
1

MDELite6 Manual
Don Batory

batory@cs.utexas.edu
November 2016

F

1 INTRODUCTION

MDELite6 is an alternative approach to Eclipse tools to
teach and explore concepts in Model Driven Engineering
(MDE). Rather than:

• Storing models and metamodels as obscure XML
documents, MDELite6 encodes them as readable
relational databases expressed as elementary facts.

• Using Object Constraint Language (OCL) to express
constraints, MDELite6 uses Java Streams, a new
extension to a basic language in Computer Science.

• Writing model-to-model (M2M) transformations in the
Atlas Transformation Language (ATL), an outgrowth of
OCL, MDELite6 again relies on Java.

For its model-to-text (M2T) tool, MDELite6 uses Apache
Velocity, an off-the-shelf-tool used in industry. The benefits
and overview of MDELite6 are explained in a 2013 MOD-
ELS paper.

Here is a table of contents for this manual:

• Installation of MDELite6
• MDELite6-Relational Schemas
• MDELite6-Relational Databases
• MDELite6 Tools

Note: As hard as I have tried, I know there are bugs in
MDELite6. Please let me know when you find them. I
will do my best to fix them – dsb

2 INSTALLATION

You can download MDELite6 from this link:

www.cs.utexas.edu/users/schwartz/MDELite/index.html

The MDELite6 directory and executable contains:

• Docs – documentation, including this manual,
• lib – a library of jar files needed by MDELite6,
• libpl – a library of predefined schemas, and
• libvm – a library of Velocity templates, and

• MDELite6.jar – the MDELite6 jar.

Installation of MDELite6 is simple: just place
MDELite6.jar on your CLASSPATH. In Windows,
the incantation to do so is:

> set CLASSPATH=%CLASSPATH%;C:\xfer\dist\MDELite6.jar

where C:\xfer\dist is the absolute path to the di-
rectory containing MDELite6.jar. To check to see if
you did the above tasks correctly, run the program
MDL.VerifyInstall:

> java MDL.VerifyInstall
Violet should be running now.
If not, something is wrong.
Otherwise, please close Violet,
and MDELite Ready to Use!

3 MDELITE6-RELATIONAL SCHEMAS

In MDE-speak, a model conforms to a metamodel. In
MDELite6-speak, a metamodel is a relational schema; a
relational database is a model that conforms to its schema.
(There are also constraints that are associated with a
database schema, which we cover later in Section ??.)

MDELite allows you to outline a relational schema in a
fact-based way that is inspired by Prolog facts. Here is a
typical ‘short’ declaration in school.ooschema.pl:

dbase(school,[person,professor,department,student]).

table(person,[id,"name"]).
table(professor,[deptid]).
table(department,[id,"name","building"]).
table(student,[utid]).

subtable(person,[professor,student]).

The above means:

• The name of this schema is school. It contains
four tables: person, professor, department,
student.

• Every table has a name and a list of columns (at-
tributes). The person table has two attributes: id
and “name”.

The following lines define attributes that are specific to
the professor, department, and student tables. There
are three important conventions used in MDELite6 tables:

mailto:batory@cs.utexas.edu
http://velocity.apache.org/
http://velocity.apache.org/
http://www.cs.utexas.edu/ftp/predator/MDELITE/Models13.pdf
http://www.cs.utexas.edu/ftp/predator/MDELITE/Models13.pdf
mailto:batory@cs.utexas.edu
http://www.cs.utexas.edu/users/schwartz/MDELite/index.html

2

1) The first attribute of a MDELite6 table that has no
‘parent’ or ‘super’ table is a manufactured id or
identifier field. The name need not be ‘id’.

2) There are two kinds of fields in MDELite table
schemas: those with unquoted attribute names and
those with single-quoted names.

3) An n-tuple of a table t is written as a prolog fact:
t(v1 . . .vn). Some person tuples might be:

person(p1,’Don’).
person(p2,’Barack Obama’).

Values of a tuple are listed in the order that their
column/attributes are listed in their table definition.

