
1

CS303e Course Introduction

Mike Scott

scottm@cs.utexas.edu

www.cs.utexas.edu/~scottm/cs303e
1

Chapman: I didn't expect a kind of Spanish Inquisition.

Cardinal Ximinez[Palin]: NOBODY expects the Spanish
Inquisition! Our chief weapon is surprise...surprise and
fear...fear and surprise.... Our two weapons are fear and
surprise...and ruthless efficiency.... Our three weapons are
fear, surprise, and ruthless efficiency...and an almost fanatical
devotion to the Pope.... Our four...no... Amongst our
weapons.... Amongst our weaponry...are such diverse

elements as fear, surprise....

Agenda

Overview of:

–this course

–the elements of computing program

Course logistics including:

–how to get help

–the schedule

–tips for success

3

Who Am I

Lecturer in CS

department since 2000

Undergrad Stanford,

MSCS RPI

US Navy for 8 years,

submarines

2 years Round Rock

High School

CS303e

My Path to CS

CS303e 4

Intro to Programming
Learn to design and implement computer

programs to solve problems.

I assume you have NEVER written

a single line of code

CS303e 5

1. output, fstrings

2. identifiers

3. errors (syntax, runtime, logic)

4. reserved words

5. variables, operators, computations

6. constants

7. built in math functions

8. conditional execution

9. boolean logic

10. iteration, repetition

11. programmer defined functions

12. Strings

13. lists

14. lists of lists (matrices)

15. files

16. exceptions

17. dictionaries

18. objects and classes (programmer

defined data types)

19. recursion

20. sorting and searching

Programing and CS

A tool for doing the cool stuff in CS

You can't create a self driving vehicle

without the software to control the vehicle

CS303e 6

Programming
Start simple ….

… but get

complex by

end of the class

CS303e 7

8

Startup

If you have not already done so …

… complete the items on the class

start-up page

http://www.cs.utexas.edu/~scottm/

cs303e/handouts/startup.htm

CS303e

http://www.cs.utexas.edu/~scottm/cs303e/handouts/startup.htm

Book

Course Overview 9

• book is required
- we follow it quite
closely

• programming
assignments, limited to
features from the book
up to a given chapter

• suggested exercises

Graded Course Components
Programming projects

– 13 projects, 10 or 20 points : 210 points

Exams
– Midterm, In class Wednesday, July 3, 11:30 am – 1:30 pm

400 points

– Final, Thursday, August 1, 7 - 10 pm 400 points

Extra credit
– CS background survey on Canvas. 10 points

– course survey completion, 10 points

210 + 400 + 400 + 10 + 10 = 1030
Programming Assignments capped at 200 pts

– 30 points of “slack”, including extra credit

No points added! Grades based on 1000 points, not 1030

Final point total = min(200, sum of points on programs +
background survey completion + instructor end of course
survey) + midterm exam score + final exam score

Letter Grades
Final grade determined by final point total

>= 925 -> A

900 - 924 -> A-

875 - 899 -> B+

825 - 874 -> B

800 - 824 -> B-

775 - 799 -> C+

725 - 774 -> C

700 - 724 -> C-

675 - 699 -> D+

625 - 674 -> D

600 - 624 -> D-

<= 599 -> F

In Class Exercises - Grade Bump
Recall: Final point total = min(200, sum of points on

programs + background survey completion + instructor

end of course survey) + midterm exam score + final exam

score

Each lecture shall have an in-class programming exercise. 21

total. Completing these may help you get bumped to the next

higher grade if you are close to a cutoff.

1 point added for every 2 exercises completed with

reasonable effort
– rounded up

For example, you end up with 893 points per the formula

above. You complete 14 or more of the 21 in class

exercises with a reasonable attempt. You grade shall be

bumped from B+ to A-.

CS303e 12

Assignments
Start out simple but get more challenging

Individual – do your own work

Programs checked automatically with

plagiarism detection software, MOSS

Turn in the right thing - correct name, correct

format or you will lose points / slip days

Slip days

– 8 for term, max 1 per assignment

– don’t use frivolously

Graded on correctness and program hygiene

(style, best practices), typical 60% / 40% split
13CS303e

http://www.cs.utexas.edu/~scottm/cs303e/Assignments/index.htm

Getting Help

Post to Ed (link on Canvas).

– can make anonymous to other students

– can post to instructors only

– do not post more than 2 lines of code on a

public post

Help Hours

– check schedule

– Most help hours in person in GDC 3.202

– A few help hours via Zoom, check the Canvas

course page and the Zoom tab for links

CS303e 14

https://cs303e.utcshelphours.com/view

15

Succeeding in the Course

Randy Pausch,
CS Professor at CMU said:

"When I got tenure a year
early at Virginia, other
Assistant Professors would come up to me and say, 'You
got tenure early!?!?! What's your secret?!?!?' and I
would tell them, 'Call me in my office at 10pm on Friday
night and I'll tell you.' "

 “A lot of people want a shortcut. I find the best
shortcut is the long way, which is basically two words:
work hard.”

Succeeding in the Course - Meta
“Be the first penguin”

Randy Pausch

– Ask questions!!!

– lecture, Piazza, help hours

“It is impossible to be perfect”

Captain Symons

– Mistakes are okay.

– That is how we learn.

– Trying to be perfect means

not taking risks.

– no risks, no learning
CS303e 16

17

Succeeding in the Course - Concrete

Whole course is cumulative!

Material builds on itself

– failure to understand a concept leads to bigger

problems down the road, so …
do the readings

come to class

start on assignments early

get help from the teaching staff when you get stuck on
an assignment

participate on the class discussion group

ask questions and get help when needed

DO MORE PRACTICE PROBLEMS -> Book, CodingBat,
Professor Bulko's Site

https://codingbat.com/python

Succeeding in the Course

Cannot succeed via memorization.

The things I expect you to do are not rote.

– programming is a skill

– you cannot memorize your way through the

material and the course

Learn by doing.

If you are brand new to programming or

have limited experience I strongly

recommend you do lots and lots of

practice problems.
CS303e 18

CS303E: Elements of Computers and Programming

Python

Mike Scott

Department of Computer Science

University of Texas at Austin

Adapted from Dr. Bill Young's Slides

Last updated: May 23, 2023

CS303E Slideset 1: 2 Python

Some Thoughts about Programming

“The only way to learn a new programming language is by writing

programs in it.” –B. Kernighan and D. Ritchie

"Computers are good at following instructions, but not at reading

your mind." –D. Knuth

"Programming is not a spectator sport." - Bill Young

Program:

n. A magic spell cast over a computer allowing it to turn

one’s input into error messages.

tr. v. To engage in a pastime similar to banging one’s head

against a wall, but with fewer opportunities for reward.

CS303E Slideset 1: 3 Python

What is Python?

Python is a high-level programming language developed by

Guido van Rossum in the Netherlands in the late 1980s. It

was released in 1991.

Python has twice

received recognition

as the language with

the largest growth

in popularity for the

year (2007, 2010).

It’s named after the

British comedy

troupe Monty

Python.

CS303E Slideset 1: 4 Python

What is Python?

Python is a simple but powerful scripting language. It has

features that make it an excellent first programming language.

• Easy and intuitive mode of interacting with the system.

• Clean syntax that is concise. You can say/do a lot with

few words.

• Design is compact. You can carry the most

important language constructs in your head.

• There is a very powerful library of useful functions
available.

You can be productive quite quickly. You will be spending more

time solving problems and writing code, and less time grappling

with the idiosyncrasies of the language.

CS303E Slideset 1: 5 Python

What is Python?

Python is a general purpose programming language.

That means you can use Python to write code for any

programming tasks.

• Python was used to write code

for: the Google search engine

• mission critical projects at NASA

• programs for exchanging financial transactions at

the NY Stock Exchange

• the grading scripts for this class

CS303E Slideset 1: 6 Python

What is Python?

Python can be an object-oriented programming language.
Object-oriented programming is a powerful approach to

developing reusable software. More on that later!

Python is interpreted, which means that Python

code is translated and executed one statement at a

time.

This is different from other languages such as C which are

compiled, the code is converted to machine code and

then the program can be run after the compilation is

finished.

CS303E Slideset 1: 7 Python

The Interpreter

Actually, Python is always translated into byte code, a lower level

representation.

The byte code is then interpreted by the Python Virtual Machine.

CS303E Slideset 1: 8 Python

Getting Python

To install Python on your personal computer / laptop, you can

download it for free at: www.python.org/downloads

There are two major versions: Python 2 and Python 3.

Python 3 is newer and is not backward compatible with

Python 2. Make sure you’re running Python 3.8.

It’s available for Windows, Mac OS, Linux.

If you have a Mac, it may already be pre-installed.

It should already be available on most computers on campus.

It comes with an editor and user interface called IDLE.

I strongly recommend downloading and installing the

PyCharm, Educational version, IDE.

http://www.python.org/downloads

CS303E Slideset 1: 9 Python

A Simple Python Program: Interactive Mode

This illustrates using Python in interactive mode from the

command line. Your command to start Python may be different.

Here you see the prompt for the OS/command loop for the

Python interpreter read, eval, print loop.

CS303E Slideset 1: 10 Python

A Simple Python Program: Script Mode

Here’s the “same” program as I’d be more likely to write it. Enter

the following text using a text editor into a file called, say,

MyFirstProgram.py. This is called script mode.

In file my_first_program.py:

CS303E Slideset 1: 11 Python

A Simple Python Program

This submits the program in file my_first_program.py to

the Python interpreter to execute.

This is better, because you have a file containing your program and

you can fix errors and resubmit without retyping a bunch of stuff.

