
Class 7 Firestore
Elements of Databases

Oct 13, 2023

Instapolls and Logistics

• Exam feedback
• Office hours for next week
• Revised week-by-week schedule
• Firestore setup

The "NoSQL Movement"

• Need for greater scalability
• Throughput
• Response time

• More expressive data models
and schema flexibility

• Object-relational mismatch

• Preference for open-source software

Source: schema.org

https://schema.org/Restaurant

Firestore Overview
+ Distributed system
+ Fully "serverless"
+ Simple APIs for reading and writing
+ Supports ACID transactions (uses Spanner behind the scenes)
+ Designed for mobile, web, and IoT apps
+ Implements document model
+ Change data capture for documents
+ Inexpensive
+ Scales to millions of writes per second
- Only runs on Google Cloud
- Does not offer a declarative query language

Firestore’s Document Model

• Firestore document == collection of typed <key, value> pairs
• Primitive types: String, Number, Bool, Timestamp
• Complex types: Array, Map, Geopoint

• Documents Concepts:
• grouped into collections
• same type documents can have different schemas
• assigned unique identifiers (id)
• store hierarchical data in subcollections

Writing Single Documents
● Every document has unique identifier of String type
● The set method converts a Python dictionary into Firestore document
● A document write must also update any existing indexes on the collection

Writing Nested Documents
● Subcollections are nested under documents
● Subcollections can be nested under other subcollections (max depth = 100)

Writing Multiple Documents

● Write multiple documents as a logical unit of
work using a batch

● Batches have atomic property
● Batches can contain documents for multiple

collections
● Batches can contain inserts, updates, and

delete operations

Reading Single Documents
● The get method fetches a single document
● The stream method fetches all documents in collection or subcollection
● stream + where methods filter documents in collection or subcollection
● order_by method for sorting results
● limit method for limiting number retrieved
● All reads require an index, query will fail if an index does not exist

Reading Multiple Documents

Reading Nested Documents

Getting a Document Count

Updates and Deletes

College Schema

Convert this relational model to Firestore.

 Read access patterns:
1. Get classes by cname
2. Get students and their classes by sid
3. Get instructor and their classes by tid

College Schema

 Access patterns:
1. Get classes by cname
2. Get students and their classes by sid
3. Get instructor and their classes by tid

Converted relational model to Firestore.

Design Guidelines for Document Databases

• Identify the expected access patterns against the database.
• For each access pattern, group entities into a hierarchy: top-level and

lower-level types.
• Convert each top-level entity into a Firestore collection.
• Convert each lower-level entity into a Firestore subcollection nested in

its parent collection.
• Construct a single unique identifier for each document by using the

Primary Key column as is or concatenating multiple Primary Key
columns.

Exercise: Data Modeling

Convert Shopify schema to Firestore.

 Access patterns:
1. Get apps by category (Category.title)
2. Get apps with highest review_count
3. Get pricing plan details by app (Apps.id)
4. Get key benefits by app (Apps.id)

Firestore Code Lab

• Clone snippets repo
• Open firestore notebook
• Create college database in Firestore
• Practice reading and writing CRUD operations
• Answer two prompts

https://github.com/cs327e-fall2023/snippets
https://github.com/cs327e-fall2023/snippets/blob/main/firestore.ipynb

Project 5

http://www.cs.utexas.edu/~scohen/projects/project-5.pdf

http://www.cs.utexas.edu/~scohen/projects/project-5.pdf