Note. In this example, id values are unquoted as
the id attribute name is unquoted in the table
declaration. name values are single-quoted as the
name attribute name is double-quoted in the table
declaration.

4) Tables can be arranged in an inheritance hierarchy,
which are specified by subtable declarations like:

subtable(person,[professor,student]).

This declaration says that the subtables of person
are professor and student. Equivalently, every
professor and student is a person.

MDELite6 uses a more elaborate definition of a schema.
You can produced this schema by running:

> java MDL.OO2schema school.ooschema.pl
// school.schema.pl produced

> type school.schema.pl
dbase(school,[person,professor,department,student]).

table(person,[id,"name"]).
table(professor,[id,"name",deptid]).
table(department,[id,"name","building"]).
table(student,[id,"name",utid]).

subtable(person,[professor,student])

The only difference between the .ooschema version and
the .schema version is that attributes of super-tables
are propagated to its sub-tables, recursively. Above, every
professor tuple and every student tuple will have
person attributes.

4 MDELITE6-RELATIONAL DATABASES

A MDELite6 database is an instance of a .schema.pl
file. Recall the school.schema.pl of the previous sec-
tion. An instance of this database is a separate file, named
my.school.pl, where ’y’ is the name of the instance,
’school’ is the schema, and ’pl’ denotes an MDELite6 file.
Here is the my.school.pl file:

dbase(school,[person,professor,department,student]).

table(person,[id,"name"]).

table(professor,[id,"name",deptid]).
professor(p1,’don’,d1).
professor(p2,’Robert’,d1).
professor(p3,’Lorenzo’,d2).
professor(p4,’kelly’,d3).

table(department,[id,"name","building"]).
department(d1,’computer science’,’gates dell complex’).
department(d2,’computer science’,’gates hall’).
department(d3,’computer science’,’Bahen Centre’).

table(student,[id,"name",utid])
student(s1,’zeke’,’zh333’).
student(s2,’Brenda’,’UTgreat’).
student(s3,’Thomas’,’astronaut201’).

The above means:

• The student table has 3 tuples, department has 3
tuples, and professor has 4. Table person has 0
(no) tuples. This is like Java: objects/tuples are listed
for the class/table in which they were created.

• The database schema definition is always included
in a database file (that’s the dbase() fact).

• The .schema definition for each table is always
included in a database file (that’s the table() facts).

• The tuples of the table follow immediately after its
table() fact. An absence of tuple declarations says
the table is empty.

Note: MDELite6 does not automatically ensure that all
tables (even empty ones) are represented in a MDELite6
database file, or that the schema declarations of the
database match that of the corresponding .schema file.
So be careful. I don’t every recall a problem, but it can
happen. MDELite6 has a tool that verifies (or reports
differences) between a database schema and its database.
To verify that the my.school.pl database conforms
to the school.schema.pl schema definition, run the
MDL.InstanceOf tool below. In this case, conformance
holds as there is silence for output.

>java MDL.InstanceOf my.school.pl school.schema.pl
>

5 MDELITE6 TOOLS

MDELite6 offers the following tools:

• All
• InstanceOf
• Model Conformance
• Model-to-Model Transformation
• OOSchema to Schema Translation
• Reading Databases
• Reading Schemas
• Version
• Violet
• Violet Class Parser
• Violet Class UnParser
• Vm2T (Velocity)
• Yuml Class Parser
• Yuml Class UnParser

All – I need a reminder, occasionally, of the list of MDELite6
tools, like the above.

C>java MDL.All

InstanceOf – A useful check is to verify that a database is
an instance of a database schema. We saw a use for this in

3

an earlier section. Do invoke this test, use the code below.
Silence is returned if there are no errors.

C>java MDL.InstanceOf

Usage: MDL.InstanceOf <S>.schema.pl <Y>.<S>.pl
confirms that database <Y> is an instance of <S>

Model Conformance – In MDELite6, model conformance
is checking whether a database conforms to a set of con-
straints. There is nothing in MDELite6 that evaluates con-
straints. Rather, using MDELite6 packages, you can write
a Java program using Java Streams to stream tuples of
one or more tables, apply filters and report errors as
they are found, as discussed in class lectures. There is a
MDELite6DemoPrograms.html in the MDELite6 Docs
Directory that shows examples of such programs, how
you should write them (e.g., conforming to MDELite6 tool
standards), and how to invoke them. It is easy.