CS303E Slideset 1: 12 Python

Aside: About Print

If you do a computation and want to display the result use the

print function.

You can print multiple values with one print statement:

Notice that if you’re computing an expression in interactive mode,
it will display the value without an explicit print.

Python will figure out the type of the value and print it

appropriately. This is very handy when learning the basics

of computations in Python.

CS303E Slideset 1: 13 Python

Another aside: Binary Numbers, Base 2 Numbers

▪ The vast majority of computer systems use
digital storage

▪ Some physical phenomena that is interpreted
to be a 0 or 1

▪ abstraction, pretending something is different,
simpler, than it really is

▪ also known as binary representations
▪ 1 bit -> 1 binary digit, a 0 or a 1
▪ 1 byte -> 8 bits
▪ binary numbers, base 2 numbers

CS303E Slideset 1: 14 Python

Base 2 Numbers

▪ 537210

▪ = (5 * 1,000) + (3 * 100) + (7 * 10) + (2 * 1)

▪ = (5 * 103)+ (3 * 102)+ (7 * 101)+ (2 * 100)
▪ Why do we use base 10? 10 fingers?
▪ Choice of base is somewhat arbitrary
▪ In computing we also use base 2, base 8, and

base 16 depending on the situation
▪ In base 10, 10 digits, 0 - 9
▪ In base 2, 2 digits, 0 and 1

CS303E Slideset 1: 15 Python

Base 2 Numbers

▪ 10110112

▪ = (1 * 64) + (0 * 32) + (1 * 16) + (1 * 8) +
(0 * 4) + (1 * 2) + (1 * 1) = 91

▪ = (1 * 26) + (0 * 25) + (1 * 24) + (1 * 23) +
(0 * 22) + (1 * 21) + (1 * 20) = 91

▪ Negative numbers and real numbers are
typically stored in a non-obvious way

▪ If the computer systems only stores 0s and 1s
how do we get digital images, characters,
colors, sound, …

▪ Encoding

CS303E Slideset 1: 16 Python

Encoding

▪ Encoding is a system or standard that dictates
what "thing" is representing by what number

▪ Example ASCII or UTF-8
▪ This number represents this character
▪ First 128 numbers of ASCII and UTF-8 same
▪ 32 -> space character
▪ 65 -> capital A
▪ 97 -> lower case a
▪ 48 -> digit 0

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/UTF-8

CS303E Slideset 1: 17 Python

Computer Memory

▪ Recall, 1 bit -> a single 0 or 1
▪ 1 byte = 8 bits
▪ A typical laptop or desktop circa 2023
▪ … has 4 to 32 Gigabytes of RAM, also known

as main memory.
▪ 1 Gigabyte -> 1 billion bytes

▪ The programs that are running store their
instructions and data (typically) in the RAM

▪ … have 100s of Gigabytes up to several
Terabytes (trillions of bytes) in secondary
storage. Long term storage of data, files

▪ Typically spinning disks or solid state drives.

CS303E Slideset 1: 18 Python

The Framework of a Simple Python Program

Define your program in file
Filename.py:

def main () :

Python s t a t e m e n t
Python s t a t e m e n t
Python s t a t e m e n t

. . .
Python s t a t e m en t
Python s t a t e m e n t
Python s t a t e m e n t

main ()

To run it:

> python file_name.py

Defining a function called main.

These are the instructions that make up

your program. Indent all of them the

same amount (usually 4 spaces).

This says to execute the function main.

This submits your program in

file_name.py to the Python

interpreter.

CS303E Slideset 1: 19 Python

Aside: Running Python From a File

Typically, if your program is in file hello.py, you can run your

program by typing at the command line:

> python hello.py

You can also create a stand alone script. On a Unix / Linux

machine you can create a script called hello.py containing the

first line below (assuming that’s where your Python

implementation lives):

! / l us r / bi n/ pyt hon3
The line above may vary based on your system
pr i nt ('Hello World!')

CS303E Slideset 1: 20 Python

Program Documentation

Documentation refers to comments included within a source code

file that explain what the code does.

Include a file header: a summary at the beginning of each file

explaining what the file contains, what the code does, and

what key feature or techniques appear.

You shall always include your name, email, grader, and

a brief description of the program.

File: <NAME OF FILE>
Description: <A DESCRIPTION OF YOUR PROGRAM>
Assignment Number: <Assignment Number, 1 - 13>
#
Name: <YOUR NAME>
EID: <YOUR EID>
Email: <YOUR EMAIL>
Grader: <YOUR GRADER'S NAME Carolyn OR Emma or Ahmad>
#
On my honor, <YOUR NAME>, this programming assignment is my own work
and I have not provided this code to any other student.

CS303E Slideset 1: 21 Python

Program Documentation

Comments shall also be interspersed in your code:
Before each function or class definition (i.e., program

subdivision);

Before each major code block that performs a significant task;
Before or next to any line of code that may be hard to
understand.

sum = 0
s um t he i nt e ge r s [s t ar t . . . end]
f or i i n r ange (s t ar t , end + 1) :

sum += i

CS303E Slideset 1: 22 Python

Don’t Over Comment

Comments are useful so that you and others can understand your

code. Useless comments just clutter things up:

x = 1
y = 2

ass i gn 1 to x
ass i gn 2 to y

CS303E Slideset 1: 23 Python

Programming Style

Every language has

its own unique

syntax and style.

This is a C

program.

Good programmers

follow certain

conventions to

make programs

clear and easy to

read, understand,

debug, and

maintain. We have

conventions in

303e. Check the

assignment page.

i nc l ude < s t di o . h>

/ * p r i n t t a b l e o f Fa h r e n h e i t to C e l s i u s
[C = 5/ 9(F- 32)] f or f ahr = 0 , 20 , . . . ,

300 * /

mai n()
{

i nt f ahr , c e l s i us ;
i nt l ower , upper , s t e p;

lower = 0 ; / * low l i m i t o f t a b l e * /
upper = 3 0 0 ; / * high l i m i t o f t a b l e * /
s t ep = 2 0 ; / * s t ep s i z e * /
f a h r = l o w e r ;
whi l e (f ahr <= uppe r) {

c e l s i us = 5 * (f ahr - 32) / 9;
pr i nt f (" %d\t %d\n" , f ahr , c e l s i us) ;
f ahr = f ahr + s t e p;

}
}

CS303E Slideset 1: 24 Python

Programming Style

Some important Python programming conventions:

Follow variable and function naming conventions.

Use meaningful variable/function names.

Document your code effectively.

Each level indented the same (4 spaces).

Use blank lines to separate segments of code inside functions.

2 blank lines before the first line of function (the function header) and

after the last line of code of the function

We’ll learn more elements of style as we go.

Check the assignments page for more details.

https://www.cs.utexas.edu/~scottm/cs303e/Assignments/index.htm

CS303E Slideset 1: 25 Python

Errors:
Syntax

Remember: “Program: n. A magic spell cast over a computer allowing it

to turn one’s input into error messages.”

We will encounter three types of errors when developing

our Python program.

syntax errors: these are ill-formed Python and caught by the interpreter

prior to executing your code.

>>> 3 = x
Fi l e " < s t di n >" , l i ne 1

Synt axEr r or : c an’ t as s i gn t o
l i t e r al

These are typically the easiest to find and fix.

CS303E Slideset 1: 26 Python

Errors: Runtime

runtime errors: you try something illegal while your code is

executing

>>> x = 0
>>> y = 3
>>> y / x
Tr ac e bac k (mos t r e c e nt c al l l as t) :

Fi l e " < s t di n >" , l i ne 1 , i n < modul e >

Ze r oDi vi s i onEr r or : di vi s i on by zer o

CS303E Slideset 1: 27 Python

Almost Certainly It’s Our Fault!

At some point we all say: “My program is obviously right. The

interpreter / Python must be incorrect / flaky / and i t hates me.”

"As soon as we started programming, we found out
to our surprise that it wasn't as easy to get programs
right as we had thought. Debugging had to be
discovered. I can remember the exact instant when
I realized that a large part of my life from
then on was going to be spent in finding
mistakes in my own programs."

-Sir Maurice V Wilkes

https://en.wikipedia.org/wiki/Maurice_Wilkes

CS303E Slideset 1: 28 Python

Errors: Logic

logic errors: C a l c u l a t e 6 ! (6 * 5 * 4 * 3 * 2 * 1)
your program runs but returns an incorrect result.

>>> prod = 0
>>> f o r x in r a n g e (1 , 6) :
. . . prod *= x
>>> pr i nt (pr od)
0

This program is syntactically fine and runs without error. But it

probably doesn’t do what the programmer intended; it always

returns 0 no matter the values in range. How would you fix it?

Logic errors are typically the hardest errors to find and fix.

CS303E Slideset 1: 29 Python

Try It!

“The only way to learn a new programming language is by writing

programs in it.” –B. Kernighan and D. Ritchie

Python is wonderfully accessible. If you

wonder whether something works or is legal,

just try it out.

Programming is not a spectator sport!

Write programs! Do exercises!

CS303E: Elements of Computers and Programming

Simple Python

Mike Scott

Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: June 5, 2023

CS303E Slideset 2: 2CS303E Slideset 2: 2 Simple Python

"Once a person has understood
the way variables are used in

programming, they have
understood the quintessence of

programming."

-Professor Edsger W. Dijkstra

CS303E Slideset 2: 3CS303E Slideset 2: 3 Simple Python

Simple Program: Body Mass Index

• Body Mass Index or BMI is a quick calculation based

on height and mass (weight) used by medical

professionals to broadly categorize people .

