
Avalon Manual

August 2015

1. Introduction
Avalon is a 3rd generation of MDELite and a 2nd generation
bootstrap. It relies on a generative approach to produce and execute
MDELite applications, rather than writing all MDELite application
code by hand or by interpreting MDELite specifications.

Use Avalon to build an MDELite application. Avalon is a meta
metamodel of MDELite: all Avalon applications are MDELite ap-
plications. Avalon generates tedious code and files that would oth-
erwise have to be implemented manually. It doesn’t do everything
for you, but gets you started and tells you what you need to do.
And it is a good way to appreciate the details of what goes on in an
MDE application. Here is a table of contents of this manual:

Installation of Avalon

An Overview of Avalon

How to Write Arrows or Document Transformations

Creating an MDELite App Using Avalon

How Avalon was Bootstrapped

Warning: As hard as I have tried, I know there are bugs in Avalon.
Please let me know when you find them. I will do my best to fix
them.

2. Installation
Avalon requires the MDELite framework. The Avalon directory
and executable contains:

lib – a library of jar files needed by Avalon,

libpl – a library of Prolog database definitions, conformance
files, and M2M transformations, and

libvm – a library of VM2T velocity templates, and

Avalon.jar – the Avalon executable.

To install Avalon, you must:

1. Install the MDELite framework,

[Copyright notice will appear here once ’preprint’ option is removed.]

2. Place the Avalon directory in a global directory where you
have other MDELite tools, such as MDELite,

3. Add Avalon.jar to your CLASSPATH.

To see if you have accomplished the above steps correctly, run:

C>java avalon.Main

Usage: avalon.Main <option> <files>
Format: <file> = <filename>.<domain>.<domainType>

Option: conform <classname> <filename>
<classname> in (AvalonSpec AvalonSpecCD ClassViolet Meta

Metamodel Schema Start VioletPl)
buildClass <filename> // of type class.violet
buildState <filename> // of type state.violet
help <filename> // of type start.tmp
coordinates

If you get the above response, congratulations! You installed
Avalon. If you didn’t, check your CLASSPATH.

3. An Overview of Avalon
Here’s a simple MDE application: you want engineers to draw a
finite state machine (FSM) using Violet, a free Java UML diagram
drawing tool. You want it to perform the following tasks:

Apply constraints to ensure that every drawn FSM is rea-
sonable, eg, no unreachable states, no start state, etc.

Transform the FSM into Java code by a push of a button.
See figure below:

draws
FSMFSM

Application
Engineer

FSM tool

presses button
to generate

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoStop()

-currentState

Current

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoStop()

Start

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoStop()

Ready

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoStop()

Eat

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoStop()

Drink

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoStop()

StopgotoReady() {
 currentState = new Ready();
}
gotoEat() { /*ignore*/ }
gotoDrink() { /*ignore*/ }
gotoStop() { /* ignore */ }

static currentState = new Start();

FSM source code

Ready

Drink

Eat

Family yells "pig"

start stop

FSM diagram
XML document

parse
graph

into tables FSM source code

xform
tables

to code

+gotostart()
+gotoready()
+gotoeat()
+gotodrink()
+gotofam()
+gotostop()
+getName() : String

FMS

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

«interface»
State

FSM() {
 state = new Start();
}
gotostart()
{ state = state.gotostart(); }

gotoready()
{ state = state.gotoready(); }

...

-state

1*

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Start

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Ready

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Eat

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Drink

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Fam

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

StopState gotostart()
{ return this; /* ignore */ }

State gotoready()
{ return new Ready(); }
...

