
2/17
ER = Entity Relationship
ERD includes: attribute type entity type relationship type

Design Principles
● A table models one Entity Type and an Entity Type is modeled by one
table
● Each field in a table represents an attribute of an entity
● Each field in a table is assigned a strict primitive data type
● Each table has a Primary Key (PK) which is made up of one or more
fields
● Each child table has a Foreign Key (FK) that points to its
parent(s)

● Each m:n relationship is modeled with a junction table  

Normalization
Normalization is the process of splitting relations into well
structured relations that allow users to insert, delete, and update
tuples without introducing database. Without normalization many
problems can occur when trying to load an integrated conceptual model
into the DBMS. These problems arise from relations that are generated
directly from user views are called anomalies. There are three types
of anomalies: update, deletion and insertion anomalies.

DATA ANOMALY
Insert Anomaly - is the inability to add data to the database due to

absence of other data.

E.g. if you want to add a row in Current_Student and the values

of(cno, cname, credits) are not exist in Classes, you are unable to

insert such a row into Current_Student due to absence of (cno, cname,

credits).

Delete Anomaly - is the unintended loss of data due to deletion of

other data.

E.g. if you want to delete a class, then there will be loss of data in

Current_Student since some students are taking this class.

Update Anomaly - is a data inconsistency that results from data

redundancy and a partial update. It should be clear that redundancy of

any kind can always lead to anomalies—because redundancy means,

loosely, that some piece of information is represented twice, and so

there’s always the possibility that the two representations don’t

agree (i.e., if one is updated and the other isn’t).

Common SQL Transforms
*These are from BQ’s standard SQL and may slightly differ from MySQL/
Oracle/Postgres SQL syntax
● CREATE TABLE T2 AS SELECT ...

● SELECT a, b, c FROM T1 UNION ALL SELECT d, e, f FROM T2

● SELECT a, b, c FROM T1 UNION DISTINCT SELECT d, e, f FROM T2

● SELECT CAST(‘2020-02-17’ AS DATE) AS new_date

● SELECT SAFE_CAST(xyz AS DATE) …

● SELECT CAST(SUBSTR(‘1000-00)’, 0, 4) AS INT64) AS number

● SELECT ROW_NUMBER() OVER() AS row_num —-Does not require the ORDER
BY clause in OVER(). Returns the sequential row ordinal (1-based) of
each row for each ordered partition. If the ORDER BY clause is
unspecified then the result is non-deterministic. 

● SELECT GENERATE_UUID() AS uuid -—Returns a random universally unique
identifier (UUID) as a STRING

+--------------------------------------+
| uuid |
+--------------------------------------+
| 4192bff0-e1e0-43ce-a4db-912808c32493 |
+--------------------------------------+

Normal Forms
1NF: A database schema is in 1NF iff all attributes have scalar
values.
2NF: 1NF + all non-key attributes must be functionally determined by
the entire primary key.
3NF: 2NF + all non-key attributes must be functionally determined by
only the primary key.

Jupiter Notebook code example:

https://github.com/cs327e-spring2020/snippets

https://github.com/cs327e-spring2020/snippets