• Formula:

• Quick tool to get a rough estimate if someone is

underweight, normal weight, overweight, or obese

• Write an interactive program that gets the name,

height, and weight of a user and calculates BMI.

CS303E Slideset 2: 4CS303E Slideset 2: 4 Simple Python

Assignment Statements

An assignment in Python has form:

This means that variable is assigned value. i.e., after the

assignment, variable "contains" value.

The equals sign is NOT algebraic equality.

It causes an action! The expression on the right is evaluated

and the result is assigned to the variable on the left.

>>> x = 1 7 . 2
>>> y = -39
>>> z = x * y - 2
>>> p r i n t (z)
- 6 7 2 . 8

<variable> = <expression>

CS303E Slideset 2: 5CS303E Slideset 2: 5 Simple Python

Variables

A variable is a named memory location (in the RAM typically)

used to store values. We’ll explain shortly how to name variables.

Unlike some programming languages, Python variables do not have

fixed data types.

/ / Ccode
i n t x = 1 7 ;
x = 5 . 3 ;

/ / v a r i a b l e x has type i n t
/ / i l l e g a l

Python code
x = 17 # x g e t s i n t value 17
x = 5 . 3 # x g e t s f l o a t value 5 . 3

A variable in Python actually holds a pointer to a class object,

rather than the object itself.

A variable exists at a particular address. Each memory

location (4 or 8 bytes typically circa 2021) has an address or

location. A number that specifies that location in memory

CS303E Slideset 2: 6CS303E Slideset 2: 6 Simple Python

What's a Pointer?

• Also called references, but pointers and references

have differences that are beyond the scope of this

class.

• A variable exists at a particular address. Each

memory location (4 or 8 bytes typically circa

2021) has an address or location. A number that

specifies that location in memory.

• Just like the address of a house or

building on a street

• So a variable is just a name in our program for a

spot in the RAM that stores a value.

• But Python (for reasons we don't want to talk

about now) has a bit of " bureaucracy" when a

variable is bound to a value

x = 12

let's assume the variable x is at memory

location 121237

121237
121238
121239
121240

121240

12

CS303E Slideset 2: 7CS303E Slideset 2: 7 Simple Python

Types in Python

Is it correct to say that there are no types in Python?

Yesand no. It is best to say that Python is "dynamically typed."

Variables in Python are untyped, but values have associated data

types (actually classes). In some cases, you can convert one type to

another.

Most programming languages assign types to both variables and

values. This has its advantages and disadvantages.

What do you think the advantages are of requiring variables to
declare the data type of a variable?

CS303E Slideset 2: 8CS303E Slideset 2: 8 Simple Python

Variables and Assignments

You can create a new variable in Python by assigning it a value.

You don’t have to declare variables' types, as in many other

programming languages.

>>> x = 3 # creates x, assigns int
>>> print(x)
3
>>> x = " abc" # re - assigns x a string
>>> print(x)
abc
>>> x = 3.14 # re - assigns x a float
>>> print(x)
3.14
>>> y = 6 # creates y, assigns int
>>> x * y # uses x and y
18.84

CS303E Slideset 2: 9CS303E Slideset 2: 9 Simple Python

Meaning of a Variable

x = 17
y = x + 3
z = w

Defines and i n i t i a l i z e s x
Defines y and i n i t i a l i z e s y
Runtime error i f w undefined

This code defines three variables x, y and z. Notice that on the left

hand side of an assignment the variable is created (if it doesn’t

already exist), and given a value.

On the right hand side of an assignment is an expression.

When the assignment statement is run the expression shall be

evaluated and the resulting value will be bound to the variable

on the left hand side.

CS303E Slideset 2: 10CS303E Slideset 2: 10 Simple Python

Naming Variables

Below are (most of) the rules for naming variables:

Variable names must begin with a letter or underscore (_)

character.

After that, use any number of letters, underscores, or digits.

Case matters: "score" is a different variable than "Score."

You can’t use reserved words; these have a special meaning to

Python and cannot be variable names.

CS303E Slideset 2: 11CS303E Slideset 2: 11 Simple Python

Python Keywords
Variables

Python Reserved Words.

Also known as Keywords.
and, as, assert, break, class, continue, def, del,

elif, else, except, False, finally, for, from,

global, if, import, in, is, lambda, nonlocal,

None, not, or, pass, raise, return, True, try,

while, with, yield

IDLE, PyCharm, and other IDEs display reserved

words in a different color to help you recognize

them.

https://docs.python.org/3.3/reference/lexical_analysis.html#keywords

CS303E Slideset 2: 12CS303E Slideset 2: 12 Simple Python

Not Reserved, but avoid using names of common functions

• A function is a subprogram.

• Python has many built in functions we will use.

• Function names like print are not reserved

words. But using them as variable names is a

very bad idea because it redefines them.

CS303E Slideset 2: 13CS303E Slideset 2: 13 Simple Python

Naming Variables

>>> ___ = 10
>>> _123 = 11
>>> ab_cd = 12
>>> ab|c = 13

not standard but l e g a l

a l s o not standard
f i n e
i l l e g a l c h a r a c t e r

Fi l e " < s t di n >" , l i ne 1
Synt axEr r or : c an ’ t as s i gn t o ope r a t or

a s s e r t i s r es er ved>>> a s s e r t = 14
Fi l e " < s t di n >" , l i ne 1

a s s e r t = 14
ˆ

Synt axEr r or : i nval i d s ynt ax
>>> max_val ue = 100
>>> p r i n t = 8

good
l e gal but i l l - advi s e d

>>> pr i nt (" abc ") # we ’ ve r e de f i ne d pr i nt
Traceback (most r e c e n t c a l l l a s t) :

Fi l e " < s t di n >" , l i ne 1 , i n < modul e >
Type Er r or : ’ i nt ’ obj e c t i s not c a l l abl e

CS303E Slideset 2: 14CS303E Slideset 2: 14 Simple Python

Naming Variables

In addition to the rules, there are also some conventions that

programmers follow and we expect you to follow in CS303e:

Variable names shall begin with a lowercase letter.

Choose meaningful names that describe how the variable is

used. This helps with program readibility.

Use maxrather than m.

Use num_columns rather than c.

Use underscores to separate multiple words

loop variables are often i, j, etc.

f o r i in r a n g e (1 , 2 0) :
p r i n t (i)

rather than:

f o r some_value in r a n g e (1 , 2 0) :

p r i n t (s o m e _ v a l u e)

CS303E Slideset 2: 15CS303E Slideset 2: 15 Simple Python

Common Python Data Types

CS303E Slideset 2: 16CS303E Slideset 2: 16 Simple Python

What is a Data Type?

A data type is a categorization of values.

Data Type Description Example

int integer. An immutable number of
unlimited magnitude

42

float A real number. An immutable floating
point number, system defined precision

3.1415927

str string. An immutable sequence of
characters

'Wikipedia'

bool boolean. An immutable truth value True, False

tuple Immutable sequence of mixed types. (4.0, 'UT', True)

list Mutable sequence of mixed types. [12, 3, 12, 7, 6]

set Mutable, unordered collection, no
duplicates

{12, 6, 3}

dict dictionary a.k.a. maps, A mutable group of
(key, value pairs)

{'k1': 2.5, 'k2': 5}

Others we likely won't use in 303e:
complex, bytes, frozenset

CS303E Slideset 2: 17CS303E Slideset 2: 17 Simple Python

The type Function

>>> x = 17
>>> t ype (x)
< c l as s ’ i nt ’ >
>>> y = - 2 0 . 9
>>> t ype (y)
< c l as s ’ f l oat ’ >
>>> t ype (w)
Tr ac e bac k (mos t r e c e nt c al l l as t) :

Fi l e " < s t di n >" , l i ne 1 , i n < modul e >
Name Er r or : name ’ w’ i s not de f i ne d
>>> l s t = [1 , 2 , 3]
>>> t ype (l s t)
< c l as s ’ l i s t ’ >
>>> t ype (20)
< c l as s ’ i nt ’ >
>>> t ype ((2 , 2. 3))
< c l as s ’ t upl e ’ >
>>> t ype (’ abc ’)
< c l as s ’ s t r ’ >
>>> t ype ({ 1 , 2 , 3})
< c l as s ’ s e t ’ >
>>> t ype (pr i nt)
< c l as s ’ bui l t i n_ f unc t i on_or _me t hod’ >

• Class is another
name for data type.

• Data type is a
categorization
or classification

• "What kind of thing
is the value this
variable refers to?"

CS303E Slideset 2: 18CS303E Slideset 2: 18 Simple Python

Three Common Data Types

Three data types we will use in many of our early Python programs are:

int: signed integers (whole numbers)

Computations are exact and of unlimited size

Examples: 4, -17, 0

float: signed real numbers (numbers with decimal points) Large

range, but fixed precision

Computations are approximate, not exact Examples:

3.2, -9.0, 3.5e7

str: represents text (a string)

We use it for input and output We’ll see

more uses later Examples: "Hello, World!",

’abc’

These are all immutable. The value cannot be altered.

CS303E Slideset 2: 19CS303E Slideset 2: 19 Simple Python

Immutable

• It may appear some
values are mutable
• they are not
• rather variables

are mutable and
can be bound
(refer to)
different values

• Note, how the id of x
(similar to its address)
has changed

CS303E Slideset 2: 20CS303E Slideset 2: 20 Simple Python

x 37

x = 37

x = x + 10
substitute in the value x is referring to
x = 37 + 10
evaluate the expression
x = 47
so now … x

37

47

CS303E Slideset 2: 21CS303E Slideset 2: 21 Simple Python

Mutable vs. Immutable

An immutable value is one that cannot be changed by the

programmer after you create it; e.g., numbers, strings, etc.

