
Copyright © 2018 Pearson Education, Inc.

C H A P T E R 5

Functions

Copyright © 2018 Pearson Education, Inc.

Topics

Introduction to Functions

Defining and Calling a Void Function

Designing a Program to Use Functions

Local Variables

Passing Arguments to Functions

Global Variables and Global Constants

Turtle Graphics: Modularizing Code with
Functions

Copyright © 2018 Pearson Education, Inc.

Topics (cont d.)

Introduction to Value-Returning
Functions: Generating Random
Numbers

Writing Your Own Value-Returning
Functions
The math Module

Storing Functions in Modules

Copyright © 2018 Pearson Education, Inc.

Introduction to Functions

Function: group of statements within a
program that perform as specific task

Usually one task of a large program
Functions can be executed in order to perform
overall program task

Known as divide and conquer approach

Modularized program: program wherein
each task within the program is in its
own function

Copyright © 2018 Pearson Education, Inc. Copyright © 2018 Pearson Education, Inc.

Benefits of Modularizing a
Program with Functions

The benefits of using functions include:
Simpler code

Code reuse
write the code once and call it multiple times

Better testing and debugging
Can test and debug each function individually

Faster development

Easier facilitation of teamwork
Different team members can write different
functions

Copyright © 2018 Pearson Education, Inc.

Void Functions and Value-
Returning Functions

A void function:
Simply executes the statements it contains
and then terminates.

A value-returning function:
Executes the statements it contains, and then
it returns a value back to the statement that
called it.

The input, int, and float functions are
examples of value-returning functions.

Copyright © 2018 Pearson Education, Inc.

Defining and Calling a
Function

Functions are given names
Function naming rules:

Cannot use key words as a function name

Cannot contain spaces

First character must be a letter or underscore

All other characters must be a letter, number or
underscore

Uppercase and lowercase characters are distinct

Copyright © 2018 Pearson Education, Inc.

Defining and Calling a
Function (cont d.)

Function name should be descriptive of
the task carried out by the function

Often includes a verb

Function definition: specifies what
function does
def function_name():

statement

statement

Copyright © 2018 Pearson Education, Inc.

Defining and Calling a
Function (cont d.)

Function header: first line of function
Includes keyword def and function name,
followed by parentheses and colon

Block: set of statements that belong
together as a group

Example: the statements included in a
function

Copyright © 2018 Pearson Education, Inc.

Defining and Calling a
Function (cont d.)

Call a function to execute it
When a function is called:

Interpreter jumps to the function and executes
statements in the block

Interpreter jumps back to part of program that
called the function

Known as function return

Copyright © 2018 Pearson Education, Inc.

Defining and Calling a
Function (cont d.)

main function: called when the
program starts

Calls other functions when they are needed

Defines the mainline logic of the program

Copyright © 2018 Pearson Education, Inc.

Indentation in Python

Each block must be indented
Lines in block must begin with the same
number of spaces

Use tabs or spaces to indent lines in a block, but
not both as this can confuse the Python interpreter

IDLE automatically indents the lines in a block

Blank lines that appear in a block are ignored

Copyright © 2018 Pearson Education, Inc.

Designing a Program to Use
Functions

In a flowchart, function call shown as
rectangle with vertical bars at each side

Function name written in the symbol

Typically draw separate flow chart for each function in
the program

End terminal symbol usually reads Return

Top-down design: technique for breaking
algorithm into functions

Copyright © 2018 Pearson Education, Inc.

Designing a Program to Use
Functions (cont d.)

Hierarchy chart: depicts relationship
between functions

AKA structure chart

Box for each function in the program, Lines
connecting boxes illustrate the functions
called by each function

Does not show steps taken inside a function

Use input function to have program
wait for user to press enter

Copyright © 2018 Pearson Education, Inc.

Designing a Program to Use
Functions (cont d.)

Copyright © 2018 Pearson Education, Inc.

Local Variables

Local variable: variable that is assigned
a value inside a function

Belongs to the function in which it was
created

Only statements inside that function can access it,
error will occur if another function tries to access
the variable

Scope: the part of a program in which a
variable may be accessed

For local variable: function in which created
Copyright © 2018 Pearson Education, Inc.

