
CHAPTER 4

Repetition **Structures**

Pearson Copyright © 2018 Pearson Education, Inc.

Topics

- Introduction to Repetition Structures
- The while Loop: a Condition-Controlled Loop
- The for Loop: a Count-Controlled Loop
- Calculating a Running Total
- Sentinels
- Input Validation Loops
- **Nested Loops**
- Turtle Graphics: Using Loops to Draw Designs

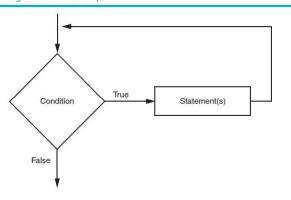
 $m{ ext{$\sim$}} ext{Pearson}$ Copyright © 2018 Pearson Education, Inc

Introduction to Repetition **Structures**

- Often have to write code that performs the same task multiple times
 - Disadvantages to duplicating code
 - Makes program large
 - Time consuming
 - May need to be corrected in many places
- Repetition structure: makes computer repeat included code as necessary
 - Includes condition-controlled loops and countcontrolled loops

The while Loop: a Condition-**Controlled Loop**

- while loop: while condition is true, do something
 - Two parts:
 - Condition tested for true or false value
 - Statements repeated as long as condition is true
 - In flow chart, line goes back to previous part
 - General format:


while condition:

statements

The while Loop: a Condition-**Controlled Loop (cont'd.)**

Figure 4-1 The logic of a while loop

Pearson Copyright © 2018 Pearson Education, Inc.

The while Loop: a Condition-**Controlled Loop (cont'd.)**

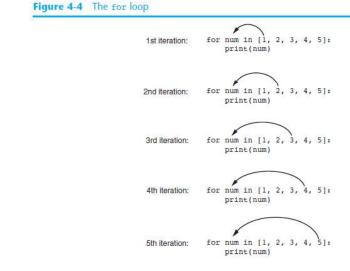
- In order for a loop to stop executing, something has to happen inside the loop to make the condition false
- Iteration: one execution of the body of a loop
- while loop is known as a pretest loop
 - Tests condition before performing an iteration
 - Will never execute if condition is false to start with
 - Requires performing some steps prior to the loop

Pearson Copyright © 2018 Pearson Education, Inc

Figure 4-3. Flowchart for Program 4-1 Assign 'y' to keep_going mission? (Enter v for $\operatorname{Pearson}$ Copyright © 2018 Pearson Education, Inc.

Infinite Loops

- Loops must contain within themselves a way to terminate
 - Something inside a while loop must eventually make the condition false
- Infinite loop: loop that does not have a way of stopping
 - Repeats until program is interrupted
 - Occurs when programmer forgets to include stopping code in the loop



The for Loop: a Count-**Controlled Loop**

- **Count-Controlled loop: iterates a** specific number of times
 - Use a for statement to write count-controlled dool
 - Designed to work with sequence of data items - Iterates once for each item in the sequence
 - General format:

for variable in [val1, val2, etc]: statements

• Target variable: the variable which is the target of the assignment at the beginning of each iteration



Using the range Function with the for Loop

- The range function simplifies the process of writing a for loop
 - range returns an iterable object
 - Iterable: contains a sequence of values that can be iterated over
- range characteristics:
 - One argument: used as ending limit
 - Two arguments: starting value and ending limit
- Three arguments: third argument is step value Pearson Copyright © 2018 Pearson Education, Inc.

Using the Target Variable Inside the Loop

- Purpose of target variable is to reference each item in a sequence as the loop iterates
- Target variable can be used in calculations or tasks in the body of the loop
 - Example: calculate square root of each number in a range

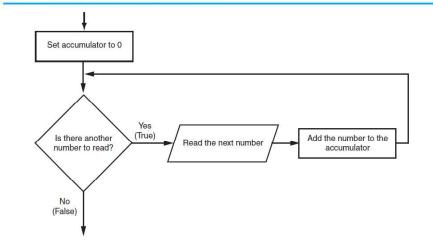
 $m{\mathcal{P}}$ $m{\mathsf{Pearson}}$ Copyright © 2018 Pearson Education, Inc

Letting the User Control the Loop Iterations

- Sometimes the programmer does not know exactly how many times the loop will execute
- Can receive range inputs from the user, place them in variables, and call the range function in the for clause using these variables
 - Be sure to consider the end cases: range does not include the ending limit

Generating an Iterable Sequence that Ranges from Highest to Lowest

- The range function can be used to generate a sequence with numbers in descending order
 - Make sure starting number is larger than end limit, and step value is negative
 - Example: range (10, 0, -1)


Calculating a Running Total

- Programs often need to calculate a total of a series of numbers
 - Typically include two elements:
 - A loop that reads each number in series
 - An accumulator variable
 - Known as program that keeps a running total: accumulates total and reads in series
 - At end of loop, accumulator will reference the total

Pearson Copyright © 2018 Pearson Education, Inc.

Calculating a Running Total (cont'd.)