A mutable values is one that can be changed; e.g., sets, lists, etc.

CS303E Slideset 2: 22CS303E Slideset 2: 22 Simple Python

What Immutable Means

• An immutable object is one that cannot be changed by

the programmer after you create it;

e.g., numbers, strings, etc.

• It also means that there is typically only one copy of the

object in memory.

• Whenever the system encounters a new reference to 17, say, it

creates a pointer (references) to the already stored value 17.

• Every reference to 17 is actually a pointer to the

only copy of 17 in memory. Ditto for "abc".

• If you do something to the object that yields a new value

(e.g., uppercase a string), you’re actually creating a

new object, not changing the existing one.

CS303E Slideset 2: 23CS303E Slideset 2: 23 Simple Python

Immutability

x holds a p o i n t e r to the o b j e c t 17
so does y
x and y point to the same o b j e c t

the unique id a s s o c i a t e d with 17

>>> x = 17
>>> y = 17
>>> x i s y
True
>>> i d(x)
10915008
>>> i d(y)
10915008
>>> s1 = " a b c " # c r e a t e s a new s t r i n g
>>> s 2 = " ab" + " c " # c r e at e s a new s t r i ng (?)

ac t ua l l y i t doe s n ’ t !

uppercase s2

t h i s i s a new s t r i n g

>>> s1 i s s2
True
>>> i d(s 1)
140197430946704
>>> i d(s 2)
14019743094670 4
>>> s 3 = s 2 . uppe r ()
>>> pr i nt (s 3)
ABC
>>> i d(s 3)
140197408294088

CS303E Slideset 2: 24CS303E Slideset 2: 24 Simple Python

Let’s Take a Break

CS303E Slideset 2: 25CS303E Slideset 2: 25 Simple Python

How is Data Stored?

Fundamental fact: all data in the computer is stored as a series

of bits (0s and 1s) in the memory.

That’s true whether you’re storing

numbers, letters, documents,

pictures, movies, sounds, programs,

etc. Everything!

A key problem in designing any

computing system or application is

deciding how to represent the data

we care about as a sequence of bits.

Review from chapter 1

CS303E Slideset 2: 26CS303E Slideset 2: 26 Simple Python

How is Data Stored: Digital Images

For example, images can be stored digitally in any of the following

formats (among others):

JPEG: Joint Photographic Experts Group

PNG: Portable Network Graphics

GIF: Graphics Interchange Format

TIFF: Tagged Image File

PDF: Portable Document Format

EPS: Encapsulated Postscript

Most of the time, wewon’t needto know how data is stored in the

memory. The computer will take care of that for us.

Standards?

https://xkcd.com/927/

CS303E Slideset 2: 27CS303E Slideset 2: 27 Simple Python

How is Data Stored?

The memory can be thought of as a big array of bytes, where a

byte is a sequence of 8 bits. Each memory address has an address

(0..maximum address) and contents (8 bits).

...

...

10000

10001

10002

10003

...

...

Encoding for character ’3’

Encoding for character ’0’

Encoding for character ’3’

Encoding for character ’E’

A byte is the smallest unit of storage a programmer can address.

We say that the memory is byte-addressable.

Contemporary computer systems may have addressability of 4 or 8

bytes instead of single bytes,

00110011

5

00110011
01000101

00110000

CS303E Slideset 2: 28CS303E Slideset 2: 28 Simple Python

Representation Example: ASCII

The standard way to represent characters in memory is ASCII. The

following is part of the ASCII (American Standard Code for

Information Interchange) representation:

The standard ASCII table defines 128 character codes (from 0 to

127), of which, the first 32 are control codes (non-printable), and

the remaining 96 character codes are printing characters.

CS303E Slideset 2: 29CS303E Slideset 2: 29 Simple Python

How is Data Stored

• Characters or small numbers can be stored in one byte.

If data can’t be stored in a single byte (e.g., a large

number), it must be split across a number of adjacent

bytes in memory.

• The way data is encoded in bytes varies

depending on: the data type

the specifics of the computer

• Most of the time, wewon’t need to know how data is stored

in the memory. The computer will take care of that for us.

CS303E Slideset 2: 30CS303E Slideset 2: 30 Simple Python

Formats of Data Types

• It would be nice to look at the character string

"25" and do arithmetic with it.

• However, the int 25 (a number) is represented in

binary in the computer by: 00011001. Why?

• And the string "25" (two characters) is represented by:

00110010 00110101. Why?

• f loat numbers are represented in an even more

complicated way, since you have to account for an

exponent. (Think "scientific notation.") So the number

25.0 (or 2.5 ∗101) is represented in yet a third way.

CS303E Slideset 2: 31CS303E Slideset 2: 31 Simple Python

Data Type Conversion - Using Built in Functions

• Python provides functions to explicitly convert numbers from

one type to another:

f loa t (< number, variable, string >)

in t (<number, variable, string >)

s t r (<number, variable >)

• Note: in t truncates, meaning it throws away the decimal

point and anything that comes after it. If you need to round

to the nearest whole number, use:

round (<number or variable >)

CS303E Slideset 2: 32CS303E Slideset 2: 32 Simple Python

Conversion Examples

t r u n c a t e s

round to even

round to even

f l oat (17)
1 7 . 0
>>> s t r (17)
’ 17 ’
>>> i nt (17 . 75)
17
>>> s t r (17 . 75)
’ 17 . 75 ’
>>> i nt (" 17 ")
17
>>> f l oat (" 17 ")
1 7 . 0
>>> r ound(17 . 1)
17
>>> r ound(17 . 6)
18
r ound(17 . 5)
18
>>> r ound(18 . 5)
18

CS303E Slideset 2: 33CS303E Slideset 2: 33 Simple Python

Conversion Examples

If you have a string that you want to (try to) interpret as a

number, you can use eval.

eval (" 17 + 3")

>>> eval (" 17 ")
17
>>>
20
>>> eval (17 + 3)
Tr ac e bac k (mos t r e c e nt c al l l as t) :

Fi l e " < s t di n >" , l i ne 1 , i n < modul e >
Type Er r or : eval () ar g 1 mus t be a s t r i ng ,

bytes or code o b j e c t

What was wrong with the last example?

CS303E Slideset 2: 34CS303E Slideset 2: 34 Simple Python

Be Cautious Using eval

• Using the function eval is considered dangerous, especially

when applied to user input.

• eval passes its argument to the Python interpreter, and a

malicious (or careless) user could input a command string

that could:

delete all of your files,

take over your machine, or

some other horrible thing.

• Use i n t () or f l oa t () is you want to convert a string

input into one of these types.

CS303E Slideset 2: 35CS303E Slideset 2: 35 Simple Python

Arithmetic Operations

Here are some useful operations you can perform on numeric data

types.

Name Meaning Example Result

+ Addition 34 + 1 35
- Subtraction 34.0 - 0.1 33.9
* Multiplication 300 * 30 9000
/ Float division 1 / 2 0.5
/ / floor division 1 // 2 0
** Exponentiation 4 ** 0.5 2.0

% Remainder 20 % 3 2

(x % y) is often referred to as "x mod y"

CS303E Slideset 2: 36CS303E Slideset 2: 36 Simple Python

Integer Division

• Floor Division specified
with the // operator

• … goes to the floor on
a number line

• Discards the
remainder from the
division operation.

CS303E Slideset 2: 37CS303E Slideset 2: 37 Simple Python

Modulo Operator

• % is the Modulo
operator

• x % y evaluates to the
remainder of x // y

• "The floor division and
modulo operators are
connected by the
following identity:"

x == (x // y) * y + (x % y)

CS303E Slideset 2: 38CS303E Slideset 2: 38 Simple Python

Simple Program: Body Mass Index

• Body Mass Index or BMI is a quick calculation based

on height and mass (weight) used by medical

professionals to broadly categorize people .

• Formula:

• Quick tool to get a rough estimate if someone is

underweight, normal weight, overweight, or obese

• Write an interactive program that gets the name,

height, and weight of a user and calculates BMI.

CS303E Slideset 2: 39CS303E Slideset 2: 39 Simple Python

Simple Input

• Obtain input from the user by calling a built in

Python function named input.

• Just like we can send information (arguments) to

print, we can send information (again, arguments)

to input.
• The argument is a prompt that will be displayed.

• Trying reading a height and weight from the user

and calculating BMI.

• What happens?

• More built in functions to convert from String data

type to int or float data type. int(), float()

CS303E Slideset 2: 40CS303E Slideset 2: 40 Simple Python

Simple Program: Pythagorean Triples

In file pythagoreanTriple.py:

" " " The s i de s of a r i ght t r i angl e s at i s f y t he r e l a t i on:
a * * 2 + b* * 2 = c * * 2 .

Tes t whether the t h r e e i n t e g e r s in v a r i a b l e s a , b , c
f or m a pyt hagor e an t r i pl e , i . e . , s at i s f y t hi s r e l a t i on.