A conformance file for schema <S> is a set of constraints,
c1. . .cn. These constraints are written as Java Stream ex-
pressions in a Java file, typically named <S>Conform.java
(although this naming convention is not required as
MDELite6 cannot enforce it). We will use the school
database of a previous section as a running example. Here
are two constraints on this database are:

• Person Name Constraint: A Person’s name must
begin with a capital letter.

• Name Uniqueness: No two Persons have the same
name.

A typical outline of schoolConform.java is sketched
below.

import PrologDB.*;

public class schoolConform {

public static void marquee() {
System.err.format("Usage: %s <X>.school.pl\n",

schoolConform.class.getName());
System.err.format(" <X> is name of database\n");
System.exit(1);

}

static boolean checkCharacter(Tuple t) {
String n = t.getName("name");
if (n.length() == 0)

return true;
Character c = n.charAt(0);
return Character.isLowerCase(c);

}

public static void main(String[] args) {
if (args.length != 1 ||

!args[0].endsWith(".school.pl")) {
marquee();

}

DB db = DB.readDataBase(args[0]);
Table person = db.findTableEH("person");
ErrorReport er = new ErrorReport(System.out);

// Person Name Constraint
person.stream()
.filter(t -> checkCharacter(t))
.forEach(t->er.add("Person Name not " +

"capitalized " + t.get("name")));

// Name Uniqueness Contraint
person.stream().filter(t->

person.stream()
.filter(g-> g.get("name").equals(t.get("name")))
.count()>1)

.forEach(t->er.add("Persons with duplicate" +
+ "name : " + t.get("name")));

try {
er.printReport();

} catch (Exception e) {
System.out.println(e.getMessage());

}
}

}

Perhaps the only thing strange is the use of class
ErrorReport. An ErrorReport object maintains a list of
errors that are posted to it by Stream expressions. When
a report is printed and if at least one error was found, a
RuntimeException is thrown. Incidentally, the output of
this program is

Person Name not capitalized don
Person Name not capitalized kelly
Person Name not capitalized zeke
Errors found

Further information on MDELite6 programming is in the
MDELite6DemoPrograms.html manual.

Model to Model (M2M) Transformation – A M2M trans-
formation in MDELite6 is a Java program that imple-
ments a database-to-database transformation. It imports
MDELite6 tools to read and write MDELite6 schemas
and databases. Typically, although not required, it takes 2
arguments: the name of the input database file and the
name of the output database file. Beyond that, how you
write your database-to-database transformation is up to
you. Further information on MDELite6 programming is in
MDELite6DemoPrograms.html.

OOSchema Translation – MDL.OO2schema reads an in-
put x.ooschema.pl file and converts it to a schema file
x.schema.pl that is usable by MDELite6. Remember an
ooschema file is a Java-like declaration of tables and their
inheritance hierarchies. The attributes of a table are only
those that are specific to that table. Flattening this schema
propagates attributes of supertables to subtables. It is not
much, but this is a task that is error-prone. We saw an
example use of MDL.OO2schema in the last section. Here
is how it is invoked:

> java MDL.OO2schema

Usage: MDL.OO2schema <X>.ooschema.pl
outputs file <X>.schema.pl

Reading Database – MDL.ReadDB reads a database and
reports errors. If there are no errors, silence is returned. Here
is how this tool is invoked:

> java MDL.ReadDB

Usage: MDL.ReadDB <X>.<SCHEMA>.pl
reads database <X> of type <SCHEMA> and
reports errors

Reading Schema – MDL.ReadSC reads a schema and re-
ports errors. If there are no errors, silence is returned. Here
is how this tool is invoked:

4

> java MDL.ReadSC

Usage: MDL.ReadSC <X>.<SCH>.pl
<SCH> is ’ooschema’ or ’schema’
reads schema x and reports errors

Version – returns the version number of MDELite6.

