
Copyright © 2018 Pearson Education, Inc.

C H A P T E R 5

Functions

Copyright © 2018 Pearson Education, Inc.

Topics

• Introduction to Functions

• Defining and Calling a Void Function

• Designing a Program to Use Functions

• Local Variables

• Passing Arguments to Functions

• Global Variables and Global Constants

• Turtle Graphics: Modularizing Code with

Functions

Copyright © 2018 Pearson Education, Inc.

Topics (cont’d.)

• Introduction to Value-Returning

Functions: Generating Random

Numbers

• Writing Your Own Value-Returning

Functions

• The math Module

• Storing Functions in Modules

Copyright © 2018 Pearson Education, Inc.

Introduction to Functions

• Function: group of statements within a

program that perform as specific task

• Usually one task of a large program

• Functions can be executed in order to perform

overall program task

• Known as divide and conquer approach

• Modularized program: program wherein

each task within the program is in its

own function

Copyright © 2018 Pearson Education, Inc.

Copyright © 2018 Pearson Education, Inc.

Benefits of Modularizing a

Program with Functions
• The benefits of using functions include:

• Simpler code

• Code reuse

• write the code once and call it multiple times

• Better testing and debugging

• Can test and debug each function individually

• Faster development

• Easier facilitation of teamwork

• Different team members can write different

functions

Copyright © 2018 Pearson Education, Inc.

Void Functions and Value-

Returning Functions
• A void function:

• Simply executes the statements it contains

and then terminates.

• A value-returning function:

• Executes the statements it contains, and then

it returns a value back to the statement that

called it.

• The input, int, and float functions are

examples of value-returning functions.

Copyright © 2018 Pearson Education, Inc.

Defining and Calling a

Function
• Functions are given names

• Function naming rules:

• Cannot use key words as a function name

• Cannot contain spaces

• First character must be a letter or underscore

• All other characters must be a letter, number or

underscore

• Uppercase and lowercase characters are distinct

Copyright © 2018 Pearson Education, Inc.

Defining and Calling a

Function (cont’d.)
• Function name should be descriptive of

the task carried out by the function

• Often includes a verb

• Function definition: specifies what

function does

def function_name():

statement

statement

Copyright © 2018 Pearson Education, Inc.

Defining and Calling a

Function (cont’d.)
• Function header: first line of function

– Includes keyword def and function name,

followed by parentheses and colon

• Block: set of statements that belong

together as a group

– Example: the statements included in a
function

Copyright © 2018 Pearson Education, Inc.

Defining and Calling a

Function (cont’d.)
• Call a function to execute it

• When a function is called:

• Interpreter jumps to the function and executes

statements in the block

• Interpreter jumps back to part of program that

called the function

• Known as function return

Copyright © 2018 Pearson Education, Inc.

Defining and Calling a

Function (cont’d.)
• main function: called when the

program starts

• Calls other functions when they are needed

• Defines the mainline logic of the program

Copyright © 2018 Pearson Education, Inc.

Indentation in Python

• Each block must be indented

• Lines in block must begin with the same

number of spaces

• Use tabs or spaces to indent lines in a block, but

not both as this can confuse the Python interpreter

• IDLE automatically indents the lines in a block

• Blank lines that appear in a block are ignored

Copyright © 2018 Pearson Education, Inc.

Designing a Program to Use

Functions
• In a flowchart, function call shown as

rectangle with vertical bars at each side

• Function name written in the symbol

• Typically draw separate flow chart for each function in

the program

• End terminal symbol usually reads Return

• Top-down design: technique for breaking
algorithm into functions

Copyright © 2018 Pearson Education, Inc.

Designing a Program to Use

Functions (cont’d.)
• Hierarchy chart: depicts relationship

between functions

• AKA structure chart

• Box for each function in the program, Lines

connecting boxes illustrate the functions

called by each function

• Does not show steps taken inside a function

• Use input function to have program

wait for user to press enter

Copyright © 2018 Pearson Education, Inc.

Designing a Program to Use

Functions (cont’d.)

Copyright © 2018 Pearson Education, Inc.

Local Variables

• Local variable: variable that is assigned

a value inside a function

• Belongs to the function in which it was

created

• Only statements inside that function can access it,

error will occur if another function tries to access

the variable

• Scope: the part of a program in which a

variable may be accessed

• For local variable: function in which created

Copyright © 2018 Pearson Education, Inc.