" " "

a = 3
b = 4
c = 5
ans = (a * * 2 + b* * 2 == c * * 2)
pr i nt (" a : " , a , " b: " , b, " c : " , c , \

" i s " i f ans e l s e " i s not " , \
" a pyt hagor e an t r i pl e ")

> pyt hon pyt hagor e anTr i pl e . py
a : 3 b : 4 c : 5 i s a pythagorean t r i p l e

Note, print can take multiple values.
Default separator is a space,
default end is a newline

CS303E Slideset 2: 41CS303E Slideset 2: 41 Simple Python

Augmented Assignment Operators

Python (like C, Java, C++…) provides a shorthand syntax for

some common assignments:

i += j functionally the same as i = i + j
i -= j functionally the same as i = i - j
i *= j functionally the same as i = i * j
i /= j functionally the same as i = i / j
i //= j functionally the same as i = i / / j
i %= j functionally the same as i = i % j

i **= j functionally the same as i = i ** j

functionally same as x = x * 3 . 7
>>> x = 2 . 4
>>> x *= 3 . 7
>>> pr i nt (x)
8 . 8 8

CS303E Slideset 2: 42CS303E Slideset 2: 42 Simple Python

Mixed-Type Expressions

Most arithmetic operations behave as you would expect for

numeric data types.

Combining two floats results in a float.

Combining two ints results in an int (except for /).

Use // for integer division.

Dividing two ints gives a float. E.g., 2 / 5 yields 2.5.

Combining a float with an int usually yields a float.

Python will figure out what the result will be and return a value of

the appropriate data type.

CS303E Slideset 2: 43CS303E Slideset 2: 43 Simple Python

Mixed Type Expressions

>>> 5 * 3 - 4 * 6 # (5 * 3) - (4 * 6)

-9

>>> 4.2 * 3 - 1.2

11 .400000000000002 # approximate result

>>> 5 / / 2 + 4 # integer division

6

>>> 5 / 2 + 4 # float division

6.5

CS303E Slideset 2: 44CS303E Slideset 2: 44 Simple Python

Special Assignment Statements

Simultaneous assignments:

m, n = 2 , 3

means the same as:

m = 2
n = 3

With the caveat that these

happen at the same time.

What does the following do?

i , j = j , i

Multiple assignments:

i = j = k = 1

means the same as:

k = 1
j = k
i = j

Note that these happen right to

left.

CS303E Slideset 2: 45CS303E Slideset 2: 45 Simple Python

Advice on Programming

Think before you code!

Think before you code!

Think before you code!

Don’t jump right into writing code.

Think about the overall process of solving your problem;

write it down.

Refine each part into subtasks.

Subtasks may require further refinement.

Code and test each subtask before you proceed.

Add print statements to view intermediate results.

CS303E Slideset 2: 46CS303E Slideset 2: 46 Simple Python

Advice on Programming

Software development is typically done via an iterative process.

You’ll do well to follow it, except on the simplest programs.

CS303E Slideset 3: 1 Conditionals and Boolean Logic

CS303E: Elements of Computers and Programming

Conditionals and Boolean Logic

Mike Scott

Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: May 31, 2023

CS303E Slideset 3: 2 Conditionals and Boolean Logic

Booleans

So far we’ve been considering straight line code, meaning

executing one statement after another.

a.k.a. sequential flow of control

But often in programming, you need to ask a question, and do

different things based on the answer.

Boolean values are a useful

way to refer to the answer to a

yes/no question.

The Boolean literal values are

the values: True, False.

A Boolean expression

evaluates to a Boolean value.

CS303E Slideset 3: 3 Conditionals and Boolean Logic

Using Booleans

>>> import math
>>> b = (30. 0 < mat h. s qr t (1024))
>>> p r i n t (b)
True

s ta tement
boolean ex pr ess i on

>>> x = 1
>>> x < 0
F a l s e
>>> x >= - 2 # boolean express ion
True
>>> b = (x == 0) # s ta tement c o n t a i n i n g

boolean ex pr ess i on
>>> pr i nt (b)
F a l s e

Booleans are implemented in the bool class.

CS303E Slideset 3: 4 Conditionals and Boolean Logic

Booleans

Internally, Python uses 0 to represent False and anything not 0 to

represent True. You can convert from Boolean to int using the

in t function and from in t to Boolean using the bool function.

CS303E Slideset 3: 5 Conditionals and Boolean Logic

Boolean Context

In a Boolean context—one that expects a Boolean value—False,

0, " " (the empty string), and Noneall is considered False and

any other value is considered True.

>>> bool (" xyz ")
True
>>> bool (0 . 0)
F a l s e
>>> b o o l (" ")
F a l s e
>>> i f 4 : p r i n t (" xyz ") # boolean c o n t e x t
xyz
>>> i f 4. 2: pr i nt (" xyz ")
xyz
>>> i f " ab" : pr i nt (" xyz ")
xyz

This may be confusion but can be very useful in some programming situations.

CS303E Slideset 3: 6 Conditionals and Boolean Logic

Comparison Operators

The following comparison (or relational) operators are

useful for comparing numeric values:

Operator Meaning Example

< Less than x < 0
<= Less than or equal x <= 0
> Greater than x > 0
>= Greater than or equal x >= 0
== Equal to x == 0

!= Not equal to x != 0

Each of these returns a Boolean value, True or False.

What happened
on that last line?

CS303E Slideset 3: 7 Conditionals and Boolean Logic

Caution

Be very careful using “==” when comparing floats, because float

arithmetic is approximate.

What happe ne d?
>>> (1 . 1 * 3 == 3 . 3)
F a l s e
>>> 1 . 1 * 3
3 . 3000000000000003

The problem: converting decimal 1.1 to binary yields a repeating binary

expansion: 1.000110011 . . . = 1.00011. That means it can’t be

represented exactly in a fixed size binary representation.

Thought for the day. Some rational numbers are repeating

decimals in one base, but not in others. 1/3 = 0.33333…10 = 0.13

CS303E Slideset 3: 8 Conditionals and Boolean Logic

One Way If Statements

It’s often useful to be able to perform an action only if some

conditions is true.

General form:

i f boolean-expression:
statement(s)

Note the colon after the

boolean-expression.

All of the statements

controlled by the if must

be indented the same

amount.

i f y ! = 0 :
z = (x / y)

CS303E Slideset 3: 9 Conditionals and Boolean Logic

If Statement Example

In file if_example.py:

Would “ i f x :” have worked instead of “ i f (x ! = 0) : ”?

CS303E Slideset 3: 10 Conditionals and Boolean Logic

Two-way If-else Statements

A two-way If-else statement executes one of two actions,

depending on the value of a Boolean expression.

General form:

i f boolean-expression:
true-case-statement(s)

e l s e :
false-case-statement(s)

Note the colons after the boolean-expression and after the else.

All of the statements in both if and else branches should be

indented the same amount.

CS303E Slideset 3: 11 Conditionals and Boolean Logic

If-else Statement: Example

In file compute_circle_area.py:

CS303E Slideset 3: 12 Conditionals and Boolean Logic

Multiway if-elif-else Statements

If you have multiple options, you can use if-elif-else statements.

General Form:

i f boolean-expression1:
statement(s)

e l i f boolean-expression2:
statement(s)

e l i f boolean-expression3:
. . .

e l s e : # optional
statement(s)

You can have any number of e l i f branches with their conditions.

The else branch is optional.

CS303E Slideset 3: 13 Conditionals and Boolean Logic

Sample Program: Calculate US Federal Income Tax

Simplified US
Federal Income Tax
Table

Source:
https://www.nerdwa
llet.com/article/taxes
/federal-income-tax-
brackets

https://www.nerdwallet.com/article/taxes/federal-income-tax-brackets

CS303E Slideset 3: 14 Conditionals and Boolean Logic

income_tax.py

CS303E Slideset 3: 15 Conditionals and Boolean Logic

Break

Maybe take a break?

CS303E Slideset 3: 16 Conditionals and Boolean Logic

Logical Operators

Python has logical operators (and, or, not) that can be used to

make compound Boolean expressions.

not : logical negation

and : logical conjunction

or : logical disjunction

Operators and and or are always evaluated using short circuit

evaluation.

(x % 100 == 0) and not (x % 400 == 0)

CS303E Slideset 3: 17 Conditionals and Boolean Logic

Truth Tables

And: (A and B) is True

whenever both A is True and B is

True.

A B A and B

False False False

False True False

True False False

True True True

Or: (A or B) is True whenever

either A is True or B is True.

A B A or B
False False False

False True True

True False True

True True True

Not: not A
is True whenever A is False.

A not A

False True
True False

Remember that “is True” really

means “is not False, the empty

string, 0, or None.”

CS303E Slideset 3: 18 Conditionals and Boolean Logic

Short Circuit Evaluation

Notice that (A and B) is False, if A is False; it doesn’t matter what B is.

So there’s no need to evaluate B, if A is False!

Also, (A or B) is True, if A is True; it doesn’t matter what B is.

So there’s no need to evaluate B, if A is True!

>>> x = 13
>>> y = 0
>>> l e gal = (y == 0 or x / y > 0)
>>> p r i n t (l e g a l)
True

Python doesn’t evaluate B if evaluating A is sufficient to determine

the value of the expression. That’s important sometimes.

This is called short circuiting the evaluation.

Stopping early when answer it know.

CS303E Slideset 3: 19 Conditionals and Boolean Logic

Boolean Operators

In a Boolean context, Python doesn’t always return True or False,

just something equivalent. What’s going on in the following?

e q u i va l e n t to F a l s e

coerced to F a l s e

e q u i va l e n t to F a l s e

coerced to F a l s e

same as n o t (F a l s e)

same as n o t (True)

e q u i va l e n t to F a l s e
same as F a l s e or True
e q u i va l e n t to True
coerced to True

>>> " " and 14
’ ’
>>> b o o l (" " and 1 4)
F a l s e
>>> 0 and " abc "
0
>>> bool (0 and " abc ")
F a l s e
>>> not (0 . 0)
True
>>> not (1000)
F a l s e
>>> 14 and " "
’ ’
>>> 0 or " abc "
’ abc ’
>>> bool (0 or ’ abc ’)
True

CS303E Slideset 3: 20 Conditionals and Boolean Logic

Leap Years

Here’s a concise way to do a Leap Year computation:

Note the use of outer parenthesis on the assignment to is_leap_year

to avoid the use of the continuation character, "\".

