
1

YUML and YPL Database Manual
Don Batory

batory@cs.utexas.edu
November 2016

F

1 YUML
Yuml is a free web service that draws UML class diagrams
given a Yuml input specification. As this is a for-profit
company, the ”free” service comes with some strings at-
tached. Namely, it will produce a pretty class diagram for
you provided that your specification is not too complicated.
(I found other problems with Yuml, but this is a story for
another day).

Familiarize yourself with Yuml:

• go to the Yuml Class Diagram Web site
• type in this spec

[student|name]has-loves[course|name]

• and Yuml returns this absolutely gorgeous diagram:

Fig. 1: Student-Course Diagram.

Try drawing your own diagrams. When you feel com-
fortable, proceed to the next section.

1.1 Yuml Specifications
A Yuml specification is elegant. Here is a BNF of a subset
of Yuml that MDELite6 uses. Literals (a.k.a. tokens) are in
single ‘quotes’.

// YumlSpec is 1 or more lines
YumlSpec : Line+ ;

// each line defines a box or connection
Line : Box | Connection ;

Box : ’[’ Class ’]’ ;

// read left-2-right, ignore subscripts
Connection : BoxName [End1] [Role1] DashType

[Role2] [End2] BoxName ;

// BoxName = class or interface name
BoxName : ’[’ String ’]’

| ’[’ ’interface;’ String ’]’
;

DashType : ’-’ // solid line
| ’-.-’ // dashed line
;

End : ’<>’ // aggregation
| ’++’ // composition
| ’ˆ’ // inheritance
| ’<’ // left arrow
| ’>’ // right arrow
;

// String that has no ’]’ and quote chars
Role : String ;

// name only, name+meths only, name+flds+meths
Class : Name

| Name ’|’ String
| Name ’|’ String ’|’ String
;

// String that has no ’]’ and quote chars
Name : String ;

Note that a String token is mentioned above. This not a Java
String, but one that is devoid of the characters:

• comma ’,’
• left brace ’[’
• right brace ’]’
• less than ’<’
• greater than ’>’
• minus ’-’

Further, a semicolon ”;” means new line. Some hints:

• Since Yuml doesn’t like ”[]” as in ”String[]”, I use ”#”
– so ”String[]” becomes ”String#”.

• Since Yuml doesn’t like commas (as in ”foo(int x, int
y)”), I simply use blanks between types – like ”foo(int
int)”.

• Since Yuml has no indicator to distinguish static
from non-static, I simply preface the names of static
members with an underscore – like ” bar()”.

So, the following Yuml specification (a sentence in the above
language):

[Interface;Closable|close()]
[Interface;NetworkChannel|

bind();getLocalAddress();getOption();
setOption();supportedOptions()]

[MyClass|_MyClass();close()]
[Interface;Closable]ˆ-.-[MyClass]
[YourClass]<>-3>[MyClass]
[interface;Closable]ˆ-[Interface;NetworkChannel]

mailto:batory@cs.utexas.edu
http://yuml.me/diagram/scruffy/class/draw
http://yuml.me/diagram/scruffy/class/draw

2

Produces the beauty of Figure 2.

Fig. 2: Another Yuml Diagram.

Warning! Do not read the above specification too
deeply! ’Interface;Closable’ is a String. The word
’Interface’ means nothing to Yuml. It could just as
well have been ’George’, which also means nothing to
Yuml. What Yuml does understand is ’;’ (semicolon),
which means add a new line. So ’Interface;Closable’
produces a 2-line name in the above figure. And the string
’bind();getLocalAdddress()’ means print strings
’bind()’ and ’getLocalAddress()’ on separate lines.

1.2 The YPL Schema
Here is the YPL schema (ypl.schema.pl), which can
encode YUML diagrams as a database of tuples:

dbase(yuml,[yumlClass,yumlInterface,yumlAssociation]).

table(yumlClass,[id,"name","fields","methods"]).
table(yumlInterface,[id,"name","methods"]).
table(yumlAssociation,["name1","role1","end1",

"name2","role2","end2"]).

Here is a MDL.ClassYumlParser translation of (ie, the
database of tuples that encodes) the specification of Figure 1:

dbase(ypl,[yumlClass,yumlInterface,yumlAssociation]).

table(yumlClass,[id,"name","fields","methods"]).
yumlClass(c0,’student’,’name’,’’).
yumlClass(c1,’course’,’name’,’’).

table(yumlInterface,[id,"name","methods"]).

table(yumlAssociation,[id,"name1","role1","end1","name2","role2","end2"]).
yumlAssociation(id0,’student|name’,’has’,’’,’course|name’,’loves’,’’).

And here is a MDL.ClassYumlParser translation of the
specification of Figure 2:

dbase(ypl,[yumlClass,yumlInterface,yumlAssociation]).

table(yumlClass,[id,"name","fields","methods"]).
yumlClass(c2,’MyClass’,’_MyClass();close()’,’’).
yumlClass(c3,’YourClass’,’’,’’).

table(yumlInterface,[id,"name","methods"]).
yumlInterface(c1,’;NetworkChannel’,’’).
yumlInterface(c4,’;Closable’,’’).
yumlInterface(c0,’;Closable’,’’).

table(yumlAssociation,[id,"name1","role1","end1","name2","role2","end2"]).
yumlAssociation(id0,’;Closable’,’’,’ˆ’,’MyClass’,’’,’’).
yumlAssociation(id1,’YourClass’,’’,’<>’,’MyClass’,’3’,’>’).
yumlAssociation(id2,’;Closable’,’’,’ˆ’,’;NetworkChannel’,’’,’’).

1.3 YPL Constraints
There indeed are YPL constraints. I have not posted them, as
they are good examples for homework assignments. If you
are not in my classes, you may contact me for hints.

	YUML
	Yuml Specifications
	The YPL Schema
	YPL Constraints

