
CDExchange Manual

August 2015

1. Introduction
CDExchange is a classical MDE application. It converts UML
diagrams, in this case UML class diagrams, created by one tool
to a corresponding diagram in another tool. A category diagram
of MDE application is shown below and is detailed in a 2013
MODELS paper. In this diagram, a bubble denotes a domain of
documents and an arrow A : B → C is a function that transforms a
document from domain B to a document in domain C:

The table of contents of this document are:

• CDExchange Installation Instructions
Converting Violet to Yuml
Converting Yuml to Violet
Conformance Tests

• Under the Covers
Building CDExchange using Avalon
Getting Started

Warning: As hard as I have tried, I know there are bugs in
CDExchange. Please let me know when you find them. I will do
my best to fix them.

2. Installation
You can download CDExchange from:

www.cs.utexas.edu/users/schwartz/MDELite/index.html

The CDExchange directory contains:

• lib – a library of jars needed by CDExchange,
• libpl – a library of prolog database schema definitions, confor-

mance files, and M2M transformations used by CDExchange,

[Copyright notice will appear here once ’preprint’ option is removed.]

• libvm – a library of Velocity templates used by CDExchange,
• CDExchange.jar – this is the CDExchange executable.

To install CDExchange:

• place the CDExchange directory within a global directory in
which other MDELite applications reside, and

• add CDExchange.jar to your CLASSPATH.

To see if you have accomplished the above steps correctly, run:

> java cdexchange.Main

Usage: cdexchange.Main <option> <files>
Format: <file> = <filename>.<domain>.<domainType>

Option: conform <classname> <filename>
<classname> in (Dot Kielerdot Nopos Pos Sdb Start

Violet VioletDB Yuml YumlDB)
help <filename> // of type start.tmp
violet2yuml <filename> // of type class.violet
yuml2violet <filename> // of type yuml.yuml
coordinates

If you get the above response, congratulations! You installed
CDExchange. If you didn’t, check your CLASSPATH.

3. How To Use CDExchange
Here is the basic idea of CDExchange: you have two public UML
drawing tools, Yuml and Violet. You want to draw a UML diagram
in Yuml and convert it to a Violet diagram and vice versa. Both
tools use very different diagram representations. CDExchange is a
tool that performs this translation.

From the end of the last section, the main application is
CDExchange.Main. It bundles three smaller applications:

• Convert Violet class diagrams into Yuml class diagrams,
• Convert a Yuml class diagram into a Violet class diagram, and
• Run conformance tests on a variety of documents, but most

specifically Yuml class diagrams and Violet class diagrams.

The following subsections detail each application.

3.1 Converting Violet to Yuml
Fire up Violet by typing:

> java Utils.Violet

and draw the following class diagram, which you save as document
school.class.violet.

1 2015/8/20

http://www.cs.utexas.edu/ftp/predator/MDELiteModels13.pdf
http://www.cs.utexas.edu/ftp/predator/MDELiteModels13.pdf
http://www.cs.utexas.edu/users/schwartz/MDELite/index.html
http://yuml.me/diagram/scruffy/class/draw
http://alexdp.free.fr/violetumleditor/page.php

Note: start violet by typing

> java Utils.Violet

You can convert this diagram/document into a yuml specification by running:

> java mdeliteapp.Main violet2yuml school

file school_000.yclass.yuml was produced.

Look at the produced file, whose content is:

[person|id;name|]

[professor|deptid|]

[student|utid|]

[department|id;name;building|]

[person]^-[professor]

[person]^-[student]

When this content is input input to Yuml, you get this beautiful diagram;

You can convert this diagram/document into a Yuml document
by running:

> java cdexchange.Main violet2yuml school

File school 000.yuml.yuml is produced as output. Look at its
content:

[person|id;name|]
[professor|deptid|]
[student|utid|]
[department|id;name;building|]
[person]^-[professor]
[person]^-[student]

When this content is input to Yuml, you get this beautiful diagram:

Converting Yuml to Violet
You can convert the above produced yuml file back into a Violet file:

> java mdeliteappl.Main yuml2violet school_000

file school_000_000.class.violet was produced.

If you open this file in Violet, you get this beautiful diagram, which is equivalent to, but identical to, the

original starting diagram:

In general, it is difficult, if not impossible, to have an identity map in such translations. Read: you can’t

always make tools perfectly interoperable if they were never designed with this in mind. Too much

information is lost (or was never specified) to create an exact match. You can come very close, and that’s

good enough for practice.

Conformance Tests
Here is the diagram of a Violet file stupid.class.violet that makes no sense:

3.2 Converting Yuml to Violet
You can convert the above Yuml document back into a Violet
document:

> java cdexchange.Main yuml2violet school_000

File school 001.class.violet is produced as output. By open-
ing this file in Violet, you’ll see this beautiful diagram, which is
equivalent, but identical, to the original starting diagram.

Converting Yuml to Violet
You can convert the above produced yuml file back into a Violet file:

> java mdeliteappl.Main yuml2violet school_000

file school_000_000.class.violet was produced.

If you open this file in Violet, you get this beautiful diagram, which is equivalent to, but identical to, the

original starting diagram:

In general, it is difficult, if not impossible, to have an identity map in such translations. Read: you can’t

always make tools perfectly interoperable if they were never designed with this in mind. Too much

information is lost (or was never specified) to create an exact match. You can come very close, and that’s

good enough for practice.

Conformance Tests
Here is the diagram of a Violet file stupid.class.violet that makes no sense:

In general, it is difficult, if not impossible, to have an identity
map in such translations. Lesson: you can’t always make tools per-
fectly interoperable if they were never designed with interoperabil-
ity in mind. Too much information is lost (or was never specified)
to create an exact match. You can come close, and that is as much
as you can expect.