String getName()
{ return "start"; }

Internally, here’s what is going on: Violet stores an FSM dia-
gram as an ugly XML document. This document must be parsed to
harvest the essential data that describes the FSM. MDELite stores
this data as a relational database (a set of relational tables) in Pro-
log. Constraints that determine the sanity of a diagram (or rather, its
relational database representation) must be written and then applied
to this database. If no constraint is violated, the FSM is declared
“sane”. This triggers the next task: translate the database into FSM
source code. MDELite uses an adapted version of Apache Veloc-
ity to do this. Velocity is a free text-generation tool that we have
adapted to read Prolog databases. See figure below:

The simplest way to describe any MDE application is to draw a
category diagram: a bubble D denotes a domain D of objects called
documents or models, and an arrow A : D → R is a transformation
that maps an object in domain D to an object in co-domain R. Here’s
a category diagram for this application:

1 2015/9/20

http://www.cs.utexas.edu/users/schwartz/MDELite/index.html
http://alexdp.free.fr/violetumleditor/page.php
http://velocity.apache.org/

draws
FSMFSM

Application
Engineer

FSM tool

presses button
to generate

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoStop()

-currentState

Current

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoStop()

Start

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoStop()

Ready

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoStop()

Eat

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoStop()

Drink

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoStop()

StopgotoReady() {
 currentState = new Ready();
}
gotoEat() { /*ignore*/ }
gotoDrink() { /*ignore*/ }
gotoStop() { /* ignore */ }

static currentState = new Start();

FSM source code

Ready

Drink

Eat

Family yells "pig"

start stop

FSM diagram
XML document

parse
graph

into tables FSM source code

xform
tables

to code

+gotostart()
+gotoready()
+gotoeat()
+gotodrink()
+gotofam()
+gotostop()
+getName() : String

FMS

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

«interface»
State

FSM() {
 state = new Start();
}
gotostart()
{ state = state.gotostart(); }

gotoready()
{ state = state.gotoready(); }

...

-state

1*

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Start

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Ready

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Eat

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Drink

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Fam

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

StopState gotostart()
{ return this; /* ignore */ }

State gotoready()
{ return new Ready(); }
...

String getName()
{ return "start"; }

The Violet tool is constructor: it produces a XML document
(an instance of domain State). You have to write an XML parser
to translate this XML document into a Prolog file that encodes a
beautiful database. Figure 1a shows my eating habits (I stop eating
when my family yells at me) and Figure 1b is a prolog database that
encodes this FSM.

id name

S0 Start

S1 Eat

S2 Drink

S3 Stop

id name startId endId

T1 eatSome S0 S1

T2 drinkSome S0 S2

T3 eatMore S1 S2

T4 drinkMore S2 S1

T5 stop! S1 S3

T6 Stop! S2 S3

StateTable TransitionTable

:-style_check(-discontiguous).

dbase(fsmdb,[state,transition]).

table(state,[id,”name”]).

state(s0,’Start’).

state(s1,’Eat’).

state(s2,’Drink’).

state(s3,’Stop’).

table(transition,[id,”name”,startid,endid]).

transition(t1,’eatSome’,s0,s1).

transition(t2,’drinkSome’,s0,s2).

transition(t3,’eatMore’,s1,s2).

transition(t4,’drinkMore’,s2,s1).

transition(t5,’stop’,s1,s3).

transition(t6,’stop,s2,s3).

(a)
(b)

Figure 1: FSM Diagram and its MDELite Prolog Database.

The Prolog facts in Figure 1b define a database schema and
more:

Prolog likes all facts with the same name to be on consec-
utive lines. table facts fail this requirement. The first line,
style check, tells Prolog not to expect facts to be consec-
utive.

dbase(dbname,list-of-table-schema-names) is how
MDELite declares a database schema. A database schema
has a name dbname and a list of names of table schemas.

table(tname,list-of-column-names) is how MDE-
Lite declares a relation schema. A table schema has a name
tname and a list of column names. A column name can be
unquoted (id) or double-quoted ("name"). A quoted col-
umn name means that values in that column must be single-
quoted. Column values for tables are never lists and always
singleton values.

tname(comma-separated-column-values) is how MDE-
Lite declares a tuple in table tname. A tuple is a comma-
separated-list of column values, the order in which values
are listed is the order in which their columns are defined in
the table schema.