Figure 4-6 Logic for calculating a running tota

Pearson Copyright © 2018 Pearson Education, Inc

The Augmented Assignment Operators

- In many assignment statements, the variable on the left side of the = operator also appears on the right side of the = operator
- **Augmented assignment operators:** special set of operators designed for this type of job
 - Shorthand operators

Table 4-2 Augmented assignment operators

Operator	Example Usage	Equivalent To
+=	x += 5	x = x + 5
-=	y -= 2	y = y - 2
*=	z *= 10	z = z * 10
/=	a /= b	a = a / b
%=	c %= 3	c = c % 3

 $oldsymbol{ ilde{P}}$ Pearson Copyright © 2018 Pearson Education, Inc

Pearson Copyright © 2018 Pearson Education, Inc.

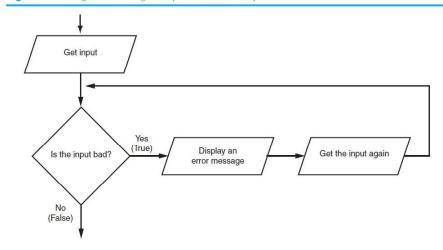
Sentinels

- Sentinel: special value that marks the end of a sequence of items
 - When program reaches a sentinel, it knows that the end of the sequence of items was reached, and the loop terminates
 - Must be distinctive enough so as not to be mistaken for a regular value in the sequence
 - Example: when reading an input file, empty line can be used as a sentinel

Input Validation Loops

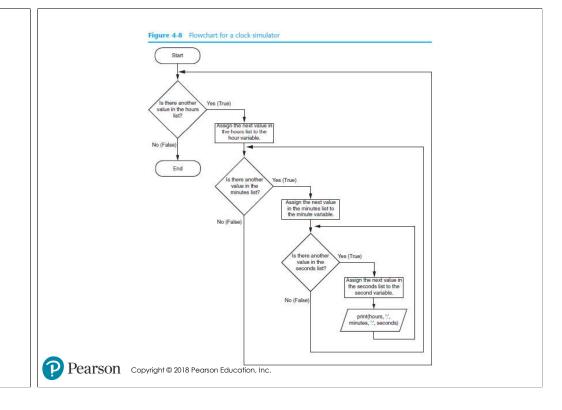
- Computer cannot tell the difference between good data and bad data
 - If user provides bad input, program will produce bad output
 - GIGO: garbage in, garbage out
 - It is important to design program such that bad input is never accepted

Input Validation Loops (cont'd.)


- Input validation: inspecting input before it is processed by the program
 - If input is invalid, prompt user to enter correct data
 - Commonly accomplished using a while loop which repeats as long as the input is bad
 - If input is bad, display error message and receive another set of data
 - If input is good, continue to process the input

Pearson Copyright © 2018 Pearson Education, Inc.

Input Validation Loops (cont'd.)


Figure 4-7 Logic containing an input validation loop

Pearson Copyright © 2018 Pearson Education, Inc

Nested Loops

- Nested loop: loop that is contained inside another loop
 - Example: analog clock works like a nested loop
 - Hours hand moves once for every twelve movements of the minutes hand: for each iteration of the "hours," do twelve iterations of "minutes"
 - Seconds hand moves 60 times for each movement of the minutes hand: for each iteration of "minutes," do 60 iterations of "seconds"

Nested Loops (cont'd.)

- Key points about nested loops:
 - Inner loop goes through all of its iterations for each iteration of outer loop
 - Inner loops complete their iterations faster than outer loops
 - Total number of iterations in nested loop:

```
number iterations inner x
number iterations outer
```


 You can use loops with the turtle to draw both simple shapes and elaborate designs. For example, the following for loop iterates four times to draw a square that is 100 pixels wide:

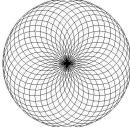
```
for x in range(4):
    turtle.forward(100)
    turtle.right(90)
```

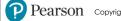

Pearson Copyright © 2018 Pearson Education, Inc.

Turtle Graphics: Using Loops to Draw Designs

 This for loop iterates eight times to draw the octagon:

```
for x in range(8):
    turtle.forward(100)
    turtle.right(45)
```

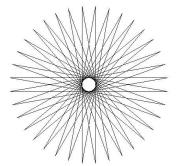



Turtle Graphics: Using Loops to Draw Designs

 You can create interesting designs by repeatedly drawing a simple shape, with the turtle tilted at a slightly different angle each time it draws the shape.

```
# Number of circles to draw
NUM CIRCLES = 36
RADIUS = 100
                    # Radius of each circle
ANGLE = 10
                    # Angle to turn
```

```
for x in range (NUM CIRCLES):
    turtle.circle(RADIUS)
    turtle.left(ANGLE)
```

Turtle Graphics: Using Loops to Draw Designs

 This code draws a sequence of 36 straight lines to make a "starburst" design.

```
START X = -200
                  # Starting X coordinate
START Y = 0
                # Starting Y coordinate
NUM LINES = 36  # Number of lines to draw
LINE LENGTH = 400 # Length of each line
ANGLE = 170
            # Angle to turn
turtle.hideturtle()
turtle.penup()
turtle.goto(START X, START Y)
turtle.pendown()
for x in range (NUM LINES):
   turtle.forward(LINE LENGTH)
    turtle.left(ANGLE)
```


Summary

This chapter covered:

- Repetition structures, including:
 - · Condition-controlled loops
 - Count-controlled loops
 - Nested loops
- Infinite loops and how they can be avoided
- range function as used in for loops
- Calculating a running total and augmented assignment operators
- Use of sentinels to terminate loops
- · Using loops to draw turtle graphic designs

