
Lecture 9 Notes ​ - Monday 10/24/16

Reading Quiz

Question 1: Ans = C
Question 2: Ans = D
Question 3: Ans = A
Question 4: Ans = E (or possibly D, since we didn’t specify whether or not we have a ​using​ clause)
Question 5: Ans = D

Notes

To find out who was enrolled in CS327E last Spring (​RDBMS = Joins​ slide) we want to use an inner join,

because we don’t care to have information on other students or other classes. We can do the join in

either “direction.”

Concept Question 1: E. ​On the “first” join (​Student s ​ inner join​ Enrollment e​), we would get the

additional results of all the students without enrollments, because we would keep those rows in

Student​ which didn’t have corresponding rows in ​Enrollment​ . However, when we take these results

and further join them to the ​Class​ table, these extra students get filtered out, because we are

requiring a corresponding ​unique​ value, which these extra students don’t have (their values for

unique​ will be NULL), as they’re not in ​Enrollment​ . So in the end we get the same results using the ​left

outer join​ as with the ​inner join​.

Concept Question 2: C. ​A​ will just gives us all the candidates skilled in either MySQL or Python
-- there is no guarantee that they will be skilled in both. ​D​ does the same thing as ​A​ . ​C​ will give
us the ​candidate_id​ s for those candidates who are skilled in both Python and MySQL, which is
what we want. Note there will be unused records that are “duplicates” in some sense -- for each
candidate having ​c1.skill_code = ‘MySQL’ ​ and ​c2.skill_code = ‘Python’​ , that candidate will also
have a row in the join with ​c2.skill_code = ‘MySQL’ ​ and ​c1.skill_code = ‘Python’​ , so we just pick
one of these combinations to get the ​candidate_id​ s. ​B​ technically works too, but note that it
doesn’t use MySQL to get these results. This is fine, but if you have a large amount of data, this
can become inefficient.

Concept Question 3: C. ​Since we no longer have a foreign key in ​account​ referencing ​cust_id
in ​customer​ , we are able to add accounts to ​account​ which do not necessarily have owners
(corresponding rows in​ customer​). This is what we mean by “orphan accounts.” To find the
orphan accounts, we need to join ​account​ with ​cust_acct​ and find all rows that have accounts
but no corresponding customers. ​C​ accomplishes this using a ​left outer join​ ​ to retain accounts
that lack corresponding ​cust_acct​ rows, then filters so that we keep only such accounts (those

rows in the joined table with ​ca.acct_id​ being NULL). ​A ​ and ​B​ will perform ​inner join​s and will
thus lose the orphan accounts.

(D​ will not catch the orphan accounts; this ​right outer join​ will end up the same as an ​inner
join​ since all rows in ​cust_acct​ necessarily have corresponding rows in ​account​ . Filtering the
joined table in ​D ​ for ​ca.acct_id is null​ will result in an empty table.)

Note that the query in answer ​D​ has been changed since the lecture so that it now
catches all “orphan customers.”