Another task of our MDE application is to translate the database
in Figure 1b into source code. Figure 2 shows a velocity script
that performs this translation. Please review the VM2T (Velocity
Model 2 Text) manual in the Documents directory of the MDELite
distribution. A velocity template is fairly easy to read – the only
obscure commands are the first two lines in Figure 2: line 1 defines
text that is a output file MARKER; line 2 says direct file output to the
file listed on the VM2T command line; default is vm2toutput.txt.
The text of the Java class that is produced by the above database
and template is shown below:

private class Start extends FSM {
Start() {}

FSM transition(String transitionName) {
switch(transitionName) {
case "eatSome":

return new Eat();
case "drinkSome":

return new Drink();
default:

return this; // nothing happens
}

}

String currentStateName() {
return "Start";

}
}

#set($MARKER="//----")
${MARKER}${OutputFileName}
class FSM {

FSM state = new Start();

void nextState(String transitionName) {
state = state.transition(transitionName);

}

String currentStateName() {
return state.currentStateName();

}

FSM transition(String x) {
throw new RuntimeException("should not be called");

}

#foreach($s in $stateS)
private class ${s.name} extends FSM {

${s.name}() {}

FSM transition(String transitionName) {
switch(transitionName) {

#foreach($t in $transitionS)
#if ($t.startid == $s.id)

#foreach($e in $stateS)
#if($e.id == $t.endid)

#set($newState = "$e.name")
#break

#end
#end

case "${t.name}":
return new ${newState}();

#end
#end

default:
return this; // nothing happens

}
}

String currentStateName() {
return "${s.name}";

}

}
#end

}
Figure 2: A Velocity Template

2 2015/9/20

4. How to Write Arrows or Document Xforms
In MDELite, you (the programmer) have to write a program for
each arrow in a category diagram. This could be a Java program,
Prolog program, or Velocity script. MDELite insists on a few con-
ventions that you must follow; they are described below.

MDELite File Naming Conventions

Java Programs

Prolog Programs

Model Constraint Files

Model-to-Model Transformation Files

VM2T (Velocity) Programs

4.1 MDELite File Naming Conventions
All files in MDELite have triplet names “N.D.E”:

• N is the name of your application,
• D is the name of an MDELite domain. This is the name of the

bubble that we have used earlier in category diagrams, and
• E is an extension – like .java, .txt, .class, or .pl. These

extensions used by operating systems to denote a file’s type.

In the category diagram of our running example:

Violet produces an XML file whose name is n.state.violet
where:

n is the name of the FSM application that you have given,

state is the name of the MDELite domain, and

violet is the extension that tells you and the operating
system (OS) that this is a Violet XML file.

By convention in MDELite, when a state document is trans-
lated into a statedb document, the application name is pre-
served. So arrow parseTool maps document n.state.violet
to n.statedb.pl where:

n is the name of the FSM application

statedb is the name of the MDELite domain (in lowercase)

pl tells you and the OS that this is a Prolog file.

Similarly the convert arrow translates n.statedb.pl to
n.javacode.java, where:

n is the name of the FSM application

javacode is the name of the MDELite domain (in lower-
case)

java tells you and the OS that this is a Java file.

This file naming convention was put into place so that you can
immediately see (upon looking at the classes in a directory) what
files belong to the same application. The domain name of these files
tells you the representation that is encoded in that file.

4.2 Java Programs
Most arrows in MDELite category diagrams are functions of the
form A :D→R; that is, a document from domain D is taken as input
and a document from co-domain R is produced as output. The name
of the parsing tool discussed in the last section is parseTool.

Create an Eclipse/Netbeans project called parseTool. It has
a Main class, the façade to the tool. The standard structure for all
MDELite Java tools is shown below. The main() method takes
an open-ended array of arguments. In a specific tool, such as
parseTool, the number of inputs and output is precisely known.
In the example below, the parse tool takes a file x.y.violet (x.y
is user supplied) as input and a file z.w.pl (z.w is user supplied)
is produced as output.

This organization provides the following benefits:

You can develop and debug arrows (Java programs) in isola-
tion. An MDE application is essentially a collection of pro-
grams that read and write documents of fixed types.

If you discover a problem with your MDELite application,
you can track the bug in some arrow, and then fire up your
favorite IDE to hunt for it and squash it.

