
Copyright © 2018 Pearson Education, Inc.

C H A P T E R 1

Introduction to

Computers

and

Programming

Copyright © 2018 Pearson Education, Inc.

Topics

• Introduction

• Hardware and Software

• How Computers Store Data

• How a Program Works

• Using Python

Copyright © 2018 Pearson Education, Inc.

Introduction

• Computers can be programmed

• Designed to do any job that a program tells

them to

• Program: set of instructions that a

computer follows to perform a task

• Commonly referred to as Software

• Programmer: person who can design,

create, and test computer programs

• Also known as software developer

Copyright © 2018 Pearson Education, Inc.

Hardware and Software

• Hardware: The physical devices that

make up a computer

• Computer is a system composed of several

components that all work together

• Typical major components:

• Central processing unit

• Main memory

• Secondary storage devices

• Input and output devices

Copyright © 2018 Pearson Education, Inc.

The CPU

• Central processing unit (CPU): the part

of the computer that actually runs

programs

• Most important component

• Without it, cannot run software

• Used to be a huge device

• Microprocessors: CPUs located on

small chips

Copyright © 2018 Pearson Education, Inc.

Main Memory

• Main memory: where computer stores a

program while program is running, and

data used by the program

• Known as Random Access Memory or

RAM

• CPU is able to quickly access data in RAM

• Volatile memory used for temporary storage

while program is running

• Contents are erased when computer is off

Copyright © 2018 Pearson Education, Inc.

Secondary Storage Devices

• Secondary storage: can hold data for long
periods of time
• Programs normally stored here and loaded to

main memory when needed

• Types of secondary memory
• Disk drive: magnetically encodes data onto a

spinning circular disk

• Solid state drive: faster than disk drive, no moving
parts, stores data in solid state memory

• Flash memory: portable, no physical disk

• Optical devices: data encoded optically

Copyright © 2018 Pearson Education, Inc.

Input Devices

• Input: data the computer collects from

people and other devices

• Input device: component that collects

the data

• Examples: keyboard, mouse, touchscreen,

scanner, camera

• Disk drives can be considered input devices

because they load programs into the main

memory

Copyright © 2018 Pearson Education, Inc.

Output Devices

• Output: data produced by the computer

for other people or devices

• Can be text, image, audio, or bit stream

• Output device: formats and presents

output

• Examples: video display, printer

• Disk drives and USB drives can be

considered output devices because data is

sent to them to be saved

Copyright © 2018 Pearson Education, Inc.

Software

• Everything the computer does is

controlled by software

• General categories:

• Application software

• System software

• Application software: programs that

make computer useful for every day

tasks

• Examples: word processing, email, games,

and Web browsers

Copyright © 2018 Pearson Education, Inc.

Software (cont’d.)

• System software: programs that control

and manage basic operations of a

computer

• Operating system: controls operations of

hardware components

• Utility Program: performs specific task to

enhance computer operation or safeguard

data

• Software development tools: used to create,

modify, and test software programs

Copyright © 2018 Pearson Education, Inc.

How Computers Store Data

• All data in a computer is stored in

sequences of 0s and 1s

• Byte: just enough memory to store

letter or small number

• Divided into eight bits

• Bit: electrical component that can hold

positive or negative charge, like on/off switch

• The on/off pattern of bits in a byte represents

data stored in the byte

Copyright © 2018 Pearson Education, Inc.

Storing Numbers

• Bit represents two values, 0 and 1

• Computers use binary numbering

system

• Position of digit j is assigned the value 2j-1

• To determine value of binary number sum

position values of the 1s

• Byte size limits are 0 and 255

• 0 = all bits off; 255 = all bits on

• To store larger number, use several bytes

Copyright © 2018 Pearson Education, Inc.

Storing Characters

• Data stored in computer must be stored

as binary number

• Characters are converted to numeric

code, numeric code stored in memory

• Most important coding scheme is ASCII

• ASCII is limited: defines codes for only 128

characters

• Unicode coding scheme becoming standard

• Compatible with ASCII

• Can represent characters for other languages

Copyright © 2018 Pearson Education, Inc.

Advanced Number Storage

• To store negative numbers and real

numbers, computers use binary

numbering and encoding schemes

• Negative numbers encoded using two’s

complement

• Real numbers encoded using floating-point

notation

Copyright © 2018 Pearson Education, Inc.