Local Variables (cont d.)

Local variable cannot be accessed by
statements inside its function which
precede its creation

Different functions may have local
variables with the same name

Each function does not see the other
function s local variables, so no confusion

Copyright © 2018 Pearson Education, Inc.

Passing Arguments to
Functions

Argument: piece of data that is sent
into a function

Function can use argument in calculations

When calling the function, the argument is
placed in parentheses following the function
name

Copyright © 2018 Pearson Education, Inc.

Passing Arguments to
Functions (cont d.)

Copyright © 2018 Pearson Education, Inc.

Passing Arguments to
Functions (cont d.)

Parameter variable: variable that is
assigned the value of an argument
when the function is called

The parameter and the argument reference
the same value

General format:
def function_name(parameter):

Scope of a parameter: the function in which
the parameter is used

Copyright © 2018 Pearson Education, Inc.

Passing Arguments to
Functions (cont d.)

Copyright © 2018 Pearson Education, Inc.

Passing Multiple Arguments

Python allows writing a function that
accepts multiple arguments

Parameter list replaces single parameter
Parameter list items separated by comma

Arguments are passed by position to
corresponding parameters

First parameter receives value of first
argument, second parameter receives value
of second argument, etc.

Copyright © 2018 Pearson Education, Inc.

Passing Multiple Arguments
(cont d.)

Copyright © 2018 Pearson Education, Inc.

Making Changes to
Parameters

Changes made to a parameter value
within the function do not affect the
argument

Known as pass by value

Provides a way for unidirectional
communication between one function and
another function

Calling function can communicate with called
function

Copyright © 2018 Pearson Education, Inc.

Making Changes to
Parameters (cont d.)

Copyright © 2018 Pearson Education, Inc.

Making Changes to
Parameters (cont d.)

Figure 5-18
The value variable passed to the
change_me function cannot be changed by it

Copyright © 2018 Pearson Education, Inc.

Keyword Arguments

Keyword argument: argument that
specifies which parameter the value
should be passed to

Position when calling function is irrelevant

General Format:

function_name(parameter=value)

Possible to mix keyword and positional
arguments when calling a function

Positional arguments must appear first

Copyright © 2018 Pearson Education, Inc.

Global Variables and Global
Constants

Global variable: created by assignment
statement written outside all the
functions

Can be accessed by any statement in the
program file, including from within a function

If a function needs to assign a value to the
global variable, the global variable must be
redeclared within the function

General format: global variable_name

Copyright © 2018 Pearson Education, Inc.

Global Variables and Global
Constants (cont d.)

Reasons to avoid using global
variables:

Global variables making debugging difficult
Many locations in the code could be causing a
wrong variable value

Functions that use global variables are
usually dependent on those variables

Makes function hard to transfer to another program

Global variables make a program hard to
understand

Copyright © 2018 Pearson Education, Inc.

Global Constants

Global constant: global name that
references a value that cannot be
changed

Permissible to use global constants in a
program

To simulate global constant in Python, create
global variable and do not re-declare it within
functions

Copyright © 2018 Pearson Education, Inc.

Introduction to Value-Returning
Functions: Generating Random

Numbers
void function: group of statements
within a program for performing a
specific task

Call function when you need to perform the
task

Value-returning function: similar to
void function, returns a value

Value returned to part of program that called
the function when function finishes executing

Copyright © 2018 Pearson Education, Inc.

Standard Library Functions
and the import Statement

Standard library: library of pre-written
functions that comes with Python

Library functions perform tasks that
programmers commonly need

Example: print, input, range
Viewed by programmers as a black box

Some library functions built into
Python interpreter

To use, just call the function

Copyright © 2018 Pearson Education, Inc.

Standard Library Functions and
the import Statement (cont d.)
Modules: files that stores functions of the
standard library

Help organize library functions not built into the
interpreter

Copied to computer when you install Python

To call a function stored in a module, need to
write an import statement

Written at the top of the program
Format: import module_name

Copyright © 2018 Pearson Education, Inc.

Standard Library Functions and
the import Statement (cont d.)

Copyright © 2018 Pearson Education, Inc.