Some further hints: There are MDE transformations that take
n > 1 input documents and produce m > 1 output documents. You
encode this transformation in MDELite by a pair of arrows. The
first arrow F : D1 . . . Dn → R that takes the n input documents and
produces a single document of type R as output. Then you have
a set πi : R → Oi projection arrows, 1 ≤ i ≤ m, that allows
you to produce one output at a time. There are two simple ways to
implement this:

1) Arrow F is a Java program that has n+1 arguments: the first
n arguments are documents from domains D1 . . . Dn and the
last argument is an R document. Program F really produces
m + 1 outputs (the first m are documents from the output
domains O1 . . . Om) and the last is an R document; but the
command-line interface to F says it only produces an R
document.1 An R document could simply be a text file that
lists the path names of the produced O1 . . . Om documents. A
πi program is then trivial: it takes an R document as input
returns document oi as output. In this way, MDELite allows
you to encode any MDE transformation that you want.

2) Arrow F is a Java program that follows the structure in 1)
above. But this time, R is not a document but instead is
the name of a directory. For example, you can generate any
number of Java files, but they all belong to a directory R.
In our running example, the JavaCode domain could be a
directory of Java files.

Later, I’ll show how to define such arrows in a category diagram.

Here’s another topic: error reporting. MDELite understands two
kinds of exceptions:

Conformance – errors that are classified as model con-
straint failures, and

Error – all other errors.

Conformance errors are written to the MDELite file whose name
is conform.txt; all other errors are posted in file whose name is
error.txt. Usually I try to post as many errors as possible before

1 So the technique is to lie :-(.

3 2015/9/20

throwing a conformance exceptions. The convention is: when a
conformance error is thrown:

throw new ConformanceError("some reason");

then programmers should look at the conform.txt2 for details.
When an execution error is thrown:

throw new Error("some reason");

then programmers should look at the error.txt3 for details. In
general, MDELite tools will announce, as their output, which of
these two files should be examined, if they don’t print these files
for you.

4.3 Prolog Files
There are two different Prolog executables that you can create:

One that defines metamodel constraints to validate a model.
In MDELite-speak, this is a file that defines Prolog con-
straints to check the sanity of a Prolog database.

Another is to define model-to-model transformations. In
MDELite-speak, this is a set of Prolog rules that translates
one Prolog database into another.

I consider each in turn.

4.3.1 Constraint Files
Standard fare in MDE tooling is a language to express metamodel
constraints. The standard language today is OCL. For many rea-
sons, I’m unhappy with OCL and feel that Prolog is a better and
more fundamental language for this task. I presume that you’re fa-
miliar at least Prolog basics.

Here are two constraints that I want to impose on any FSM
database. First, all states have unique names. Second, all transitions
reference an existing starting state and ending state. There are
indeed other constraints I could write, but these are sufficient to
illustrate the general process.

Here is a Prolog file, named cons.pl, that defines these con-
straints:

The first rule finds two states that have the same name but
different ids. The uniqueNames constraint finds all duplicate
names and reports them via the isError(N,V) predicate. N is
a string that is printed with the value V. The forall predicate
says: for every binding that duplicateNames(X) is true, execute
isError(’...’,X). The bad reference constraint is a bit more
complicated. aBadRef(X) is true if there exists no state with X as a
state id. A badRef(X) is true if either the startid or endid ref-
erenced in a transition tuple is bad. The badRefs constraint reports
all bad references.

MDELite uses predicate run as the Prolog rule that evaluates
all constraints. Note these constraints NEVER fail. MDELite sees

2 This name may change. Look at CoreMDELite.Globals.conformFile.
3 This name may change. Look at CoreMDELite.Globals.errorFile

if evaluating a constraint file produces any error output. MDELite
directs all constraint violations to a text file named conform.txt.
After constraint evaluation, if conform.txt is empty, the database
satisfies the constraints, and MDELite is happy. If non-empty, then
MDELite reports an error.

Here’s how you can interactively develop and debug a constraint
file. Look at the last statement in the Prolog constraint file above:

The name of this file is cons.pl. The reload rule executes the
instruction [cons], which means throw away all prior definitions
of file cons.pl and reload/recompile cons.pl.

