
Lecture 9 Notes - Monday 10/24/16

Reading Quiz

Question 1: Ans = C
Question 2: Ans = D
Question 3: Ans = A
Question 4: Ans = E (or possibly D, since we didn’t specify whether or not we have a using clause)
Question 5: Ans = D

Notes

To find out who was enrolled in CS327E last Spring (RDBMS = Joins slide) we want to use an inner join,

because we don’t care to have information on other students or other classes. We can do the join in

either “direction.”

Concept Question 1: E. On the “first” join (Student s inner join Enrollment e), we would get the

additional results of all the students without enrollments, because we would keep those rows in

Student which didn’t have corresponding rows in Enrollment . However, when we take these results

and further join them to the Class table, these extra students get filtered out, because we are

requiring a corresponding unique value, which these extra students don’t have (their values for

unique will be NULL), as they’re not in Enrollment . So in the end we get the same results using the left

outer join as with the inner join.

Concept Question 2: C. A will just gives us all the candidates skilled in either MySQL or Python
-- there is no guarantee that they will be skilled in both. D does the same thing as A . C will give
us the candidate_id s for those candidates who are skilled in both Python and MySQL, which is
what we want. Note there will be unused records that are “duplicates” in some sense -- for each
candidate having c1.skill_code = ‘MySQL’ and c2.skill_code = ‘Python’ , that candidate will also
have a row in the join with c2.skill_code = ‘MySQL’ and c1.skill_code = ‘Python’ , so we just pick
one of these combinations to get the candidate_id s. B technically works too, but note that it
doesn’t use MySQL to get these results. This is fine, but if you have a large amount of data, this
can become inefficient.

Concept Question 3: C. Since we no longer have a foreign key in account referencing cust_id
in customer , we are able to add accounts to account which do not necessarily have owners
(corresponding rows in customer). This is what we mean by “orphan accounts.” To find the
orphan accounts, we need to join account with cust_acct and find all rows that have accounts
but no corresponding customers. C accomplishes this using a left outer join to retain accounts
that lack corresponding cust_acct rows, then filters so that we keep only such accounts (those

rows in the joined table with ca.acct_id being NULL). A and B will perform inner joins and will
thus lose the orphan accounts.

(D will not catch the orphan accounts; this right outer join will end up the same as an inner
join since all rows in cust_acct necessarily have corresponding rows in account . Filtering the
joined table in D for ca.acct_id is null will result in an empty table.)

Note that the query in answer D has been changed since the lecture so that it now
catches all “orphan customers.”

