
Direct Runner vs Dataflow Runner
● Direct Runner: process a small amount of data; executes pipelines

on your local machine.
● Dataflow Runner: process a large amount of data; r un your

pipeline with the Cloud Dataflow service, the runner uploads your
executable code and dependencies to a Google Cloud Storage bucket
and creates a Cloud Dataflow job, which executes your pipeline on
managed resources in Google Cloud Platform. There will be
overhead for setting up cluster.

ParDo vs DoFun
● ParDo is the computational pattern of per-element computation.

The DoFn , here I called it fn , is the logic that is applied to
each element. Pardo takes a DoFn subclass argument

ParDo
● Similar to WHERE in SQL
● Input elements are processed independently and in parallel.
● Output are bundled into a new PCollection.

DoFn

● DoFn is an argument to ParDo providing the code to use to process
elements of the input PCollection . The function to use to process
each element is specified by a DoFn<InputT, OutputT> , primarily
via its ProcessElement method.

GroupByKey
● Similar to GROUP BY in SQL
● Takes a PCollection as input where each element is a (k,v) pair,

which is why you may return a tuple for this transformation.
● Produces a PCollection as output where each element is a (k, list

of v) pair

CoGroupByKey
● Similar to FULL OUTER JOIN in SQL
● Takes >= 2 PCollections as input
● Every element in the input is tuple (k,v) pair
● Produces a PCollection as output where each element is a (k, v)

pair

https://beam.apache.org/releases/javadoc/2.2.0/org/apache/beam/sdk/transforms/ParDo.html
https://beam.apache.org/releases/javadoc/2.2.0/org/apache/beam/sdk/values/PCollection.html
https://beam.apache.org/releases/javadoc/2.2.0/org/apache/beam/sdk/transforms/DoFn.html
https://beam.apache.org/releases/javadoc/2.2.0/org/apache/beam/sdk/transforms/DoFn.ProcessElement.html

● As a result, the result for each key is a list of dictionaries
containing all data associated with that key in each input
collection.

Side Input
● Ordinary values or entire PCollection

● Optional arg
● Extra arg to process() method
● Basic: process(self, input)
● Single: process(self, input, side_input1)
● Multiples: process(self, input, side_input1, side_input2,

side_input3...)

*Helpful link:
https://www.waitingforcode.com/apache-beam/side-input-apache-beam/read

For Milestone 6:

Be sure to include [DIR_PATH = BUCKET + '/output/' +
datetime.datetime. now (). strftime ('%Y_%m_%d_%H_%M_%S') + '/'] in your run(), since
you are no longer run on your local machine. Explicitly specify the
output location in WriteToText(DIR_PATH + '<file_name>.txt')

https://www.waitingforcode.com/apache-beam/side-input-apache-beam/read