Generating Random Numbers

Random number are useful in a lot of
programming tasks
random module: includes library
functions for working with random
numbers

Dot notation: notation for calling a
function belonging to a module

Format: module_name.function_name()

Copyright © 2018 Pearson Education, Inc.

Generating Random Numbers
(cont d.)

randint function: generates a random
number in the range provided by the
arguments

Returns the random number to part of
program that called the function

Returned integer can be used anywhere that
an integer would be used

You can experiment with the function in
interactive mode

Copyright © 2018 Pearson Education, Inc.

Generating Random Numbers
(cont d.)

Copyright © 2018 Pearson Education, Inc.

Generating Random Numbers
(cont d.)

Copyright © 2018 Pearson Education, Inc.

Generating Random Numbers
(cont d.)

randrange function: similar to range
function, but returns randomly selected
integer from the resulting sequence

Same arguments as for the range function

random function: returns a random
float in the range of 0.0 and 1.0

Does not receive arguments

uniform function: returns a random
float but allows user to specify range

Copyright © 2018 Pearson Education, Inc.

Random Number Seeds

Random number created by functions
in random module are actually pseudo-
random numbers

Seed value: initializes the formula that
generates random numbers

Need to use different seeds in order to get
different series of random numbers

By default uses system time for seed
Can use random.seed() function to specify
desired seed value

Copyright © 2018 Pearson Education, Inc.

Writing Your Own Value-
Returning Functions

To write a value-returning function, you
write a simple function and add one or
more return statements

Format: return expression
The value for expression will be returned to the
part of the program that called the function

The expression in the return statement can
be a complex expression, such as a sum of
two variables or the result of another value-
returning function

Copyright © 2018 Pearson Education, Inc.

Writing Your Own Value-
Returning Functions (cont d.)

Copyright © 2018 Pearson Education, Inc.

How to Use Value-Returning
Functions

Value-returning function can be useful
in specific situations

Example: have function prompt user for input
and return the user s input

Simplify mathematical expressions

Complex calculations that need to be
repeated throughout the program

Use the returned value
Assign it to a variable or use as an argument
in another function

Copyright © 2018 Pearson Education, Inc.

Using IPO Charts

IPO chart: describes the input,
processing, and output of a function

Tool for designing and documenting functions

Typically laid out in columns

Usually provide brief descriptions of input,
processing, and output, without going into
details

Often includes enough information to be used
instead of a flowchart

Copyright © 2018 Pearson Education, Inc.

Using IPO Charts (cont d.)

Copyright © 2018 Pearson Education, Inc.

Returning Strings

You can write functions that return
strings

For example:

Copyright © 2018 Pearson Education, Inc.

Returning Boolean Values

Boolean function: returns either True
or False

Use to test a condition such as for decision
and repetition structures

Common calculations, such as whether a number
is even, can be easily repeated by calling a
function

Use to simplify complex input validation code

Copyright © 2018 Pearson Education, Inc.

Returning Multiple Values

In Python, a function can return
multiple values

Specified after the return statement
separated by commas

Format: return expression1,
expression2, etc.

When you call such a function in an
assignment statement, you need a separate
variable on the left side of the = operator to
receive each returned value

Copyright © 2018 Pearson Education, Inc.

The math Module

math module: part of standard library
that contains functions that are useful
for performing mathematical
calculations

Typically accept one or more values as
arguments, perform mathematical operation,
and return the result
Use of module requires an import math
statement

Copyright © 2018 Pearson Education, Inc.

The math Module (cont d.)

Copyright © 2018 Pearson Education, Inc.

The math Module (cont d.)

The math module defines variables pi
and e, which are assigned the
mathematical values for pi and e

Can be used in equations that require these
values, to get more accurate results

Variables must also be called using the
dot notation

Example:
circle_area = math.pi * radius**2

Copyright © 2018 Pearson Education, Inc.

Storing Functions in Modules

In large, complex programs, it is
important to keep code organized

Modularization: grouping related
functions in modules

Makes program easier to understand, test,
and maintain

Make it easier to reuse code for multiple
different programs

Import the module containing the required function
to each program that needs it

Copyright © 2018 Pearson Education, Inc.

