Lecture 3 Notes - Wednesday 09/08/2016

Reading Quiz:

Question 1: Ans =C
Question 2: Ans =B
Question 3: Ans =B
Question 4: Ans = A
Question 5: Ans =B

Continued class enroliment exercise from last week: reviewed conceptual diagram (see below)
and derived logical diagram (see below)

Conceptual models basically show you which entity classes relate to each other but not how,
whereas logical models give you more details, e.g., key constraints -- logical models are like
coming up with all of the information you need for create table statements, but they’re still in
picture form instead of SQL code. You should use the following representation (3 column chart)
for each entity class in a logical model:

IE_‘;; Er:{il*_..r ? 'n'

kKey T Field Type

Key | Field | Type
Key | Field | Type

ot

We use junction tables for many-to-many relationships, because you can’t have
multi-dimensional data types (like lists) in SQL. In other words, for row a in table A, we can’t

have attribute x referencing more than one row in table B -- so we need to use junction tables



when a row in table A wants to point to more than one row in table B and a row in table B wants

to point to more than one row in table A.

We usually use composite keys for junction tables in order to safeguard against duplicates.
Otherwise, using the example from lecture, we could have many rows that all say “abr876”
(under eid column) is in the course “CS327E” (under course ID column). Using the composite
key (eid, course_id) keeps this from happening because every combination of eid and course
must be unique.

Note that removing foreign key constraints can cause “orphan child records,” as an element in
the Child table (one with the foreign key referring to another table’s primary key) may no longer
have an element in the Parent table (one with the primary key being referred to) to point to, if
the child’s foreign key is not required to be a primary key in the parent table. This can cause

issues when you’re trying to perform joins on tables.

When you’re using LucidChart, keep in mind that it has these limitations:
e Can’t show check restraints
e Isn’t able to show composite keys well

Conceptual ERD - UT Class Enrollment

Student Class
eid unique D>
first_name name
last_name classroom

i
f } =)

Domestic_Student International_Student — eid
first_name

last name

55N visa
state country




Logical ERD - UT Class Enrollment

Student
PK eid char(10)
first_name |varchar(20)
last_name |varchar(20)

Class

PK

FK

unigque
name
description
instructor

integer
varchar(30)
varchar(100)

char(10)

Enroliment
PK, FK eid char(10)
PK, FK | unique integer
semester char(1)

Domestic_Student International_Student
PK, FK eid char(10) PK, FK| eid char(10)
ssn char(9) visa char(5)
state char(2) country | varchar(20)

Below are the create table statements for the logical model:

drop database if exists utexas;
create database utexas;
use -utexas;

CREATE TABLE  Student - (
eid char(10) primary key,
first_name wvarchar(20) not null,

last_name -varchar(20) not null

)i

CREATE TABLE Domestic Student - (
eid -char(1l0) -primary key,
ssn char(9) not null,

- state char(”) not null,

- foreign key: (eid) ' references Student (eid)

);

Instructor

PK

eid
first_name
last_name

char(10)
varchar(20)
varchar(20)




CREATE -TABLE - International_Student  (

--eid char(10) primary key,

-'visa char(5) not null,

- country-char (30) not null,

- foreign key  (eid) - references Student (eid)

);

CREATE - TABLE ' Instructor: (
-+eid char(10) -primary key,
--first_name varchar(20) not null,

-+last_name varchar(20) not null

);

CREATE TABLE Class  (

- unique_number integer: primary - key,
‘name -varchar (30) not null,
‘description-varchar (100},
instructor char(10),

-foreign key:- (instructor) references Instructor (eid)

)i

CREATE TABLE Enrollment (
student_eid char(10),
‘unique_number - integer,
‘primary key (student_eid, 'unique_number),
-foreign key (student_eid) references Student (eid),

-foreign key (unique_number)  references Class (unigque_number)

)i