In a separate directory, I place a file db.pl (an example
database), cons.pl (the above constraint file), conform.pl (which
contains the MDELite definition of the isError predicate) and
print.pl (an MDELite file that prints a database). The conform.pl
and print.pl files are copied from the MDELite/libpl directory,
which you installed prior to Avalon. I open 3 windows – one for
db.pl, another for cons.pl, and a third running SWI-Prolog. In
SWI-prolog window, I compile all four files:

I never change print.pl or conform.pl. But when I’m in-
teractively developing model constraints, I’m always modifying
cons.pl (and then I reload and run the constraints), and occa-
sionally I modify db.pl to introduce erroneous facts that I want to
catch by my error rules.

Note: This triad of windows is what would be really useful in
an IDE plugin for MDELite, which I leave to more industrious
folk to create.

4.3.2 Model-to-Model Transformation Files
The other kind of Prolog file performs a M2M (model-to-model)
transformation, or in MDELite-speak, a database-to-database trans-
lation.

If you studied the Velocity template presented earlier, you
would have noticed that there is an extra loop to translate a
startid attribute of a transition tuple into a state name. The
template would have been simplified if transition tuples used state
names instead of state ids. We can use this as an example of a M2M
(database-to-database) transformation. Here is a partial schema
definition of our target Prolog database, in file fsmdb1.pl:

dbase(fsmdb1,[stat,trans]).
table(stat,[id,"name"]).
table(trans,[id,"name",start,end]).

A complete schema that MDELite can use is produced by in-
voking the Util.ElaborateSchema utility:

> java Util.ElaborateSchema fsmdb1.pl

Which produces the fsmd1.schema.pl file below:

4 2015/9/20

http://www.omg.org/spec/OCL/

dbase(fsmdb1,[stat,trans]).

table(stat,[id,"name"]).
table(trans,[id,"name",start,end]).

tuple(stat,L):-stat(A1,A2),L=[A1,A2].
tuple(trans,L):-trans(A1,A2,A3,A4),L=[A1,A2,A3,A4].

statALL(A1,A2):-stat(A1,A2).
transALL(A1,A2,A3,A4):-trans(A1,A2,A3,A4).

Note: The tuple facts are used to print prolog databases. The
ALL facts are present if you want to retrieve tuples from tables
that are related by an inheritance hierarchy. There are no such
inheritance relationships in this schema.

Here is a Prolog file, m2m.pl, that translates an fsmdb database
into an fsmdb1 database:

You can run this by (a) loading the print.pl file (first), then
in any order, the database, M2M file, and the schema file of the
database to produce, (b) execute printDbase(fsmdb1) – print the
database whose schema is fsmdb1, as shown below. Type ‘halt.’
to exit SWI-Prolog.

As before, you can develop M2M files interactively using a 3-
window arrangement: one window for the database, another for the
M2M file, and a third running SWI-Prolog.

4.3.3 Velocity (VM2T) Files
Weve already seen a velocity file. To invoke velocity from a com-
mand line, type:

>java vm2t.Main
Usage: vm2t.Main prolog-file template-file

[output-file] [-cg ContextGeneratorClass]

if output-file is unspecified, output is directed to file vm2t-
output.txt And to create the output file x.java, type:

> Java vm2t.Main db.pl xlate.vm x.java

Like Prolog files, you can develop velocity files interactively us-
ing a 3-window arrangement: one window for the database, another

for the velocity file, and a third to execute Velocity and to view its
output.

5. Creating an MDELite App Using Avalon

To create an MDELite application, perform the following steps:

1. Let X be the name of your MDE application. Run:
>java avalon.Main help X

The output is this message: Followed by a start up of Violet,

for which you are to draw a category diagram of X. By de-
fault, Violet will store your design in file X.state.violet.

2. Next, run:
>java avalon.Main buildState X

And follow its instructions. Basically for every Prolog
database (ie, a domain whose extension is ‘pl’), you are
to draw its UML class diagram in Violet. Avalon computes
its prolog schema file among other files, and if no errors are
encountered, generates in directory boot/ the files that you
can drag into a NetBeans or Eclipse project to complete the
development of application X.