Local Variables (cont’d.)

• Local variable cannot be accessed by

statements inside its function which

precede its creation

• Different functions may have local

variables with the same name

• Each function does not see the other
function’s local variables, so no confusion

Copyright © 2018 Pearson Education, Inc.

Passing Arguments to

Functions
• Argument: piece of data that is sent

into a function

• Function can use argument in calculations

• When calling the function, the argument is

placed in parentheses following the function

name

Copyright © 2018 Pearson Education, Inc.

Passing Arguments to

Functions (cont’d.)

Copyright © 2018 Pearson Education, Inc.

Passing Arguments to

Functions (cont’d.)
• Parameter variable: variable that is

assigned the value of an argument

when the function is called

• The parameter and the argument reference

the same value

• General format:

• def function_name(parameter):

• Scope of a parameter: the function in which

the parameter is used

Copyright © 2018 Pearson Education, Inc.

Passing Arguments to

Functions (cont’d.)

Copyright © 2018 Pearson Education, Inc.

Passing Multiple Arguments

• Python allows writing a function that

accepts multiple arguments

• Parameter list replaces single parameter

• Parameter list items separated by comma

• Arguments are passed by position to

corresponding parameters

• First parameter receives value of first

argument, second parameter receives value

of second argument, etc.

Copyright © 2018 Pearson Education, Inc.

Passing Multiple Arguments

(cont’d.)

Copyright © 2018 Pearson Education, Inc.

Making Changes to

Parameters
• Changes made to a parameter value

within the function do not affect the

argument

• Known as pass by value

• Provides a way for unidirectional

communication between one function and

another function

• Calling function can communicate with called

function

Copyright © 2018 Pearson Education, Inc.

Making Changes to

Parameters (cont’d.)

Copyright © 2018 Pearson Education, Inc.

Making Changes to

Parameters (cont’d.)
• Figure 5-18

• The value variable passed to the

change_me function cannot be changed by it

Copyright © 2018 Pearson Education, Inc.

Keyword Arguments

• Keyword argument: argument that

specifies which parameter the value

should be passed to

• Position when calling function is irrelevant

• General Format:

•
function_name(parameter=value)

• Possible to mix keyword and positional

arguments when calling a function

• Positional arguments must appear first

Copyright © 2018 Pearson Education, Inc.

Global Variables and Global

Constants
• Global variable: created by assignment

statement written outside all the

functions

• Can be accessed by any statement in the

program file, including from within a function

• If a function needs to assign a value to the

global variable, the global variable must be

redeclared within the function

• General format: global variable_name

Copyright © 2018 Pearson Education, Inc.

Global Variables and Global

Constants (cont’d.)
• Reasons to avoid using global

variables:

• Global variables making debugging difficult

• Many locations in the code could be causing a

wrong variable value

• Functions that use global variables are

usually dependent on those variables

• Makes function hard to transfer to another program

• Global variables make a program hard to

understand

Copyright © 2018 Pearson Education, Inc.

Global Constants

• Global constant: global name that

references a value that cannot be

changed

• Permissible to use global constants in a

program

• To simulate global constant in Python, create

global variable and do not re-declare it within
functions

Copyright © 2018 Pearson Education, Inc.

Introduction to Value-Returning

Functions: Generating Random

Numbers
• void function: group of statements

within a program for performing a

specific task

• Call function when you need to perform the

task

• Value-returning function: similar to

void function, returns a value

• Value returned to part of program that called

the function when function finishes executing

Copyright © 2018 Pearson Education, Inc.

Standard Library Functions
and the import Statement

• Standard library: library of pre-written

functions that comes with Python

• Library functions perform tasks that

programmers commonly need

• Example: print, input, range

• Viewed by programmers as a “black box”

• Some library functions built into

Python interpreter

• To use, just call the function

Copyright © 2018 Pearson Education, Inc.

Standard Library Functions and
the import Statement (cont’d.)

• Modules: files that stores functions of the

standard library

• Help organize library functions not built into the

interpreter

• Copied to computer when you install Python

• To call a function stored in a module, need to
write an import statement

• Written at the top of the program

• Format: import module_name

Copyright © 2018 Pearson Education, Inc.

