
Copyright © 2018 Pearson Education, Inc.

C H A P T E R 2

Input,
Processing,
and Output

Copyright © 2018 Pearson Education, Inc.

Topics

Designing a Program

Input, Processing, and Output
Displaying Output with print Function

Comments

Variables

Reading Input from the Keyboard

Performing Calculations

More About Data Output

Named Constants

Introduction to Turtle Graphics

Copyright © 2018 Pearson Education, Inc.

Designing a Program

Programs must be designed before
they are written

Program development cycle:
Design the program

Write the code

Correct syntax errors

Test the program

Correct logic errors

Copyright © 2018 Pearson Education, Inc.

Designing a Program (cont d.)

Design is the most important part of the
program development cycle

Understand the task that the program is
to perform

Work with customer to get a sense what the
program is supposed to do

Ask questions about program details

Create one or more software requirements

Copyright © 2018 Pearson Education, Inc.

Designing a Program (cont d.)

Determine the steps that must be taken
to perform the task

Break down required task into a series of
steps

Create an algorithm, listing logical steps that
must be taken

Algorithm: set of well-defined logical
steps that must be taken to perform a
task

Copyright © 2018 Pearson Education, Inc.

Pseudocode

Pseudocode: fake code
Informal language that has no syntax rule

Not meant to be compiled or executed

Used to create model program
No need to worry about syntax errors, can focus
on program s design

Can be translated directly into actual code in any
programming language

Copyright © 2018 Pearson Education, Inc.

Flowcharts

Flowchart: diagram that graphically
depicts the steps in a program

Ovals are terminal symbols

Parallelograms are input and output symbols

Rectangles are processing symbols

Symbols are connected by arrows that
represent the flow of the program

Copyright © 2018 Pearson Education, Inc.

Copyright © 2018 Pearson Education, Inc.

Input, Processing, and Output

Typically, computer performs three-
step process

Receive input
Input: any data that the program receives while it is
running

Perform some process on the input
Example: mathematical calculation

Produce output

Copyright © 2018 Pearson Education, Inc.

Displaying Output with the
print Function

Function: piece of prewritten code that
performs an operation
print function: displays output on the
screen

Argument: data given to a function
Example: data that is printed to screen

Statements in a program execute in the order
that they appear

From top to bottom

Copyright © 2018 Pearson Education, Inc.

Strings and String Literals

String: sequence of characters that is used
as data

String literal: string that appears in actual
code of a program

Must be enclosed in single (') or double (") quote
marks

String literal can be enclosed in triple quotes (''' or
""")

Enclosed string can contain both single and double quotes
and can have multiple lines

Copyright © 2018 Pearson Education, Inc.

Comments

Comments: notes of explanation within
a program

Ignored by Python interpreter
Intended for a person reading the program s code

Begin with a # character

End-line comment: appears at the end
of a line of code

Typically explains the purpose of that line

Copyright © 2018 Pearson Education, Inc.

Variables

Variable: name that represents a value stored
in the computer memory

Used to access and manipulate data stored in
memory

A variable references the value it represents

Assignment statement: used to create a
variable and make it reference data

General format is variable = expression
Example: age = 29

Assignment operator: the equal sign (=)

Copyright © 2018 Pearson Education, Inc.

Variables (cont d.)

In assignment statement, variable
receiving value must be on left side

A variable can be passed as an
argument to a function

Variable name should not be enclosed in
quote marks

You can only use a variable if a value is
assigned to it

Copyright © 2018 Pearson Education, Inc.

Variable Naming Rules

Rules for naming variables in Python:
Variable name cannot be a Python key word

Variable name cannot contain spaces

First character must be a letter or an underscore

After first character may use letters, digits, or
underscores

Variable names are case sensitive

Variable name should reflect its use

Copyright © 2018 Pearson Education, Inc.

Displaying Multiple Items with
the print Function

Python allows one to display multiple
items with a single call to print

Items are separated by commas when passed
as arguments

Arguments displayed in the order they are
passed to the function

Items are automatically separated by a space
when displayed on screen

Copyright © 2018 Pearson Education, Inc.

Variable Reassignment

Variables can reference different values
while program is running

Garbage collection: removal of values that
are no longer referenced by variables

Carried out by Python interpreter

A variable can refer to item of any type
Variable that has been assigned to one type can be
reassigned to another type

Copyright © 2018 Pearson Education, Inc.