CS303E Slideset 3: 21 Conditionals and Boolean Logic

Leap Years Revisited

>pyt hon Le apYe ar 2 . py
Enter a y e a r : 2000

Year 2000 i s a leap y e a r.
>pyt hon Le apYe ar 2 . py
Enter a y e a r : 1900

Year 1900 i s not a leap y e a r.
>pyt hon Le apYe ar 2 . py
Enter a y e a r : 2004

Year 2004 i s a leap y e a r.
>pyt hon Le apYe ar 2 . py
Enter a y e a r : 2005

Year 2005 i s not a leap y e a r.

CS303E Slideset 3: 22 Conditionals and Boolean Logic

Conditional Expressions

A Python conditional expression returns one of two values based

on a condition.

Consider the following code:

S e t p a r i t y according to num
i f (num% 2 == 0) :

par i t y = " even"
e l s e :

par i t y = " odd"

This sets variable parity to one of two values, “even” or “odd”.

An alternative is:

par i t y = " e ve n" i f (num % 2 == 0) e l s e " odd"

CS303E Slideset 3: 23 Conditionals and Boolean Logic

Conditional Expression

General form:

expr-1 i f boolean-expr else expr-2

It means to return expr-1 if boolean-expr evaluates to True,

and to return expr-2 otherwise.

f i n d maximum of x and y
max = x i f (x >= y) e l s e y

CS303E Slideset 3: 24 Conditionals and Boolean Logic

Conditional Expression

Use of conditional expressions can simplify your code.

In file test_sort.py:

CS303E Slideset 3: 25 Conditionals and Boolean Logic

Operator Precedence

Arithmetic expressions in Python attempt to match widely

used mathematical rules of precedence. Thus,

3 + 4 * (5 + 2)

is interpreted as representing:

(3 + (4 * (5 + 2))) .

That is, we perform the operation within parenthesis first, then the

multiplication, and finally the addition.

To make this happen we precedence rules are enforced.

CS303E Slideset 3: 26 Conditionals and Boolean Logic

Precedence

The following are the precedence rules for Python, with items

higher in the chart having higher precedence.

Operator
+ , -

Meaning

Unary plus, minus, like - 3, +12
* *
not

* , / , / / , %

+ , -
< , <=, > , >=
==, ! =
and
or

Exponentiation

logical negation

Multiplication, division,

integer division, modulus

Binary plus, minus

Comparison

Equal, not equal

Conjunction

Disjunction

CS303E Slideset 3: 27 Conditionals and Boolean Logic

Precedence Examples

and 3 - 10 < 0

>>> - 3 * 4
-12
>>> - 3 + - 4
- 7
>>> 3 + 2 * * 4
19
>>> 4 + 6 < 11
True
>>> 4 < 5 <= 17 # n o t i c e s p e c i a l syntax

t h i s s u r p r i s e d me!

True
>>> 4 + 5 < 2 + 7
F a l s e
>>> 4 + (5 < 2) + 7
11

Most of the time, the precedence follows what you would expect.

CS303E Slideset 3: 28 Conditionals and Boolean Logic

Precedence

Operators on the same line have equal precedence.

Operator
+ , -

Meaning

Binary plus, minus
* , / , / / , % Multiplication, division,

integer division, remainder

Evaluate them left to right.

All binary operators are left associative. Example: x + y - z + w
means ((x + y) - z) + w.

Note that assignment is right associative.

x = y = z = 1 # ass i gn z f i r s t

CS303E Slideset 3: 29 Conditionals and Boolean Logic

Use Parentheses to Override Precedence

Use parenthesis to override precedence or to

make the evaluation clearer.

an e x p r e s s i o n

what precedence w i l l do

o ve r r i d e precedence

not p a r t i c u l a r l y c l e a r

b e t t e r

>>> 10 - 8 + 5
7
>>> (1 0 - 8) + 5
7
>>> 10 - (8 + 5)
- 3
>>> 5 - 3 * 4 / 2
- 1 . 0
>>> 5 - ((3 * 4) / 2)
- 1 . 0

Work to make your code easy to read!

CS303E: Elements of Computers and Programming

Repitition with Loops

Mike Scott

Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: May 30, 2024

CS303E Slideset 4: 2 Loops

Repetitive Activity

Often we need to do some (program) activity numerous times:

Using Loops

So we might as well use cleverness to do it.

That’s what loops are for.

It doesn’t have to be the exact same thing over and over.

And this is how we really harness the power of a computer that

can perform tens of billions (or more) computations per second!

CS303E Slideset 4: 4 Loops

While Loop

The majority of programming

languages include syntax to repeat

operations.

while loop is one option. General form:

while condition:
statement(s)

Meaning: as long as the condition is

true when checked, execute the

statements.

As with conditionals (if/elif/else), all of

the statements in the body of the

loop must be indented the

same amount.

CS303E Slideset 4: 5 Loops

While Loop

In file not_throw_airplanes.py:

What would happen if we forgot the i += 1?

CS303E Slideset 4: 6 Loops

While Loop Example: Test Primality

An integer is prime if it is greater

than 1 and has no positive integer

divisors except 1 and itself.

To test whether an arbitrary integer n

is prime, see if any number in
[2 . . . n-1], divides it with no remainder

You couldn’t do that in straight line code without knowing n in

advance. Why not?

Even then it would be really tedious if n is very large.

CS303E Slideset 4: 7 Loops

is_prime_1 Loop Example

is_prime_1.py

CS303E Slideset 4: 8 Loops

is_prime_1 Loop
Example

It works, though it’s pretty inefficient. If a number is prime, we

test every possible divisor in [2 . . . n-1].

We don’t actually need the special test for 2.

Think about why that is.

If n is not prime, it will have a divisor less than or equal to √n.

There’s no need to test any even divisor except 2.

The second example took ~24 seconds to complete on my laptop.

CS303E Slideset 4: 9 Loops

A Better Version: is_prime_2.py

CS303E Slideset 4: 10 Loops

The Better is_prime_2 Version

is_prime_1 does 176,970,202 divisions to discover

that 176_970_203 is prime.

is_prime_2 does "only” 13,302.

Took much less than a second to complete.

Computer scientists and software developers spend a

lot of time trying to improve the efficiency of their

programs and algorithms.

Measurably reduce the number of computations.

CS303E Slideset 4: 11 Loops

Example While Loop: Approximate Square Root

You could approximate the square root of

a positive integer as follows: square_root.py

CS303E Slideset 4: 12 Loops

Running the Example

Notice that the last one isn’t quite right. The square root of 100 is

exactly 10.0. Foiled again by the approximate nature of floating

point numbers and floating point arithmetic.

CS303E Slideset 4: 13 Loops

More efficient way of calculating square root?

Newton's method for approximating square roots adapted

from the Dr. Math website
The goal is to find the square root of a number. Let's call it num

1. Choose a rough approximation of the square root of num, call it

approx.

How to choose?

2. Divide num by approx and then average the quotient with approx,

in other words we want to evaluate the

expression ((num/approx) + approx) / 2

3. How close are we? In programming we would store the result of the

expression back into the variable approx.

4. How do you know if you have the right answer?

CS303E Slideset 4: 14 Loops

For Loop

In a for loop, you typically know how many times you’ll

execute.

General form:

for < var> in < sequence>:
<statement(s)>

Meaning: assign each element of

sequence in turn to var and execute

the statements.

As usual, all of the statements in

the body must be indented the

same amount.

CS303E Slideset 4: 15 Loops

What’s a Sequence?

A Python sequence holds multiple items stored one after another.

>>> seq = [2 , 3 , 5 , 7 , 11 , 1 3] # a l i s t

The range function is a good way to generate a sequence.

range(a, b) : denotes the sequence a , a+1, . . . , b-1.

range(b) : is the same as range(0, b).

range(a, b , c) : generates a , a+c, a+2c, , b’, where

b’ is the last value < b.

CS303E Slideset 4: 16 Loops

Range Examples

>>> f or i i n r ange (3 , 6) : pr i nt (i , end=" ")
. . .
3 4 5
>>> f or i i n r ange (3) : pr i nt (i , end=" ")
. . .
0 1 2
>>> for i in range (0 , 11 , 3) : p r i n t (i , end =" ")

. . .
0 3 6 9
>>> for i in range (11 , 0 , - 3) : p r i n t (i , end =" ")
. . .
11 8 5 2
>>>

CS303E Slideset 4: 17 Loops

For Loop Example

Suppose you want to print a table of the powers of

a given base up to basen. In file powers_of.py:

CS303E Slideset 4: 18 Loops

For Loop Example

CS303E Slideset 4: 19 Loops

Nested Loops

The body of while loops and for loops contain

any kind of statements, including other loops.

Suppose we want to compute and print out the BMI value

for heights from 4' 6" (4 feet, 6 inches = 54 inches) to 6' 10"

(82 inches) going up by 2 inches each time

AND weights from 85 to 350 pounds, going up by 5 pounds?

We could then take that data and create a visual graph for

quick look up.

It is arbitrary whether the outer loop is height or weight

CS303E Slideset 4: 20 Loops

Print BMI for various heights and weights

CS303E Slideset 6: 1CS303E Slideset 6: 1 Functions

CS303E: Elements of Computers and Programming

Functions

Mike Scott

Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: June 21, 2023

CS303E Slideset 6: 2 Functions

Functions

• We have used several built in functions already:
• print(), input(), int(), float(), range()

• List of Python built in functions

https://docs.python.org/3.8/library/functions.html
https://docs.python.org/3.3/library/functions.html

CS303E Slideset 6: 3 Functions

Modules - More Functions

• In addition to the standard built in functions.

standard Python includes many modules
• Modules are Python scripts (programs) that contain,

typically, related functions that we can reuse in many

Python programs and scripts

• When you download Python, you download the

standard modules.