Doing all of this, a directory called boot/ is created in the same
directory as X.state.violet. This will contain the shell of a
Netbeans (or Eclipse) project from which you can:

supply real Prolog conform.pl files in directory boot/libpl

supply real .vm velocity scripts in directory boot/libvm

supply .java files for unwritten Java arrows

More details are in the following sections.

5.1 Creating a Category Diagram of Your Application
Start Violet4 and create a state chart diagram. A category diagram
is an annotated state diagram. Each bubble/state is a domain; each
arrow A : B → C is a transformation that maps documents from
domain B to co-domain C.

• For each domain, specify its corresponding Java class name,
the name of the domain (which might be the same as the class
name), the name of its file extensions, and whether or not a
file/document of this domain should be retained.
The figure below shows the bubble for the State domain. It’s
Java class is named “State”, its domain name is “state”, file
extension is “violet”, and it is not a temporary (deletable) file.

Note: Prolog database domains requires the constraint
lowercase(Java class name) = domain name. If this
is not the case, avalon should flag this as an error for you
to fix.

4 >java Utils.Violet

5 2015/9/20

• For each arrow, specify its name, followed by =, followed by
the executable that implements this arrow.

− For each Java arrow, the application name (eg, Prg.Main)
followed by .java, ie, ‘Prg.Main.java’.

− For a prolog arrow A : B → C, the name of the prolog
file is libpl/b2c.pl, where b is the domain name of
B and c is the domain name of C. That is, b2c.pl has
a predetermined name and it is stored in the libpl/
directory of application X.5

− For a velocity arrow, the name of the velocity script is
libvm/N.vm, where N is any name, there are no restric-
tions.

The figure below shows a declaration of arrow parseTool,
which is implemented by the Java program parseTool.Main.
We have already discussed in Section 4.2 the protocols that
MDELite uses for calling such programs.

Note: Violet doesn’t allow you to draw multiple arrows
between two nodes – if it does, the arrows simply over-
lap making an unreadable mess. To specify that there
are two or more distinct arrows and their executables,
use one arrow label for both declarations separated by
‘;’ as below where two arrows, parseTool and tool2,
are declared:
parseTool=parseTool.Main.java; tool2=xyz.Main.java

A computation of application X is a path (sequence of ar-
rows) in the application’s category diagram. For each path,
list its name, followed by ‘=’, followed by a sequence of
arrow names separated by dot (‘.’). A path defines the order
in which program/arrow executions are sequenced.
There is only one path in our running example, build,
which executes parseTool followed by convert. Any er-
rors will halt a path execution.

The full Violet category specification is file fsm.state.violet:

The next step is for you to fill in the schema declarations for all
prolog databases. This is done by executing:

>java avalon.Main buildState fsm

The generated files will be in directory boot/.

5.2 Creating a Schema Diagram for a Prolog Database
A Violet class diagram is used to define database schemas. The
rules are simple:

Each relation is drawn as a class. Attributes that are specific
to that relation are listed; no methods should be declared.

5 Eventually I will remove this restriction.

The first attribute of every relation should be an identifier
(id) field. There is nothing at present that MDELite as-
sumes about the first attribute, but all examples that we use
have id as the first attribute of every relation.

Attributes are one of two types: either their values are
single-quoted or not. If they are to be quoted, the name
of the attribute is in double-quotes.

If you use associations, only labeled arrowheads are noticed.
The label is the name of the attribute to be added (to the
class from which the association points). All other labels
and associations are ignored.

If you use inheritance, only the top (root) relation has an
identifier. All parent attributes will be propagated to child
relations.