Storing Functions in Modules
(cont d.)

Module is a file that contains Python
code

Contains function definition but does not
contain calls to the functions

Importing programs will call the functions

Rules for module names:
File name should end in .py

Cannot be the same as a Python keyword

Import module using import statement

Copyright © 2018 Pearson Education, Inc.

Menu Driven Programs

Menu-driven program: displays a list of
operations on the screen, allowing user
to select the desired operation

List of operations displayed on the screen is
called a menu

Program uses a decision structure to
determine the selected menu option
and required operation

Typically repeats until the user quits

Copyright © 2018 Pearson Education, Inc.

Turtle Graphics: Modularizing
Code with Functions

Commonly needed turtle graphics operations can be
stored in functions and then called whenever
needed.

For example, the following function draws a square.
The parameters specify the location, width, and
color.

def square(x, y, width, color):
turtle.penup() # Raise the pen
turtle.goto(x, y) # Move to (X,Y)
turtle.fillcolor(color) # Set the fill color
turtle.pendown() # Lower the pen
turtle.begin_fill() # Start filling
for count in range(4): # Draw a square

turtle.forward(width)
turtle.left(90)

turtle.end_fill() # End filling

Copyright © 2018 Pearson Education, Inc.

Turtle Graphics: Modularizing
Code with Functions

The following code calls the previously shown
square function to draw three squares:

square(100, 0, 50, 'red')
square(-150, -100, 200, 'blue')
square(-200, 150, 75, 'green')

Copyright © 2018 Pearson Education, Inc.

Turtle Graphics: Modularizing
Code with Functions

The following function draws a circle. The
parameters specify the location, radius, and color.

def circle(x, y, radius, color):
turtle.penup() # Raise the pen
turtle.goto(x, y - radius) # Position the turtle
turtle.fillcolor(color) # Set the fill color
turtle.pendown() # Lower the pen
turtle.begin_fill() # Start filling
turtle.circle(radius) # Draw a circle
turtle.end_fill() # End filling

Copyright © 2018 Pearson Education, Inc.

Turtle Graphics: Modularizing
Code with Functions

The following code calls the previously shown
circle function to draw three circles:

circle(0, 0, 100, 'red')
circle(-150, -75, 50, 'blue')
circle(-200, 150, 75, 'green')

Copyright © 2018 Pearson Education, Inc.

Turtle Graphics: Modularizing
Code with Functions

The following function draws a line. The parameters
specify the starting and ending locations, and color.

def line(startX, startY, endX, endY, color):
turtle.penup() # Raise the pen
turtle.goto(startX, startY) # Move to the starting point
turtle.pendown() # Lower the pen
turtle.pencolor(color) # Set the pen color
turtle.goto(endX, endY) # Draw a square

Copyright © 2018 Pearson Education, Inc.

Turtle Graphics: Modularizing
Code with Functions

The following code calls the previously shown line
function to draw a triangle:

TOP_X = 0
TOP_Y = 100
BASE_LEFT_X = -100
BASE_LEFT_Y = -100
BASE_RIGHT_X = 100
BASE_RIGHT_Y = -100
line(TOP_X, TOP_Y, BASE_LEFT_X, BASE_LEFT_Y, 'red')
line(TOP_X, TOP_Y, BASE_RIGHT_X, BASE_RIGHT_Y, 'blue')
line(BASE_LEFT_X, BASE_LEFT_Y, BASE_RIGHT_X, BASE_RIGHT_Y, 'green')

Copyright © 2018 Pearson Education, Inc.

Summary

This chapter covered:
The advantages of using functions

The syntax for defining and calling a function

Methods for designing a program to use
functions

Use of local variables and their scope

Syntax and limitations of passing arguments
to functions

Global variables, global constants, and their
advantages and disadvantages

Copyright © 2018 Pearson Education, Inc.

Summary (cont d.)

Value-returning functions, including:
Writing value-returning functions

Using value-returning functions

Functions returning multiple values

Using library functions and the import
statement

Modules, including:
The random and math modules

Grouping your own functions in modules

Modularizing Turtle Graphics Code