Numeric Data Types, Literals,
and the str Data Type

Data types: categorize value in memory
e.g., int for integer, float for real number, str used for
storing strings in memory

Numeric literal: number written in a program
No decimal point considered int, otherwise,
considered float

Some operations behave differently
depending on data type

Copyright © 2018 Pearson Education, Inc.

Reassigning a Variable to a
Different Type

A variable in Python can refer to items of
any type

Copyright © 2018 Pearson Education, Inc.

Reading Input from the
Keyboard

Most programs need to read input from the
user
Built-in input function reads input from
keyboard

Returns the data as a string
Format: variable = input(prompt)

prompt is typically a string instructing user to enter a value

Does not automatically display a space after the
prompt

Copyright © 2018 Pearson Education, Inc.

Reading Numbers with the
input Function

input function always returns a string

Built-in functions convert between data types
int(item) converts item to an int

float(item) converts item to a float

Nested function call: general format:
function1(function2(argument))

value returned by function2 is passed to function1

Type conversion only works if item is valid numeric
value, otherwise, throws exception

Copyright © 2018 Pearson Education, Inc.

Performing Calculations
Math expression: performs calculation and
gives a value

Math operator: tool for performing calculation

Operands: values surrounding operator
Variables can be used as operands

Resulting value typically assigned to variable

Two types of division:
/ operator performs floating point division

// operator performs integer division
Positive results truncated, negative rounded away from zero

Copyright © 2018 Pearson Education, Inc.

Operator Precedence and
Grouping with Parentheses
Python operator precedence:
1. Operations enclosed in parentheses

Forces operations to be performed before others

2. Exponentiation (**)

3. Multiplication (*), division (/ and //), and remainder
(%)

4. Addition (+) and subtraction (-)

Higher precedence performed first
Same precedence operators execute from left to right

Copyright © 2018 Pearson Education, Inc.

The Exponent Operator and
the Remainder Operator

Exponent operator (**): Raises a
number to a power
x ** y = xy

Remainder operator (%): Performs
division and returns the remainder

a.k.a. modulus operator
e.g., 4%2=0, 5%2=1

Typically used to convert times and distances,
and to detect odd or even numbers

Copyright © 2018 Pearson Education, Inc.

Converting Math Formulas to
Programming Statements

Operator required for any mathematical
operation

When converting mathematical
expression to programming statement:

May need to add multiplication operators

May need to insert parentheses

Copyright © 2018 Pearson Education, Inc.

Mixed-Type Expressions and
Data Type Conversion

Data type resulting from math operation
depends on data types of operands

Two int values: result is an int

Two float values: result is a float

int and float: int temporarily converted to float,
result of the operation is a float

Mixed-type expression

Type conversion of float to int causes truncation
of fractional part

Copyright © 2018 Pearson Education, Inc.

Breaking Long Statements
into Multiple Lines

Long statements cannot be viewed on screen
without scrolling and cannot be printed
without cutting off
Multiline continuation character (\): Allows
to break a statement into multiple lines

result = var1 * 2 + var2 * 3 + \

var3 * 4 + var4 * 5

Copyright © 2018 Pearson Education, Inc.

Breaking Long Statements
into Multiple Lines

Any part of a statement that is enclosed in
parentheses can be broken without the line
continuation character.

print("Monday's sales are", monday,

"and Tuesday's sales are", tuesday,

"and Wednesday's sales are", Wednesday)

total = (value1 + value2 +

value3 + value4 +

value5 + value6)

Copyright © 2018 Pearson Education, Inc.

More About Data Output

print function displays line of output
Newline character at end of printed data
Special argument end='delimiter' causes print
to place delimiter at end of data instead of newline
character

print function uses space as item separator
Special argument sep='delimiter' causes print
to use delimiter as item separator

Copyright © 2018 Pearson Education, Inc.

More About Data Output
(cont d.)

Special characters appearing in string literal
Preceded by backslash (\)

Examples: newline (\n), horizontal tab (\t)

Treated as commands embedded in string

When + operator used on two strings in
performs string concatenation

Useful for breaking up a long string literal

Copyright © 2018 Pearson Education, Inc.

Formatting Numbers

Can format display of numbers on screen
using built-in format function

Two arguments:
Numeric value to be formatted

Format specifier

Returns string containing formatted number

Format specifier typically includes precision and data
type

Can be used to indicate scientific notation, comma
separators, and the minimum field width used to display the
value

Copyright © 2018 Pearson Education, Inc.

Formatting Numbers (cont d.)

The % symbol can be used in the format
string of format function to format number
as percentage
To format an integer using format function:

Use d as the type designator

Do not specify precision
Can still use format function to set field width or
comma separator

Copyright © 2018 Pearson Education, Inc.

