Class 4 Postgres Elements of Databases Feb 18, 2022

Announcements

Preparing for Midterm 1:

- End-of-chapter exercises (requires Sakila sample database)
- Practice SQL on <u>Hacker Rank</u>
- Practice SQL on Leetcode

On the horizon:

- BigQuery starting next week (no setup needed)
- Review session for Midterm 1 (week of March 7th)

Homework: remodeled college tables

- 1. Connect to your Postgres database.
- 2. Run this query: select count(*) from college.takes;
- 3. Answer the instapoll.

Review Exercise: SQL Joins

Who are the students who take CS329E with Prof. Mitra?

For each student, return their sid, first and last names, and grade sorted by their sid.

Schema:

Student(<u>sid</u>, fname, lname, dob, status)

Class(cno, cname, credits)

Instructor(tid, name, dept)

Takes(*sid*, *cno*, grade)

Teaches(*tid*, *cno*)

Exercise 1: SQL Joins

Who are the students who take both CS329E and CS327E?

For each student, return their sid and first and last names. Sort the results by sid.

Schema:

Student(<u>sid</u>, fname, lname, dob, status)

Class(cno, cname, credits)

Instructor(tid, name, dept)

Takes(*sid*, *cno*, grade)

Teaches(*tid*, *cno*)

Exercise 2: SQL Joins

Which classes have no students taking them?

For each class with zero enrollment, return its cno, cname and credits. Sort the results by cno.

Schema:

Student(<u>sid</u>, fname, lname, dob, status)

Class(cno, cname, credits)

Instructor(tid, name, dept)

Takes(*sid*, *cno*, grade)

Teaches(*tid*, *cno*)

A World without Transactions

		Client 1	Client 2
Time	t _o	UPDATE account SET balance = balance - 100 WHERE name = 'Alice';	
	t ₁		SELECT name, balance FROM account WHERE name IN ('Alice', 'Bob');
·	t ₂	UPDATE account SET balance = balance + 100 WHERE name = 'Bob';	

A World without Transactions

Time		Client 1	Client 2
	t _o	UPDATE playlist SET count = count + 1 WHERE user = 'Alice';	UPDATE playlist SET count = count + 1 WHERE user = 'Alice';
Ţ	t ₁	SELECT count FROM playlist WHERE user = 'Alice';	SELECT count FROM playlist WHERE user = 'Alice';

Transaction Blocks

BEGIN TRANSACTION;

{some SQL statement 1}

{some SQL statement 2}

 $\{\text{some SQL statement } n\}$

COMMIT;

BEGIN TRANSACTION;

{some SQL statement 1}

{some SQL statement 2}

{some SQL statement n}

ROLLBACK;

Transaction Guarantees

- Atomicity
- Consistency
- Isolation
- Durability

Postgres Code Lab, Part 2

- Clone <u>snippets</u> repo
- Open postgres tx notebook
- Create the Shopify tables and load them
- Sample the tables
- Create the Foreign Keys
- Walk through an insert transaction
- Write an update transaction
- Write a delete transaction

Project 3

http://www.cs.utexas.edu/~scohen/projects/Project3.pdf