
CS 378 Final Project, due Monday, 12/09. Due date is not flexible.

Ground Rules

● Choose one of the four options outlined below based on your interests and the nature of
your data

● If you choose options 1 or 2, decide which scenario to apply it to
● If you choose option 4, write up a short proposal on what you’d like to work on
● Make sure your partner is onboard with your selection (!)
● Let the Prof. or TA know which option you’re signing up for by the end of class
● If you’re choosing option 4, you should speak to the Prof. about your idea today even if

you don’t have all the details worked out
● Keep in mind that you only have two class periods to complete this project, including

today’s class
● We won’t be able to offer a resubmission option for this project, so it’s important that you

get started early to give yourself enough time to work through any issues that come up

Option 1: Using text embeddings for data classification

Rather than calling the LLM one row at a time in order to classify a table of records (e.g. when
doing sentiment analysis), use a text embedding model to compute the embeddings of the input
records and the classification categories and then compute the distances between these
embeddings. Find the category that has the smallest distance to the input records. Update the
record in the table with their assigned category. Evaluate the accuracy and performance of your
results.

Create a new BQ dataset called fin-[your-domain]. Choose your input tables from the
intermediate layer of your warehouse ([your-domain]-int) and write all temp and final tables
to the new dataset.

Do all your experimentations in a Colab notebook with SQL. Make use of BQ’s built-in functions
ml.generate_embedding() and ml.distance() to create the embeddings and compute their
distance, respectively. Annotate your notebook with explanations throughout and include a short
conclusion. Name your notebook [your-domain]-scale-classification.ipynb.

Code samples available to help you get started.

Note: This project does not involve dbt. If you want to do more with dbt, you should consider
options 3 or 4, depending on your interests.

https://github.com/cs378-fall2024/snippets/blob/main/final-project/8-air-travel-scale-classification.ipynb


Option 2: Using text embeddings for entity matching

Similar idea to option 1, but applied to entity matching. With entity matching (aka entity
resolution), the goal is to match records that refer to the same entity. This is a common scenario
in warehousing as data extracts can arrive with duplicate records that contain some small
variations (and therefore are not detected as the same by select distinct) or when
datasets that are produced independently refer to the same entities but they are not represented
with a standard identifier.

Create a new BQ dataset called fin-[your-domain]. Choose your input tables from the staging
layer of your warehouse ([your-domain]-stg). Write all temp and final tables to the new
dataset.

All experiments should be done in a Colab notebook with a mix of SQL and Python code.
Create the embeddings with the BQML extension, ml.generate_embedding(). Use another
built-in function, vector_search(), to search the embeddings and find semantically similar
records. Use Python to evaluate the output from vector_search() and assign common keys to
the matching records. Annotate your notebook with explanations throughout and include a short
conclusion. Name your notebook [your-domain]-scale-entity-matching.ipynb.

Code samples available to help you get started.

Note: This project does not involve dbt. If you want to do more with dbt, you should consider
options 3 or 4, depending on your interests.

Option 3: Handling deleted records

Extend the work from Project 7 to handle deleted records. Deleted records occur in the context
of a warehouse when the operational systems that feed into the warehouse delete their records.
This can happen for a variety of reasons like a customer leaves and is no longer considered an
active customer, a transaction gets voided, etc.). The goal is to handle deletes in an incremental
fashion, the same way that we have been able to process inserts and updates.

Start by learning about dbt’s support for hard deletes and how its invalidate_hard_deletes
parameter works. Design some experiments to test the effectiveness of this parameter on your
end-to-end pipeline from Project 7.

For simplicity, you can work from the same dbt project folder as Project 7 and write to the same
inc_ datasets as Project 7. The goal is to show how the snapshot tables can record the deleted
records and how the deletes get propagated all the way downstream to the target marts.

No code samples are available for this option.

https://github.com/cs378-fall2024/snippets/blob/main/final-project/8-air-travel-scale-entity-matching.ipynb
https://docs.getdbt.com/docs/build/snapshots#hard-deletes-opt-in


Hint: In order to simulate deletes, prepare some incremental data that excludes a few records
which are present in your warehouse and ingest this data into the raw layer.

Option 4: Choose your own adventure

If your group would rather work on something else and you have an idea in mind, you can write
up a short proposal (1-2 paragraphs is sufficient). To get approval, you should make sure that
your idea has a narrow enough scope and is doable in two weeks time.

Share your thoughts with the Professor during today’s class period and email your proposal to
the Professor and TA once it’s ready.

Given the short timeline for this project and the holiday week, you should submit your proposal
by Sunday, November 24th. Any proposals received after that date will likely be rejected due to
our limited time.