Magic Numbers

A magic number is an unexplained numeric
value that appears in a program s code.
Example:

amount = balance * 0.069

What is the value 0.069? An interest rate? A
fee percentage? Only the person who wrote
the code knows for sure.

Copyright © 2018 Pearson Education, Inc.

The Problem with Magic
Numbers

It can be difficult to determine the purpose of the
number.

If the magic number is used in multiple places in the
program, it can take a lot of effort to change the
number in each location, should the need arise.

You take the risk of making a mistake each time you
type the magic number in the program s code.

For example, suppose you intend to type 0.069, but you
accidentally type .0069. This mistake will cause mathematical
errors that can be difficult to find.

Copyright © 2018 Pearson Education, Inc.

Named Constants

You should use named constants instead of magic numbers.

A named constant is a name that represents a value that does
not change during the program's execution.

Example:

INTEREST_RATE = 0.069

This creates a named constant named INTEREST_RATE,
assigned the value 0.069. It can be used instead of the magic
number:

amount = balance * INTEREST_RATE

Copyright © 2018 Pearson Education, Inc.

Advantages of Using Named
Constants

Named constants make code self-explanatory (self-
documenting)

Named constants make code easier to maintain
(change the value assigned to the constant, and the
new value takes effect everywhere the constant is
used)

Named constants help prevent typographical errors
that are common when using magic numbers

Copyright © 2018 Pearson Education, Inc.

Introduction to Turtle
Graphics

Python's turtle graphics system displays a
small cursor known as a turtle.

You can use Python statements to move the
turtle around the screen, drawing lines and
shapes.

Copyright © 2018 Pearson Education, Inc.

Introduction to Turtle
Graphics

To use the turtle graphics system, you
must import the turtle module with this
statement:

import turtle

This loads the turtle module into
memory

Copyright © 2018 Pearson Education, Inc.

Moving the Turtle Forward

Use the turtle.forward(n)
statement to move the turtle forward n
pixels.

>>> import turtle
>>> turtle.forward(100)
>>>

Copyright © 2018 Pearson Education, Inc.

Turning the Turtle

The turtle's initial heading is 0 degrees (east)

Use the turtle.right(angle) statement to
turn the turtle right by angle degrees.

Use the turtle.left(angle) statement to
turn the turtle left by angle degrees.

Copyright © 2018 Pearson Education, Inc.

Turning the Turtle

>>> import turtle
>>> turtle.forward(100)
>>> turtle.left(90)
>>> turtle.forward(100)
>>>

Copyright © 2018 Pearson Education, Inc.

Turning the Turtle

>>> import turtle
>>> turtle.forward(100)
>>> turtle.right(45)
>>> turtle.forward(100)
>>>

Copyright © 2018 Pearson Education, Inc.

Setting the Turtle's Heading

Use the turtle.setheading(angle)
statement to set the turtle's heading to a
specific angle.

>>> import turtle
>>> turtle.forward(50)
>>> turtle.setheading(90)
>>> turtle.forward(100)
>>> turtle.setheading(180)
>>> turtle.forward(50)
>>> turtle.setheading(270)
>>> turtle.forward(100)
>>>

Copyright © 2018 Pearson Education, Inc.

Setting the Pen Up or Down

When the turtle's pen is down, the turtle draws a line
as it moves. By default, the pen is down.

When the turtle's pen is up, the turtle does not draw
as it moves.

Use the turtle.penup() statement to raise the pen.

Use the turtle.pendown() statement to lower the
pen.

Copyright © 2018 Pearson Education, Inc.

Setting the Pen Up or Down

>>> import turtle
>>> turtle.forward(50)
>>> turtle.penup()
>>> turtle.forward(25)
>>> turtle.pendown()
>>> turtle.forward(50)
>>> turtle.penup()
>>> turtle.forward(25)
>>> turtle.pendown()
>>> turtle.forward(50)
>>>

Copyright © 2018 Pearson Education, Inc.

Drawing Circles

Use the turtle.circle(radius) statement to
draw a circle with a specified radius.

>>> import turtle
>>> turtle.circle(100)
>>>

Copyright © 2018 Pearson Education, Inc.

Drawing Dots

Use the turtle.dot() statement to draw a simple
dot at the turtle's current location.

>>> import turtle
>>> turtle.dot()
>>> turtle.forward(50)
>>> turtle.dot()
>>> turtle.forward(50)
>>> turtle.dot()
>>> turtle.forward(50)
>>>

Copyright © 2018 Pearson Education, Inc.

