach. Here is the table of contents:

Installation of MDELite
MDELiteUtilities
A Tutorial on Prolog-Relational Schemas
Big Picture on MDELite

Warning: As hard as I have tried, I know there are bugs in
MDELite. Please let me know when you find them. I will do my
best to fix them.

2. Installation
You can download MDELite from this link:

www.cs.utexas.edu/users/schwartz/MDELite/index.html

The MDELite directory and executable contains:

Docs – a directory with this documentation,

lib – a library of jar files needed by MDELite,

[Copyright notice will appear here once ’preprint’ option is removed.]

libpl – a library of Prolog files,

libvm – an empty library of velocity templates, and

config.properties – a Java properties file that contains only
one setting the absolute path to the SWI Prolog command
line (not Windows GUI) executable.

To install MDELite, you must:

1. Set the value of SWI PROLOG LOCATION in config.properties;
this is the absolute path to swipl.exe, the SWI PROLOG ex-
ecutable,

2. Place the MDELite directory in a global directory where
MDELite applications reside, and

3. Add MDELite.jar to your CLASSPATH.

Here’s how you can check to see if you did the above tasks cor-
rectly: Run Utils.VerifyInstallation. If you did the above
steps correctly, you’ll get:

> java Utils.VerifyInstallation
HomePath: C:/.../MDELite3.05/...
swipl is working!
Violet should be running now. If not, something is wrong.
In any case, please close Violet...
MDELite Ready to Use!

Here’s what the above output means:

• HomePath tells you where MDELite.jar resides,
• Runs swipl.exe to verify that your setting in config.properties

is correct, and
• Invokes the Violet tool – you have to exit Violet for the last

sentence to be reported.

3. MDELite Utilities
MDELite has a Utils directory currently with three programs:

• Utils.VerifyInstallation – we already discussed this.
The program verifies that you have correctly installed MDELite
by running sanity checks:

> java Utils.VerifyInstallation

• Utils.Violet – this program invokes the Violet tool. You
can invoke Violet directly through its jar file, but calling it
from a command line is painful; Utils.Violet makes it
easy. Further, you have an option: if you give Utils.Violet
any argument, it will wait until Violet is closed. Otherwise,
Utils.Violet spawns Violet and immediately returns allow-
ing you to invoke other programs on a command line:

> java Utils.Violet
// spawns Violet and returns immediately

1 2015/8/24

http://velocity.apache.org/
http://www.cs.utexas.edu/ftp/predator/MDELiteModels13.pdf
http://www.cs.utexas.edu/users/schwartz/MDELite/index.html
http://alexdp.free.fr/violetumleditor/page.php
http://alexdp.free.fr/violetumleditor/page.php


> java Utils.Violet <anything>
// spawns Violet and waits for Violet to close

• Utils.ElaborateSchema – MDELite uses a particular format
to define relational database schemas. You can define a short
version of a schema in a Prolog file, say myschema.pl, and use
Utils.ElaborateSchema to elaborate your short definition
into a version that MDELite can use. More on this in the next
section.

> java Utils.ElaborateSchema myschema.pl
myschema.schema.pl produced

4. Tutorial on MDELite Relational-Prolog
Schemas

In MDE-speak, a model conforms to a metamodel. In MDELite-
speak, a meta model is a relational schema; a relational database is
a model that conforms to its schema.

MDELite allows you to outline a relational schema in a prolog
file. Here is a typical “short” declaration in school.pl:

dbase(school,[person,professor,department,student]).

table(person,[id,"name"]).
table(professor,[deptid]).
table(department,[id,"name","building"]).
table(student,[utid]).

subtable(person,[professor,student]).

Here’s what the above outline means:

The name of this schema is school. It contains a list of 4
tables: person, professor, department, student.

Every table has a name and a list of columns/attributes. The
person table has two attributes: id (identifier) and “name”.

The following lines define attributes that are specific to the
professor, department, and student tables. There are three
important conventions used in MDELite tables:

1. The first attribute of every MDELite table is a manufactured
id (identifier) field.

2. There are two kinds of fields in MDELite tables: those with
unquoted values and those with single-quoted values.

3. An n-tuple of a table t is written as a prolog fact: t(v1 . . . vn).
Some person tuples might be:

person(p1,’Don’).
person(p2,’Hanna Elizabeth’).

Values of a tuple are listed in the order that their col-
umn/attributes are listed in their table definition.

Note: id values are unquoted as the id attribute name
is unquoted in the table declaration. name values are
single-quoted as the name attribute name is double-
quoted in the table declaration.

4. Tables can be arranged in an inheritance hierarchy, which
are specified by subtable declarations:

subtable(person,[professor,student]).

This declaration means that the subtables of person are
professor and student. Stated differently, every professor
and student is a person.

As mentioned earlier MDELite uses a more elaborate definition
of a schema. You can produced this schema by running:

> java Utils.ElaborateSchema school.pl
School.schema.pl produced!

Besides checking the sanity of your schema outline, it produces
the file school.schema.pl below:

dbase(school,[person,professor,department,student]).

table(person,[id,"name"]).
table(professor,[id,"name",deptid]).
table(department,[id,"name","building"]).
table(student,[id,"name",utid]).

subtable(person,[professor,student]).

tuple(person,L):-person(A1,A2),L=[A1,A2].
tuple(professor,L):-professor(A1,A2,A3),L=[A1,A2,A3].
tuple(department,L):-department(A1,A2,A3),L=[A1,A2,A3].
tuple(student,L):-student(A1,A2,A3),L=[A1,A2,A3].

personALL(A1,A2):-person(A1,A2).
personALL(A1,A2):-professorALL(A1,A2,_).
personALL(A1,A2):-studentALL(A1,A2,_).
professorALL(A1,A2,A3):-professor(A1,A2,A3).
departmentALL(A1,A2,A3):-department(A1,A2,A3).
studentALL(A1,A2,A3):-student(A1,A2,A3).

Here are the differences and similarities between the “short” and
“long” versions:

The dbase declaration is the same.

Using subtable declarations (ie, table inheritance hierar-
chy information), attributes of super-tables are propagated
to sub-tables. Above, every professor tuple and every
student tuple will have person attributes.

Tuple declarations are used by MDELite to print database.
In essence, it converts each row t(v1 . . . vn) of table t into a
prolog fact tuple(t, [v1 . . . vn]), which MDELite can then
print.

The prolog ALL rules are used to retrieve all tuples of a table
within a table inheritance hierarchy. Above, a personALL
tuple is either a person tuple, or a professor tuple, or a
student tuple.

5. Big Picture on MDELite
You now have an OO framework for building an MDE application
using MDELite. This manual isn’t enough for you to proceed. You
first need to read and re-read the 2013 MODELS paper on which
MDELite is based. It will tell you how to use this framework even
though the paper discussed the 1st generation of MDELite. The
ideas are the same. There are now two MDELite applications that
use MDELite. They are:

• CDExchange – an Avalon version of the application described
in the 2013 MODELS paper.

• Avalon – the MDELite application that is used for bootstrap-
ping: it can build CDExchange and itself (Avalon).

The hard part of building any MDE application is implementing
the arrows. MDELite doesn’t help you with this. I suggest that you
download the source code of these applications, read their manuals,
and study them.

2 2015/8/24

http://www.cs.utexas.edu/ftp/predator/MDELiteModels13.pdf
http://www.cs.utexas.edu/ftp/predator/MDELiteModels13.pdf