> java MDL.Version
MDELite version 6.0

Violet – This program invokes the Violet tool. You can
invoke Violet directly through its jar file, but calling it from
a command line is painful; MDL.Violet makes it easy.

> java MDL.Violet
// spawns Violet and waits for Violet to close

VioletClassParser – MDL.ClassVioletParser is
a tool that maps a Violet Class diagram file
(<X>.class.violet) to a vpl database. The vpl
schema is in libpl/vpl.schema.pl and shown below:1

dbase(vpl,[violetMiddleLabels,violetAssociation,
violetInterface,violetClass]).

table(violetClass,[id,"name","fields","methods",x,y]).
table(violetInterface,[id,"name","methods",x,y]).
table(violetAssociation,[id,"role1","arrow1",type1,

"role2","arrow2",type2,"bentStyle",
"lineStyle",cid1,cid2]).

table(violetMiddleLabels,[id,cid1,cid2,"label"]).

To invoke the parser:

C>java MDL.ClassVioletParser

Usage: MDL.ClassVioletParser <in>.class.violet
<out>.vpl.pl

VioletClassUnParser – MDL.ClassVioletUnParser is a
tool that maps a vpl database to a Violet Class diagram file
(<X>.class.violet). To invoke the parser:

C>java MDL.ClassVioletUnParser

Usage: MDL.ClassVioletUnParser <X>.vpl.pl
[<X>.class.violet]

output file defaults to
<X>.class.violet if unspecified

VM2T (Velocity) – MDL.Vm2t is a model-to-text tool that
understands MDELite6 databases. It takes a database,

1. I have broken lines in code listings in this document for presen-
tation reasons. Generally, the MDELite6 parser expects one complete
declaration per line.

such as file db.S.pl, and velocity template, such as file
template.vm, as input. Where the output is sent is defined
internally to template.vm, typically either to a special file
vm2toutput.txt, or some other designated file that is
based on name ’db’. Here is how MDL.Vm2t is invoked:

> java MDL.Vm2t

Usage: MDL.Vm2t database-file template-file
[output-file]

[-cg ContextGeneratorClass]
if output-file is unspecified, output
is directed to file vm2toutput.txt

See the VM2T manual, which is separate from this docu-
ment for information on writing MDELite6 Velocity tem-
plates.

YumlClassParser – MDL.ClassYumlParser is a tool that
maps a Yuml specification file (<X>.yuml.yuml) to a ypl
database. The ypl schema is in libpl/ypl.schema.pl
and shown below:

dbase(vpl,[violetMiddleLabels,violetAssociation,
violetInterface,violetClass]).

table(violetClass,[id,"name","fields","methods",x,y]).
table(violetInterface,[id,"name","methods",x,y]).
table(violetAssociation,[id,"role1","arrow1",type1,

"role2","arrow2",type2,"bentStyle",
"lineStyle",cid1,cid2]).

table(violetMiddleLabels,[id,cid1,cid2,"label"]).

To invoke the parser:

C>java MDL.ClassYumlParser

Usage: MDL.ClassYumlParser <IN>.yuml.yuml <OUT>.vpl.pl

YumlClassUnParser – MDL.ClassYumlUnParser is a tool
that maps a ypl database to a Yuml specification file
(<X>.yuml.yuml). To invoke the parser:

C>java MDL.ClassYumlUnParser

Usage: MDL.ClassYumlUnParser <X>.ypl.pl [<X>.yuml.yuml]
output file defaults to <X>.yuml.yuml
if unspecified

6 CLOSING

This tool is a work in progress. It is possible that this
documentation may get out-of-date with code releases. If
so, just report them to me and I will try to fix them a.s.a.p.
— dsb

http://alexdp.free.fr/violetumleditor/page.php
mailto:batory@cs.utexas.edu

	Introduction
	Installation
	MDELite6-Relational Schemas
	MDELite6-Relational Databases
	MDELite6 Tools
	Closing