Changing the Pen Size and
Drawing Color

Use the turtle.pensize(width) statement to
change the width of the turtle's pen, in pixels.

Use the turtle.pencolor(color) statement to
change the turtle's drawing color.

See Appendix D in your textbook for a complete list of colors.

>>> import turtle
>>> turtle.pensize(5)
>>> turtle.pencolor('red')
>>> turtle.circle(100)
>>>

Copyright © 2018 Pearson Education, Inc.

Working with the Turtle's
Window

Use the turtle.bgcolor(color) statement to set
the window's background color.

See Appendix D in your textbook for a complete list of colors.

Use the turtle.setup(width, height) statement
to set the size of the turtle's window, in pixels.

The width and height arguments are the width and height, in
pixels.

For example, the following interactive session creates a graphics
window that is 640 pixels wide and 480 pixels high:

>>> import turtle
>>> turtle.setup(640, 480)
>>>

Copyright © 2018 Pearson Education, Inc.

Resetting the Turtle's Window

The turtle.reset() statement:
Erases all drawings that currently appear in the graphics window.

Resets the drawing color to black.

Resets the turtle to its original position in the center of the screen.

Does not reset the graphics window s background color.

The turtle.clear() statement:
Erases all drawings that currently appear in the graphics window.

Does not change the turtle's position.

Does not change the drawing color.

Does not change the graphics window s background color.

The turtle.clearscreen() statement:
Erases all drawings that currently appear in the graphics window.

Resets the drawing color to black.

Resets the turtle to its original position in the center of the screen.

Resets the graphics window s background color to white.

Copyright © 2018 Pearson Education, Inc.

Working with Coordinates

The turtle uses Cartesian Coordinates

Copyright © 2018 Pearson Education, Inc.

Moving the Turtle to a
Specific Location

Use the turtle.goto(x, y) statement to move the
turtle to a specific location.

>>> import turtle
>>> turtle.goto(0, 100)
>>> turtle.goto(100, 0)
>>> turtle.goto(0, 0)
>>>

The turtle.pos() statement displays the turtle's current X,Y coordinates.
The turtle.xcor() statement displays the turtle's current X coordinate and
the turtle.ycor() statement displays the turtle's current Y coordinate.

Copyright © 2018 Pearson Education, Inc.

Animation Speed

Use the turtle.speed(speed)
command to change the speed at which
the turtle moves.

The speed argument is a number in the
range of 0 through 10.

If you specify 0, then the turtle will make all of
its moves instantly (animation is disabled).

Copyright © 2018 Pearson Education, Inc.

Hiding and Displaying the
Turtle

Use the turtle.hideturtle() command to
hide the turtle.

This command does not change the way graphics are
drawn, it simply hides the turtle icon.

Use the turtle.showturtle() command to
display the turtle.

Copyright © 2018 Pearson Education, Inc.

Displaying Text

Use the turtle.write(text) statement to
display text in the turtle's graphics window.

The text argument is a string that you want to
display.

The lower-left corner of the first character will be
positioned at the turtle s X and Y coordinates.

Copyright © 2018 Pearson Education, Inc.

Displaying Text

>>> import turtle
>>> turtle.write('Hello World')
>>>

Copyright © 2018 Pearson Education, Inc.

Filling Shapes

To fill a shape with a color:
Use the turtle.begin_fill() command before
drawing the shape
Then use the turtle.end_fill() command after
the shape is drawn.
When the turtle.end_fill() command
executes, the shape will be filled with the current fill
color

Copyright © 2018 Pearson Education, Inc.

Filling Shapes

>>> import turtle
>>> turtle.hideturtle()
>>> turtle.fillcolor('red')
>>> turtle.begin_fill()
>>> turtle.circle(100)
>>> turtle.end_fill()
>>>

Copyright © 2018 Pearson Education, Inc.

Keeping the Graphics
Window Open

When running a turtle graphics program outside
IDLE, the graphics window closes immediately when
the program is done.

To prevent this, add the turtle.done() statement
to the very end of your turtle graphics programs.

This will cause the graphics window to remain open, so you can
see its contents after the program finishes executing.

Copyright © 2018 Pearson Education, Inc.

Summary

This chapter covered:
The program development cycle, tools for program
design, and the design process

Ways in which programs can receive input,
particularly from the keyboard

Ways in which programs can present and format
output

Use of comments in programs

Uses of variables and named constants

Tools for performing calculations in programs

The turtle graphics system