Standard Library Functions and
the import Statement (cont’d.)

Copyright © 2018 Pearson Education, Inc.

Generating Random Numbers

• Random number are useful in a lot of

programming tasks

• random module: includes library

functions for working with random

numbers

• Dot notation: notation for calling a

function belonging to a module

• Format: module_name.function_name()

Copyright © 2018 Pearson Education, Inc.

Generating Random Numbers

(cont’d.)
• randint function: generates a random

number in the range provided by the
arguments

• Returns the random number to part of

program that called the function

• Returned integer can be used anywhere that

an integer would be used

• You can experiment with the function in

interactive mode

Copyright © 2018 Pearson Education, Inc.

Generating Random Numbers

(cont’d.)

Copyright © 2018 Pearson Education, Inc.

Generating Random Numbers

(cont’d.)

Copyright © 2018 Pearson Education, Inc.

Generating Random Numbers

(cont’d.)
• randrange function: similar to range

function, but returns randomly selected

integer from the resulting sequence

• Same arguments as for the range function

• random function: returns a random

float in the range of 0.0 and 1.0

• Does not receive arguments

• uniform function: returns a random

float but allows user to specify range

Copyright © 2018 Pearson Education, Inc.

Random Number Seeds

• Random number created by functions

in random module are actually pseudo-

random numbers

• Seed value: initializes the formula that

generates random numbers

• Need to use different seeds in order to get

different series of random numbers

• By default uses system time for seed

• Can use random.seed() function to specify

desired seed value

Copyright © 2018 Pearson Education, Inc.

Writing Your Own Value-

Returning Functions
• To write a value-returning function, you

write a simple function and add one or
more return statements

• Format: return expression

• The value for expression will be returned to the

part of the program that called the function

• The expression in the return statement can

be a complex expression, such as a sum of

two variables or the result of another value-

returning function

Copyright © 2018 Pearson Education, Inc.

Writing Your Own Value-

Returning Functions (cont’d.)

Copyright © 2018 Pearson Education, Inc.

How to Use Value-Returning

Functions
• Value-returning function can be useful

in specific situations

• Example: have function prompt user for input

and return the user’s input

• Simplify mathematical expressions

• Complex calculations that need to be

repeated throughout the program

• Use the returned value

• Assign it to a variable or use as an argument

in another function

Copyright © 2018 Pearson Education, Inc.

Using IPO Charts

• IPO chart: describes the input,

processing, and output of a function

• Tool for designing and documenting functions

• Typically laid out in columns

• Usually provide brief descriptions of input,

processing, and output, without going into

details

• Often includes enough information to be used

instead of a flowchart

Copyright © 2018 Pearson Education, Inc.

Using IPO Charts (cont’d.)

Copyright © 2018 Pearson Education, Inc.

Returning Strings

• You can write functions that return

strings

• For example:

Copyright © 2018 Pearson Education, Inc.

Returning Boolean Values

• Boolean function: returns either True

or False

• Use to test a condition such as for decision

and repetition structures

• Common calculations, such as whether a number

is even, can be easily repeated by calling a

function

• Use to simplify complex input validation code

Copyright © 2018 Pearson Education, Inc.

Returning Multiple Values

• In Python, a function can return

multiple values

• Specified after the return statement

separated by commas

• Format: return expression1,

expression2, etc.

• When you call such a function in an

assignment statement, you need a separate
variable on the left side of the = operator to

receive each returned value

Copyright © 2018 Pearson Education, Inc.

The math Module

• math module: part of standard library

that contains functions that are useful

for performing mathematical

calculations

• Typically accept one or more values as

arguments, perform mathematical operation,

and return the result

• Use of module requires an import math

statement

Copyright © 2018 Pearson Education, Inc.

The math Module (cont’d.)

Copyright © 2018 Pearson Education, Inc.

The math Module (cont’d.)

• The math module defines variables pi

and e, which are assigned the

mathematical values for pi and e

• Can be used in equations that require these

values, to get more accurate results

• Variables must also be called using the

dot notation

• Example:

circle_area = math.pi * radius**2

Copyright © 2018 Pearson Education, Inc.

Storing Functions in Modules

• In large, complex programs, it is

important to keep code organized

• Modularization: grouping related

functions in modules

• Makes program easier to understand, test,

and maintain

• Make it easier to reuse code for multiple

different programs

• Import the module containing the required function

to each program that needs it

Copyright © 2018 Pearson Education, Inc.