3.3 Conformance Tests
CDExchange performs conformance tests. The diagram below is of
a Violet file stupid.class.violet that makes no sense because:
(1) the interface icon has no name and (2) both c and b are classes;

 c

 b

 «interface»

the dashed arrow means b implements interface c and c is not an
interface.
Finding these errors is the purpose of conformance tests. To find
them, type:

>java cdexchange.Main conform Violet stupid
Conformance Error!

class or interface has null name interfacenode0
interface X cannot implement class where X=b

4. Under the Covers
Violet to creates an ugly XML document that is an instance of
the Violet domain. You want to convert this document into a
Yuml specification, an instance of the Yuml domain. In MDELite,
computations such as these are traversals in a category diagram.
The traversal that we are interested in is the path violet2yuml,
defined in in the Paths note in the figure below.

violet2yuml is the path that converts a Violet document into a
Yuml document. The individual steps of this path are:
1. VClass2violet maps a Violet XML file into a Violet prolog

database;
2. violet2sdb maps a Violet prolog database into a prolog

database that is an instance of the Sdb domain;
3. sdb2yuml maps a Sdb prolog database to a Yuml prolog

database; and
4. toYuml maps a Yuml prolog database to a Yuml class docu-

ment.

Converting a Yuml document into a Violet document is the path
yuml2violet. This path is considerably longer than violet2yuml
for the following reason: yuml documents encode no positioning
information. The Yuml tool, when it draws a UML diagram, sup-
plies this information, but never needs it in a spec. The Violet
tool, on the other hand, needs this (x, y) positioning information,
otherwise all classes are drawn on top of each other, yielding an
unreadable mess.

The extra steps in yuml2violet are to compute positioning
information for class icons. Here are they are:

1. toNoPos transforms an Sdb prolog database into a Nopos pro-
log database. “Nopos” means no positioning information;

2. toDot transforms a Nopos database into a Dot document,
which is a graph specification. A Dot document defines nodes
and edges of a graph, but not their position;

3. Kieler transforms a Dot document into another Dot document
that has (x, y) positions for each class;

4. toPos transforms the (x, y)-enhanced Dot document into a Pos
prolog database which contains a single relation that defines
(x, y) positioning information; and

2 2015/8/20

https://en.wikipedia.org/wiki/DOT_(graph_description_language)

5. merge(Nopos) takes a Pos database and a Nopos database and
merges them into an Sdb database.

Look at what the above steps accomplish: a Yuml class diagram
is transformed into an SDB database. This database has a position
relation, but it is empty/useless. The above five steps transform
this Sdb database without positioning information to one that has
positioning information. This composed database can be mapped
to a readable Violet class diagram.

There is one tricky step that we haven’t covered, and it has to do
with MDELite file naming conventions. These naming conventions
are documented in the MDELite manual.

Briefly, every MDELite file has a triple A.D.E for a name. A
is the application name, D is the name of the domain, and E is
the file extension. An MDELite transformation always retains the
application name A, but may change the D.E suffix. So the toDot
arrow transforms document A.nopos.pl to A.dot.dot.

Now, here’s the problem. The subpath toNoPos.toDot.Kieler.-
toPos.merge(Nopos) into a new definition of A.sdb.pl that
overrides the original A.sdb.pl. Overriding existing files is some-
thing that I’ve learned to avoid in MDELite. The fix is this: The
step in the yuml2violet path says copy (or version) the file
that was just produced – in this case A.sdb.pl – and name it
to A 000.sdb.pl. When merge is executed, it takes the original
A.sdb.pl file and the newly created A 000.sdb.pl to produce
a new A 000.sdb.pl document, which is then translated to an
A 000.Yuml.yuml file/document.1

Here is the Java code that executes the yuml2violet path:

String filename = args[1];
Yuml v0 = new Yuml(filename);
Yuml v1 = v0.YClass2yuml();
Sdb v2 = v1.yuml2sdb();
v2.newVersionNumber();
Nopos v3 = v2.toNoPos();
Dot v4 = v3.toDot();
System.out.format("file %s is produced\n",v4.fullName);

This code is sufficiently structured to be automatable. That is what
the Avalon MDELite application does.

4.1 Getting Started
If you’re new to CDExchange, type:

> java cdexchange.Main help C

where C is some name. CDExchange responds by posting: and

basically tells you to create a Violet class diagram or Yuml class
diagram, and convert it. The conversion calls are:

> rem if C is a Violet diagram
> java cdexchange.Main violet2yuml C

1 Why is this “versioning” operation needed? One of the goals of MDELite
is to show that MDE is really OO metaprogramming: MDE objects are
documents and MDE transformations/arrows are programs that convert
documents of one type into documents of other types. In OO programming,
you create a lot of temporary objects, and when your program finishes
executing they are thrown away. Well, MDELite creates a lot of temporary
objects (aka, files) and throws them away, but it still has to deal with them
and their naming conventions.

or

> rem if C is a yuml diagram
> java cdexchange.Main yuml2violet C

You can also use CDExchange to validate the sanity of your
class diagram. The conformation calls are:

> rem if C is a yuml diagram
> java cdexchange.Main conform Violet C

or

> rem if C is a yuml diagram
> java cdexchange.Main conform Yuml C

5. How CDExchange was Bootstrapped
CDExchange is itself an CDExchange application. It has a class
diagram, which is shown below. I know this is really small, but it is
a digitally enlargeable figure.

3 2015/8/20

	Introduction
	Installation
	How To Use CDExchange
	Converting Violet to Yuml
	Converting Yuml to Violet
	Conformance Tests

	Under the Covers
	Getting Started

	How CDExchange was Bootstrapped