• Most of these modules are beyond the scope of

this course.

• Two that we will use are the math module

mathematical operations which don't have defined

operators and the random module, with functions to

generate pseudo random numbers.

https://docs.python.org/3.8/tutorial/modules.html
https://docs.python.org/3.8/library/index.html
https://docs.python.org/3.8/library/math.html
https://docs.python.org/3.8/library/random.html

CS303E Slideset 6: 4 Functions

Math Module Functions
Function Description Example

fabs(x) Returns the absolute value of the argument. fabs(-2) is 2

ceil(x) Rounds x up to its nearest integer and ceil(2.1) is 3

 returns this integer. ceil(-2.1) is -2

floor(x) Rounds x down to its nearest integer and floor(2.1) is 2

 returns this integer. floor(-2.1) is -3

exp(x) Returns the exponential function of x (e^x). exp(1) is 2.71828

log(x) Returns the natural logarithm of x. log(2.71828) is 1.0

log(x, base) Returns the logarithm of x for the specified log10(10, 10) is 1

 base.

sqrt(x) Returns the square root of x. sqrt(4.0) is 2

sin(x) Returns the sine of x. x represents an angle sin(3.14159 / 2) is 1

 in radians. sin(3.14159) is 0

asin(x) Returns the angle in radians for the inverse asin(1.0) is 1.57

 of sine. asin(0.5) is 0.523599

cos(x) Returns the cosine of x. x represents an cos(3.14159 / 2) is 0

 angle in radians. cos(3.14159) is -1

acos(x) Returns the angle in radians for the inverse acos(1.0) is 0

 of cosine. acos(0.5) is 1.0472

tan(x) Returns the tangent of x. x represents an tan(3.14159 / 4) is 1

 angle in radians. tan(0.0) is 0

fmod(x, y) Returns the remainder of x/y as double. fmod(2.4, 1.3) is 1.1

degrees(x) Converts angle x from radians to degrees degrees(1.57) is 90

radians(x) Converts angle x from degrees to radians radians(90) is 1.57

CS303E Slideset 6: 5 Functions

Importing Modules

• To use non standard functions, ones that are part of

a module, we call the function with the name of the

module, a period spoken "dot", and the name of the

function. math.sqrt(1000)

• must also import the module

• In a program or script, imports at the top of the file.

CS303E Slideset 6: 6 Functions

The random Module

• Several useful functions are defined in the

random module:

• randint(a, b): generate a random

integer between a and b, inclusively.

• randrange(a, b): generate a random

integer between a and b-1, inclusively.

• random(): generate a float in the

range [0 . . . 1).

• How would we simulate flipping a coin with

two sides?

CS303E Slideset 6: 7 Functions

Examples of Calls to random Functions

CS303E Slideset 6: 8 Functions

Importing Modules

• Typing the name of the module every time

can be tedious
• A lot of programming languages and IDEs have

features to reduce the amount of typing we have to do

• Can import specific or all functions from a module:

• Any downside to always importing all?

The * is a
wildcard,
meaning
all.

CS303E Slideset 6: 9 Functions

Three Common Data Types

Three data types we will use in many of our early Python programs are:

int: signed integers (whole numbers)

Computations are exact and of unlimited size

Examples: 4, -17, 0

float: signed real numbers (numbers with decimal points) Large

range, but fixed precision

Computations are approximate, not exact Examples:

3.2, -9.0, 3.5e7

str: represents text (a string)

We use it for input and output We’ll see

more uses later Examples: "Hello, World!",

’abc’

These are all immutable. The value cannot be altered.

CS303E Slideset 6: 10 Functions

Immutable

• It may appear some
values are mutable
• they are not
• rather variables

are mutable and
can be bound
(refer to)
different values

• Note, how the id of x
(similar to its address)
has changed

CS303E Slideset 6: 11 Functions

x 37

x = 37

x = x + 10
substitute in the value x is referring to
x = 37 + 10
evaluate the expression
x = 47
so now … x

37

47

CS303E Slideset 6: 12 Functions

Mutable vs. Immutable

An immutable value is one that cannot be changed by the

programmer after you create it; e.g., numbers, strings, etc.

A mutable values is one that can be changed; e.g., sets, lists, etc.

CS303E Slideset 6: 13 Functions

What Immutable Means

• An immutable object is one that cannot be changed by
the programmer after you create it;
e.g., numbers, strings, etc.

• It also means that there is typically only one copy of the

object in memory.

• Whenever the system encounters a newreference to 17, say, it
creates a pointer (references) to the already stored value 17.

• Every reference to 17 is actually a pointer to the
only copy of 17 in memory. Ditto for "abc".

• If you do something to the object that yields a new value
(e.g., uppercase a string), you’re actually creating a
new object, not changing the existing one.

CS303E Slideset 6: 14 Functions

Function

We’ve seen lots of system-defined functions;

now it’s time to define our own., like main.

General form:

def functionName(l i s t of parameters) :
#

header statement(s) # body

Meaning: a function definition defines a block of code that

performs a specific task. It can reference any of the variables

in the list of parameters. It may or may not return a value.

The parameters are formal parameters;

they hold arguments (refer to the same values) passed

to the function later when the function is called.

CS303E Slideset 6: 15 Functions

Functions

CS303E Slideset 6: 16 Functions

Calling a Function

CS303E Slideset 6: 17 Functions

Function Example

Suppose you want to sum the integers 1 to n.

In file function_examples.py:

Notice this defines a function to perform the task, but won't

perform the task until the function is called from else where.

We still have to call/invoke the function with specific arguments.

CS303E Slideset 6: 18 Functions

Some Observations

def sum_to_n(n)
. . . .

f u n c t i o n header
f u n c t i o n body

Here n is a formal parameter. It is used in the definition as a place

holder for an actual parameter (e.g., 10 or 1000) in

any specific call.

sum_to_n(n) returns an int value, meaning that a call to sum_to_n
can be used anyplace an int expression can be used.

Note, with functions the argument is the input.
We occasionally ask the user for input in the function.

CS303E Slideset 6: 19 Functions

Functional Abstraction

Once we’ve defined sum_to_n,wecan use it almost
as if were a primitive in the language without
worry about the details of the definition.

We need to know what it does,
but don’t care anymore how it does it!

This is called information hiding
and / or functional abstraction.

And that is POWERFUL!

CS303E Slideset 6: 20 Functions

Another Way to Add Integers 1 to N

Suppose later we discover that we could have coded

sumToNmore efficiently (as discovered by the 8-year old

C.F. Gauss in 1785):

Because wedefined sum_to_n asa function, wecan just swap in

this definition without changing any other code. If we’d done

the implementation in-line, we’d have had to go find every

instance and change it.

CS303E Slideset 6: 21 Functions

Return Statements
When you execute a return statement, you return to the calling

environment. Your functions may or may not explicitly return a value.

General forms:

return
return expression

A return that doesn’t return a value actually
returns the constant None. Use return without a value sparingly.

Every function has an implicit return at the end.

CS303E Slideset 6: 22 Functions

Some More Function Examples

Suppose we want to multiply the integers from 1 to n:

Convert Fahrenheit to Celsius AND Celsius to Fahrenheit :

CS303E Slideset 6: 23 Functions

Fahr to Celsius Table

In slideset 1, we showed the C version of a program to print a

table of Fahrenheit to Celsius values. Here’s a Python version:

In file fahr_to_celsius_table.py:

CS303E Slideset 6: 24 Functions

Running the Temperature Program

Exercise: Do a similar problem converting Celsius to Fahrenheit.

CS303E Slideset 6: 25 Functions

A Bigger Example: Print First 100 Primes

Suppose you want to print out a table of the first 100 primes, 10

per line.

You could sit down and write

this program from scratch,

without using functions. But it

would be a complicated mess

(see section 5.8).

Better to use functional

abstraction: find parts of the

algorithm that can be coded

separately and “packaged” as

functions.

CS303E Slideset 6: 26 Functions

Print First 100 Primes: Algorithm

Here’s some Python-like pseudocode to print 100 primes:

def print100Primes():
primeCount = 0

num= 0
while (primeCount < 100) :

i f (we’ve already printed 10 on the current l i n e) :
go to a new line

nextPrime = (the next prime > num)
print nextPrime on the current l ine
num= nextPrime

primeCount += 1

Note that most of this is just straightforward Python

programming! The only “new” part is how to find the next prime.

So we’ll make that a function.

CS303E Slideset 6: 27 Functions

Top Down Development

So let’s assume we can define a function:

in such a way that it returns the first prime
larger than num.

Is that even possible?

Is there always a “next” prime larger than num?

Yes! There are an infinite number of primes. So if we keep testing

successive numbers starting at num+ 1, we’ll eventually find the next

prime. That may not be the most efficient way!

https://en.wikipedia.org/wiki/Euclid's_theorem

CS303E Slideset 6: 28 Functions

Value of Functional Abstraction

Notice we’re following a “divide and

conquer” approach: Reduce the

solution of our bigger problem into one

or more subproblems which we can

tackle independently.

It’s also an instance of “information

hiding.” We don’t want to think about

how to find the next prime, while we’re

worrying about printing 100 primes.

Put that off! Think about one thing at

a time. Structural decomposition.