Storing Functions in Modules

(cont’d.)
• Module is a file that contains Python

code

• Contains function definition but does not

contain calls to the functions

• Importing programs will call the functions

• Rules for module names:

• File name should end in .py

• Cannot be the same as a Python keyword

• Import module using import statement

Copyright © 2018 Pearson Education, Inc.

Menu Driven Programs

• Menu-driven program: displays a list of

operations on the screen, allowing user

to select the desired operation

• List of operations displayed on the screen is

called a menu

• Program uses a decision structure to

determine the selected menu option

and required operation

• Typically repeats until the user quits

Copyright © 2018 Pearson Education, Inc.

Turtle Graphics: Modularizing

Code with Functions
• Commonly needed turtle graphics operations can be

stored in functions and then called whenever

needed.

• For example, the following function draws a square.

The parameters specify the location, width, and

color.

def square(x, y, width, color):

turtle.penup() # Raise the pen

turtle.goto(x, y) # Move to (X,Y)

turtle.fillcolor(color) # Set the fill color

turtle.pendown() # Lower the pen

turtle.begin_fill() # Start filling

for count in range(4): # Draw a square

turtle.forward(width)

turtle.left(90)

turtle.end_fill() # End filling

Copyright © 2018 Pearson Education, Inc.

Turtle Graphics: Modularizing

Code with Functions
• The following code calls the previously shown
square function to draw three squares:

square(100, 0, 50, 'red')

square(-150, -100, 200, 'blue')

square(-200, 150, 75, 'green')

Copyright © 2018 Pearson Education, Inc.

Turtle Graphics: Modularizing

Code with Functions
• The following function draws a circle. The

parameters specify the location, radius, and color.

def circle(x, y, radius, color):

turtle.penup() # Raise the pen

turtle.goto(x, y - radius) # Position the turtle

turtle.fillcolor(color) # Set the fill color

turtle.pendown() # Lower the pen

turtle.begin_fill() # Start filling

turtle.circle(radius) # Draw a circle

turtle.end_fill() # End filling

Copyright © 2018 Pearson Education, Inc.

Turtle Graphics: Modularizing

Code with Functions
• The following code calls the previously shown
circle function to draw three circles:

circle(0, 0, 100, 'red')

circle(-150, -75, 50, 'blue')

circle(-200, 150, 75, 'green')

Copyright © 2018 Pearson Education, Inc.

Turtle Graphics: Modularizing

Code with Functions
• The following function draws a line. The parameters

specify the starting and ending locations, and color.

def line(startX, startY, endX, endY, color):

turtle.penup() # Raise the pen

turtle.goto(startX, startY) # Move to the starting point

turtle.pendown() # Lower the pen

turtle.pencolor(color) # Set the pen color

turtle.goto(endX, endY) # Draw a square

Copyright © 2018 Pearson Education, Inc.

Turtle Graphics: Modularizing

Code with Functions
• The following code calls the previously shown line

function to draw a triangle:

TOP_X = 0

TOP_Y = 100

BASE_LEFT_X = -100

BASE_LEFT_Y = -100

BASE_RIGHT_X = 100

BASE_RIGHT_Y = -100

line(TOP_X, TOP_Y, BASE_LEFT_X, BASE_LEFT_Y, 'red')

line(TOP_X, TOP_Y, BASE_RIGHT_X, BASE_RIGHT_Y, 'blue')

line(BASE_LEFT_X, BASE_LEFT_Y, BASE_RIGHT_X, BASE_RIGHT_Y, 'green')

Copyright © 2018 Pearson Education, Inc.

Summary

• This chapter covered:

• The advantages of using functions

• The syntax for defining and calling a function

• Methods for designing a program to use

functions

• Use of local variables and their scope

• Syntax and limitations of passing arguments

to functions

• Global variables, global constants, and their

advantages and disadvantages

Copyright © 2018 Pearson Education, Inc.

Summary (cont’d.)

• Value-returning functions, including:

• Writing value-returning functions

• Using value-returning functions

• Functions returning multiple values

• Using library functions and the import

statement

• Modules, including:

• The random and math modules

• Grouping your own functions in modules

• Modularizing Turtle Graphics Code