As an example, the figure below depicts a schema with inheri-
tance and associations in file theworks.class.violet:

The schema that is generated is:

dbase(theworks,[janitors,professors,employee,school]).

table(janitors,[id,"name",worksat,"hours"]).
table(professors,[id,"name",worksat,rank]).
table(employee,[id,"name",worksat]).
table(school,[id,"name"]).

subtable(employee,[janitors,professors]).

tuple(janitors,L):-janitors(A1,A2,A3,A4),L=[A1,A2,A3,A4].
tuple(professors,L):-professors(A1,A2,A3,A4),L=[A1,A2,A3,A4].
tuple(employee,L):-employee(A1,A2,A3),L=[A1,A2,A3].
tuple(school,L):-school(A1,A2),L=[A1,A2].

janitorsALL(A1,A2,A3,A4):-janitors(A1,A2,A3,A4).
professorsALL(A1,A2,A3,A4):-professors(A1,A2,A3,A4).
employeeALL(A1,A2,A3):-employee(A1,A2,A3).
employeeALL(A1,A2,A3):-janitorsALL(A1,A2,A3,_).
employeeALL(A1,A2,A3):-professorsALL(A1,A2,A3,_).
schoolALL(A1,A2):-school(A1,A2).

For our running example, I tend to avoid associations and oc-
casionally use inheritance. Here’s my definition of the StateDB
schema:

5.3 An Alternative to using Category Diagrams
Until now, we have used category diagrams to specify an Avalon
application. As an alternative, which underscores the idea that
MDE is OO metaprogramming, you can use a class diagram. Each
domain corresponds to a class, and each arrow corresponds to a
method.

Here is the Violet class diagram that could be used in place
of a category diagram. It contains the same information, arranged

6 2015/9/20

and presented differently, but ultimately maps to the same internal
Prolog derivation.

This is stored in file fsm.class.violet, and can be used to build
the FSM application by typing:

>java avalon.Main buildClass fsm

5.4 Finally, Fielding Your Tool
When you are creating your tool in Netbeans or Eclipse, in your
Netbeans/Eclipse project you will have src/, libpl/, and libvm/
directories. And when your project executes, MDELite will look
in these directories to find your libpl/ and libvm/ files, and all
should be well.

But when you are about to field your tool for others to use, you
will have to create a single directory with the following contents:

tool.jar – the jar file of your tool

lib/ – a set of Jar files that your tool needs. Netbeans
supplies this directory under directory dist/ whenever you
compile.

libpl/ – a copy of your libpl/ directory

libvm/ – a copy of your libvm/ directory

Docs – your directory where you keep your tool documents

It is a real pain to create all of this manually. Netbeans has a postjar
action which you can add the following xml code – which you need
to customize to your specific tool:

<target name="-post-jar">
<copy todir="dist/libpl">

<fileset dir="libpl"/>
</copy>
<copy todir="dist/libvm">

<fileset dir="libvm"/>
</copy>
<copy todir="dist/lib">

<fileset dir="NeededJarFiles"/>
</copy>
<copy todir="dist/Docs">

<fileset dir="Docs">
<include name="*.pdf"/>

</fileset>
</copy>
<delete file="dist/lib/MDELite3_05.jar"/>
<delete file="dist/lib/commons-io-2.4.jar"/>

</target>

Here is what the above means:

copy the libpl/ directory into the DIST/ directory on every
build.

copy the libvm/ directory into the dist/ directory on
every build.

your project may need jar files to run. I create a NeededJarFiles/
in my Netbeans project in which I place all of them.
On every build, I copy these NeededJarFiles/* into
dist/lib/.

any .pdf files in my Docs/ directory I copy into the
dist/Docs/ directory on every build.

delete any jar files from dist/lib/ that are already on
my classpath (so that I don’t have 2 or more inconsistent
copies).

If I could figure out a way to hide all of this “stuff” from avalon
users, I would be delighted. Any thoughts or comments are appre-
ciated.

6. How Avalon was Bootstrapped
Avalon is itself an Avalon application. It has a category diagram,
as other Avalon applications. Its diagram is shown below. I know
this is really small, but it is a digitally enlargeable figure.

7 2015/9/20

	Introduction
	Installation
	An Overview of Avalon
	How to Write Arrows or Document Xforms
	MDELite File Naming Conventions
	Java Programs
	Prolog Files
	Constraint Files
	Model-to-Model Transformation Files
	Velocity (VM2T) Files

	Creating an MDELite App Using Avalon
	Creating a Category Diagram of Your Application
	Creating a Schema Diagram for a Prolog Database
	An Alternative to using Category Diagrams
	Finally, Fielding Your Tool

	How Avalon was Bootstrapped

