
Lecture 10 Notes - Wednesday 10/26/16

Reading Quiz

Question 1: Ans = C
Question 2: Ans = D
Question 3: Ans = C
Question 4: Ans = D
Question 5: Ans = B

Notes

COUNT : count(*) includes nulls

count(column_name) does not include nulls

count(distinct column_name) doesn’t include nulls

Concept Question 1: . A is just going to give us the number of non-null entries in the Department

column, 6, which isn’t what we want. B doesn’t really make sense here because you can’t sum up

VARCHARs / the names of departments. C gives you the total number of rows, regardless of

Department , 8, which isn’t what we want. D gives us the number of different departments, 2, which is

what we want. Note that D doesn’t count the null entries in Department .

GROUP BY Examples:

When we do a group-by on a join, we need to be mindful of the “empty group” problem. The empty

group problem happens when we lose a group from the result set due to the results of the inner join.

It’s important to remember that the join is performed prior to the group-by. In the example, we lose

the “Dallas” group because no Dallas-based customers placed orders. In order to preserve the empty

groups (e.g. Dallas), we need to use a left outer join. Also, note that the having clause is a filter on the

entire group (as opposed to the where clause which filters individual records).

Concept Question 2: A. A is good because it includes the “null departments” (since it has count(*)). B

is not good because it doesn’t group the results -- it combines an aggregate with a non-aggregate,

Department with COUNT(*) which doesn’t make sense. (It will either give you a syntax error or some

nasty random results.) C has the issue of mixing aggregates and non-aggregates, plus it doesn’t catch

the nulls. D doesn’t grab the null departments.

Concept Question 3: B. We’re grouping by city in this query but in the select clause we want city ,

order_date and sum(total_amount) . But what are our groups going to look like? We’re aggregating

across multiple order_dates but we’re selecting order_date -- MySQL has no idea what to show you

here. Exactly which order_date should it show? Rule: Every non-aggregated field in the select clause

needs to show up in the group by clause. Since we aren’t doing this here, order_date causes trouble.

Note we could have done group by c.city, o.order_date . That would work, because each unique

combination of city and order_date would have its own group.

Concept Question 4: A. Since we want to check the completion of an entire test, over all its
steps, we want to group by test_name , not test_step , so this takes C and D out of the running.
For B , note that the where clause is applied first, to filter the data (this is just kind of a fact about
the order of evaluation for a query). But this means that B is going to get rid of the null
completion dates before we even do any grouping. So B will just give us a table with the names
of both tests. A basically checks that for each test_name the amount of test_steps is the same
as the number of non-null completion_dates . This tells us whether the test is complete, which is
what we want, so A makes us happy.

