
Copyright © 2018 Pearson Education, Inc.

C H A P T E R 1

Introduction to
Computers
and
Programming

Copyright © 2018 Pearson Education, Inc.

Topics

Introduction

Hardware and Software

How Computers Store Data

How a Program Works

Using Python

Copyright © 2018 Pearson Education, Inc.

Introduction

Computers can be programmed
Designed to do any job that a program tells
them to

Program: set of instructions that a
computer follows to perform a task

Commonly referred to as Software

Programmer: person who can design,
create, and test computer programs

Also known as software developer

Copyright © 2018 Pearson Education, Inc.

Hardware and Software

Hardware: The physical devices that
make up a computer

Computer is a system composed of several
components that all work together

Typical major components:
Central processing unit

Main memory

Secondary storage devices

Input and output devices

Copyright © 2018 Pearson Education, Inc.

The CPU

Central processing unit (CPU): the part
of the computer that actually runs
programs

Most important component

Without it, cannot run software

Used to be a huge device

Microprocessors: CPUs located on
small chips

Copyright © 2018 Pearson Education, Inc.

Main Memory

Main memory: where computer stores a
program while program is running, and
data used by the program

Known as Random Access Memory or
RAM

CPU is able to quickly access data in RAM

Volatile memory used for temporary storage
while program is running

Contents are erased when computer is off

Copyright © 2018 Pearson Education, Inc.

Secondary Storage Devices

Secondary storage: can hold data for long
periods of time

Programs normally stored here and loaded to
main memory when needed

Types of secondary memory
Disk drive: magnetically encodes data onto a
spinning circular disk
Solid state drive: faster than disk drive, no moving
parts, stores data in solid state memory
Flash memory: portable, no physical disk
Optical devices: data encoded optically

Copyright © 2018 Pearson Education, Inc.

Input Devices

Input: data the computer collects from
people and other devices

Input device: component that collects
the data

Examples: keyboard, mouse, touchscreen,
scanner, camera

Disk drives can be considered input devices
because they load programs into the main
memory

Copyright © 2018 Pearson Education, Inc.

Output Devices

Output: data produced by the computer
for other people or devices

Can be text, image, audio, or bit stream

Output device: formats and presents
output

Examples: video display, printer

Disk drives and USB drives can be
considered output devices because data is
sent to them to be saved

Copyright © 2018 Pearson Education, Inc.

Software

Everything the computer does is
controlled by software

General categories:
Application software

System software

Application software: programs that
make computer useful for every day
tasks

Examples: word processing, email, games,
and Web browsers

Copyright © 2018 Pearson Education, Inc.

Software (cont d.)

System software: programs that control
and manage basic operations of a
computer

Operating system: controls operations of
hardware components

Utility Program: performs specific task to
enhance computer operation or safeguard
data

Software development tools: used to create,
modify, and test software programs

Copyright © 2018 Pearson Education, Inc.

How Computers Store Data

All data in a computer is stored in
sequences of 0s and 1s

Byte: just enough memory to store
letter or small number

Divided into eight bits

Bit: electrical component that can hold
positive or negative charge, like on/off switch

The on/off pattern of bits in a byte represents
data stored in the byte

Copyright © 2018 Pearson Education, Inc.

Storing Numbers

Bit represents two values, 0 and 1

Computers use binary numbering
system

Position of digit j is assigned the value 2j-1

To determine value of binary number sum
position values of the 1s

Byte size limits are 0 and 255
0 = all bits off; 255 = all bits on

To store larger number, use several bytes

Copyright © 2018 Pearson Education, Inc.

Storing Characters

Data stored in computer must be stored
as binary number

Characters are converted to numeric
code, numeric code stored in memory

Most important coding scheme is ASCII
ASCII is limited: defines codes for only 128
characters

Unicode coding scheme becoming standard
Compatible with ASCII

Can represent characters for other languages

Copyright © 2018 Pearson Education, Inc.

Advanced Number Storage

To store negative numbers and real
numbers, computers use binary
numbering and encoding schemes

Negative numbers encoded using two s
complement

Real numbers encoded using floating-point
notation

Copyright © 2018 Pearson Education, Inc.

