Class Note

Data warehouse design - important considerations:

- 1. grain/granularity of fact tables
- 2. identifying the dimension tables
- 3. slowly changing dimensions

Star schema

- One large central fact table
- Various smaller dimension tables are connected to the fact table
- Fact Table
 - Has multiple foreign keys referring to each of the dimension tables (1:N relationship)
 - A composite primary key made of all these FKs
 - Contains measurement data (fact)
- Dimension Table
 - Contains information about each of the facts in the Fact Table
 - Contains criteria for aggregating the measurement data(fact)
- Surrogate Keys, meaningless integers used to connect the fact to the dimension tables.

Procedure of Building A Data Warehouse:

- · Designing the data warehouse schema
- Building the ETL pipelines consume 80% of time
- Creating the BI reports

Granularity of the Fact Table

- Granularity of data = how detail the data is
- Higher granularity implies more rows, while lower granularity implies fewer rows.
- Tradeoff level of detailed analysis VS. storage/query performance
- Data with higher granularity —> Data with lower granularity
 e.g Going from days(high) to months(low)

Data with higher granularity <—X— Data with lower granularity

Slowly changing dimensions

Dimensions that changes slowly and irregularly over a period of time.