Other Types of Data

• Digital: describes any device that

stores data as binary numbers

• Digital images are composed of pixels

• To store images, each pixel is converted to a

binary number representing the pixel’s color

• Digital music is composed of sections

called samples

• To store music, each sample is converted to a

binary number

Copyright © 2018 Pearson Education, Inc.

How a Program Works

• CPU designed to perform simple

operations on pieces of data

• Examples: reading data, adding, subtracting,

multiplying, and dividing numbers

• Understands instructions written in machine

language and included in its instruction set

• Each brand of CPU has its own instruction set

• To carry out meaningful calculation,

CPU must perform many operations

Copyright © 2018 Pearson Education, Inc.

How a Program Works

(cont’d.)
• Program must be copied from

secondary memory to RAM each time

CPU executes it

• CPU executes program in cycle:

• Fetch: read the next instruction from memory

into CPU

• Decode: CPU decodes fetched instruction to

determine which operation to perform

• Execute: perform the operation

Copyright © 2018 Pearson Education, Inc.

How a Program Works

(cont’d.)

Figure 1-16 The fetch-decode-execute cycle

Copyright © 2018 Pearson Education, Inc.

From Machine Language to

Assembly Language
• Impractical for people to write in

machine language

• Assembly language: uses short words

(mnemonics) for instructions instead of

binary numbers

• Easier for programmers to work with

• Assembler: translates assembly

language to machine language for

execution by CPU

Copyright © 2018 Pearson Education, Inc.

High-Level Languages

• Low-level language: close in nature to

machine language

• Example: assembly language

• High-Level language: allows simple

creation of powerful and complex

programs

• No need to know how CPU works or write

large number of instructions

• More intuitive to understand

Copyright © 2018 Pearson Education, Inc.

Key Words, Operators, and

Syntax: an Overview
• Key words: predefined words used to

write program in high-level language

• Each key word has specific meaning

• Operators: perform operations on data

• Example: math operators to perform arithmetic

• Syntax: set of rules to be followed when

writing program

• Statement: individual instruction used in

high-level language

Copyright © 2018 Pearson Education, Inc.

Compilers and Interpreters

• Programs written in high-level

languages must be translated into

machine language to be executed

• Compiler: translates high-level

language program into separate

machine language program

• Machine language program can be executed

at any time

Copyright © 2018 Pearson Education, Inc.

Compilers and Interpreters

(cont’d.)
• Interpreter: translates and executes

instructions in high-level language

program

• Used by Python language

• Interprets one instruction at a time

• No separate machine language program

• Source code: statements written by

programmer

• Syntax error: prevents code from being

translated

Copyright © 2018 Pearson Education, Inc.

Compilers and Interpreters

(cont’d.)

Figure 1-19 Executing a high-level program with an interpreter

Copyright © 2018 Pearson Education, Inc.

Using Python

• Python must be installed and

configured prior to use

• One of the items installed is the Python

interpreter

• Python interpreter can be used in two

modes:

• Interactive mode: enter statements on

keyboard

• Script mode: save statements in Python script

Copyright © 2018 Pearson Education, Inc.

Interactive Mode

• When you start Python in interactive

mode, you will see a prompt

• Indicates the interpreter is waiting for a

Python statement to be typed

• Prompt reappears after previous statement is

executed

• Error message displayed If you incorrectly

type a statement

• Good way to learn new parts of Python

Copyright © 2018 Pearson Education, Inc.

Writing Python Programs and

Running Them in Script Mode
• Statements entered in interactive mode

are not saved as a program

• To have a program use script mode

• Save a set of Python statements in a file

• The filename should have the .py extension

• To run the file, or script, type

python filename

at the operating system command line

Copyright © 2018 Pearson Education, Inc.

The IDLE Programming

Environment
• IDLE (Integrated Development

Program): single program that provides

tools to write, execute and test a

program

• Automatically installed when Python language

is installed

• Runs in interactive mode

• Has built-in text editor with features designed

to help write Python programs

Copyright © 2018 Pearson Education, Inc.

Summary

• This chapter covered:

• Main hardware components of the computer

• Types of software

• How data is stored in a computer

• Basic CPU operations and machine language

• Fetch-decode-execute cycle

• Complex languages and their translation to

machine code

• Installing Python and the Python interpreter

modes