Other Types of Data

Digital: describes any device that
stores data as binary numbers

Digital images are composed of pixels
To store images, each pixel is converted to a
binary number representing the pixel s color

Digital music is composed of sections
called samples

To store music, each sample is converted to a
binary number

Copyright © 2018 Pearson Education, Inc.

How a Program Works

CPU designed to perform simple
operations on pieces of data

Examples: reading data, adding, subtracting,
multiplying, and dividing numbers

Understands instructions written in machine
language and included in its instruction set

Each brand of CPU has its own instruction set

To carry out meaningful calculation,
CPU must perform many operations

Copyright © 2018 Pearson Education, Inc.

How a Program Works
(cont d.)

Program must be copied from
secondary memory to RAM each time
CPU executes it

CPU executes program in cycle:
Fetch: read the next instruction from memory
into CPU

Decode: CPU decodes fetched instruction to
determine which operation to perform

Execute: perform the operation

Copyright © 2018 Pearson Education, Inc.

How a Program Works
(cont d.)

Figure 1-16 The fetch-decode-execute cycle

Copyright © 2018 Pearson Education, Inc.

From Machine Language to
Assembly Language

Impractical for people to write in
machine language

Assembly language: uses short words
(mnemonics) for instructions instead of
binary numbers

Easier for programmers to work with

Assembler: translates assembly
language to machine language for
execution by CPU

Copyright © 2018 Pearson Education, Inc.

High-Level Languages

Low-level language: close in nature to
machine language

Example: assembly language

High-Level language: allows simple
creation of powerful and complex
programs

No need to know how CPU works or write
large number of instructions

More intuitive to understand

Copyright © 2018 Pearson Education, Inc.

Key Words, Operators, and
Syntax: an Overview

Key words: predefined words used to
write program in high-level language

Each key word has specific meaning

Operators: perform operations on data
Example: math operators to perform arithmetic

Syntax: set of rules to be followed when
writing program

Statement: individual instruction used in
high-level language

Copyright © 2018 Pearson Education, Inc.

Compilers and Interpreters

Programs written in high-level
languages must be translated into
machine language to be executed

Compiler: translates high-level
language program into separate
machine language program

Machine language program can be executed
at any time

Copyright © 2018 Pearson Education, Inc.

Compilers and Interpreters
(cont d.)

Interpreter: translates and executes
instructions in high-level language
program

Used by Python language

Interprets one instruction at a time

No separate machine language program

Source code: statements written by
programmer

Syntax error: prevents code from being
translated

Copyright © 2018 Pearson Education, Inc.

Compilers and Interpreters
(cont d.)

Figure 1-19 Executing a high-level program with an interpreter

Copyright © 2018 Pearson Education, Inc.

Using Python

Python must be installed and
configured prior to use

One of the items installed is the Python
interpreter

Python interpreter can be used in two
modes:

Interactive mode: enter statements on
keyboard

Script mode: save statements in Python script

Copyright © 2018 Pearson Education, Inc.

Interactive Mode

When you start Python in interactive
mode, you will see a prompt

Indicates the interpreter is waiting for a
Python statement to be typed

Prompt reappears after previous statement is
executed

Error message displayed If you incorrectly
type a statement

Good way to learn new parts of Python

Copyright © 2018 Pearson Education, Inc.

Writing Python Programs and
Running Them in Script Mode

Statements entered in interactive mode
are not saved as a program

To have a program use script mode
Save a set of Python statements in a file

The filename should have the .py extension

To run the file, or script, type
python filename

at the operating system command line

Copyright © 2018 Pearson Education, Inc.

The IDLE Programming
Environment

IDLE (Integrated Development
Program): single program that provides
tools to write, execute and test a
program

Automatically installed when Python language
is installed

Runs in interactive mode

Has built-in text editor with features designed
to help write Python programs

Copyright © 2018 Pearson Education, Inc.

Summary

This chapter covered:
Main hardware components of the computer

Types of software

How data is stored in a computer

Basic CPU operations and machine language

Fetch-decode-execute cycle

Complex languages and their translation to
machine code

Installing Python and the Python interpreter
modes