CS303E Slideset 6: 29 Functions

Next Step

Now solve the original problem, assuming we can write get_next_prime(n)

In file function_examples.py:

CS303E Slideset 6: 30 Functions

Looking Ahead

Here’s what the output should look like.

Of course, we couldn’t do this if we really hadn’t defined
get_next_prime. So let’s see what that looks like.

CS303E Slideset 6: 31 Functions

How to Find the Next Prime

The next prime (> num) can be found as indicated in the

following pseudocode:

def get_next_prime(num) :
i f num< 2 :

return 2 as the answer
e l s e :

guess = num+ 1
while (guess i s not prime)

guess += 1

return guess as the answer

Again we solved one problem by assuming the solution to another

problem: deciding whether a number is prime.

Can you think of ways to improve this algorithm?

CS303E Slideset 6: 32 Functions

Here’s the Implementation

Note that we’re assuming we can write:

This works (assuming we have defined is_prime), but it’s

got an inefficiency. How can we make it more efficient?

CS303E Slideset 6: 33 Functions

Find Next Prime: A Better Version

When looking for the next prime, we don’t have to test every

number, just the odd numbers (after 2).

Now all that remains is to write is_prime.

CS303E Slideset 6: 34 Functions

Is a Number Prime?

We already solved a version of this in a previous lecture.

Let’s rewrite that code as a Boolean-valued function:

CS303E Slideset 6: 35 Functions

Sidetrack - Boolean "Zen"

• Did you notice this line of code in the

is_prime method?

• prime is a boolean that holds the value True

of False, so we simply return than value in

that variable

• avoid the following:

it is unnecessarily

verbose

CS303E Slideset 6: 36 Functions

One More Example

Suppose we want to find and print k primes, starting from a given number:

In file function_examples.py:

Notice that we can use functions we’ve defined such as

get_next_prime and is_prime (almost) as if they were

Python primitives.

CS303E Slideset 6: 37 Functions

Positional Arguments

This function has four formal parameters:

Any call to this function should have exactly four actual

arguments, which are matched to the corresponding

formal parameters:

This is called using positional arguments.

CS303E Slideset 6: 38 Functions

Keyword Arguments

It is also possible to use the formal parameters as keywords.

These two calls are equivalent:

CS303E Slideset 6: 39 Functions

Keyword Arguments

You can list the keyword arguments in any order,

but all must still be specified.

CS303E Slideset 6: 40 Functions

Keyword Arguments

And even possible to mix keyword arguments with

positional arguments.

The positional arguments must come first followed by the keyword.

CS303E Slideset 6: 41 Functions

Default Parameters

Do any of the built in functions we have been using have

default arguments?

You can also specify default arguments for a function. If you

don’t specify a corresponding actual argument, the default is used.

CS303E Slideset 6: 42 Functions

Using Defaults

You can mix default and non-default

arguments, but must define the non-

default arguments first.

CS303E Slideset 6: 43 Functions

Passing by Reference

All values in Python are objects, including numbers, strings, etc.

When you pass an argument to a function, you’re actually passing

a reference to the object, not the object itself.

There are two kinds of objects in Python:

mutable: you can change them in your program.

immutable: you can’t change them in your program.

If you pass a reference to a mutable object, it can be changed by

your function. If you passareference to an immutable object, it

can’t be changed by your function.

CS303E Slideset 6: 44 Functions

What is a Data Type?

A data type is a categorization of values.

Data Type Description Example

int integer. An immutable number of
unlimited magnitude

42

float A real number. An immutable floating
point number, system defined precision

3.1415927

str string. An immutable sequence of
characters

'Wikipedia'

bool boolean. An immutable truth value True, False

tuple Immutable sequence of mixed types. (4.0, 'UT', True)

list Mutable sequence of mixed types. [12, 3, 12, 7, 6]

set Mutable, unordered collection, no
duplicates

[12, 6, 3]

dict dictionary a.k.a. maps, A mutable group of
(key, value pairs)

{'k1': 2.5, 'k2': 5}

Others we likely won't use in 303e:
complex, bytes, frozenset

CS303E Slideset 6: 45 Functions

Passing an Immutable Object

Consider the following code:

CS303E Slideset 6: 46 Functions

Passing Immutable and Mutable Objects - Output

Notice that the immutable integer parameter to increment_x
was unchanged, while the mutable list parameter to

reverse_list was changed.

Variables are mutable. They can be made to refer to different

objects (values), but some objects (values) such as ints, floats, and

Strings in Python are immutable.

CS303E Slideset 6: 47 Functions

Scope of Variables

Variables defined in a Python program have an associated

scope, meaning the portion of the program in which they

are defined.

A global variable is defined outside of a function and is

visible after it is defined. Use of global variables is

generally considered bad programming practice.

Not allowed per our 303e program hygiene guidelines.

A local variable is defined within a function and is visible

from the definition until the end of the function.

A local definition overrides a global definition.

CS303E Slideset 6: 48 Functions

Overriding

A local definition (locally) overrides the global definition.

x = 1 # x is global

def func ():

x = 2
this x is local

print(x) # will print 2

func ()

print(x) # will print 1

Running the program:

> python funcy . py

2

1

CS303E Slideset 6: 49 Functions

Returning Multiple Values - Useful

The Python return statement can also return multiple values. In

fact it returns a tuple of values.

def mul t i pl e Val ue s (x , y) :
r e t ur n x + 1 , y + 1

pr i nt (" Val ue s r e t ur ne d ar e : " , mul t i pl e Val ue s (4 , 5. 2))

x1 , x2 = m u l t i p l e Values (4 , 5 . 2)
pr i nt (" x1 : " , x1 , " \t x2 : " , x2)

Val ue s r e t ur ne d ar e : (5 , 6 . 2)
x1 : 5 x2 : 6 . 2

You can operate on this using tuple functions, which we’ll cover

later in the semester, or assign them to variables.

CS303E: Elements of Computers and Programming

Files

Mike Scott

Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: June 23, 2022

CS303E Slideset 6: 2 Files

Value of Files

Files are a persistent way to store programs, input

data, and output data.

Files are stored in the memory of

your computer in an area allocated

to the file system, which is typically

arranged into a hierarchy of

directories (aka folders).

The path to a particular file

details where the file is stored

within this hierarchy.

CS303E Slideset 6: 3 Files

Relative Pathnames

A path to a file may be absolute or relative.

If you just use the name of the file, you’re assuming that

it is in the current working directory.

pwd -> print working directory
ls -l -> list the contents of the current
directory in long form (with details)

CS303E Slideset 6: 4 Files

Relative Pathnames

cat -> from concatenate, synonym for append
(in this case to standard output)

src/ means look for the file in the directory
named src

CS303E Slideset 6: 5 Files

File Paths

On Windows, a file path might be:

C:\Users\scottm\314\src\calculate_texas.py

On Linux or MacOS, it might be:

/home/scottm/314/src/calculate_texas.py

Python passes filenames around as strings, which causes

some problems for Windows systems, partly because

Windows uses the '\' in filepaths.

Recall that backslash is an escape character, and including it
in a string may require escaping it.

CS303E Slideset 6: 6 Files

Raw Strings

There is a way in Python to treat a string as a raw string,

meaning that escaped characters are treated just as any

other characters.

>>> pr i nt (' abc \ndef ')
abc

def
>>> pr i nt (r ' abc \ndef ')
abc \ndef

Prefix the string with an 'r'. You may or may not need to

do the for Windows pathnames including '\'

CS303E Slideset 6: 7 Files

Python - Show the Current Working Directory

In CS303e when we open a file we will

generally assume it is in the same directory as

the running Python program.

When doing homework, how do you know what that is

so you can put your data files in the same directory?

import os

print(os.getcwd())

Of course your output will be different.

CS303E Slideset 6: 8 Files

Working with Files in Python

Python provides a simple, elegant interface to

storing and retrieving data in files.

Functions for dealing with files:

open : establish a connection to the file and associate

a local file handle with a physical file.

close : terminate the connection to the file.

Opening a File

Before your program can access the data in a file, it is necessary

to open it. This returns a file object, also called a 'handle,' that

you can use within your program to access the file.

It also informs the system how you intend for your program to

interact with the file, the 'mode.'

CS303E Slideset 6: 10 Files

Example of Opening a File

General Form:

fileVariable = open(filename, mode)

What do you think the 42 and 29 (an int returned by the write
function) represent above?

Notice we are calling a function (method) on a variable.
outfile.write

CS303E Slideset 6: 11 Files

Opening a File: Modes

Permissible modes for files:

Mode Description

'r' Open for reading.

'w' Open for writing. If the file already exists the

old contents are overwritten.

'a' Open for appending data to the end of the file.

'rb' Open for reading binary data.

'wb' Open for writing binary data.

You also have to have necessary permissions from the

operating system to access the files.

This semester we won’t be using the binary modes.

In other words we are going to read from files assuming it is
encoded as text. In binary we would read the raw 0s and 1s.

CS303E Slideset 6: 12 Files

Closing the File

General form:

f i le_variable .c lose()

All files are closed by the OS when your program terminates. Still,

it is very important to close any file you open in Python.

the file will be locked from access by any other program while

you have it open;

items you write to the file may be held in internal buffers

rather than written to the physical file;

if you have a file open for writing, you can’t read it until you

close it, and re-open for reading;

it’s just good programming practice.

CS303E Slideset 6: 13 Files

Using the with statement

Although not in the textbook, the preferred way of opening a
file is with the with statement. (Another Python keyword)

CS303E Slideset 6: 14 Files

Reading/Writing a File

There are various Python functions for reading data

from or writing data to a file, given the file object in

variable fn.

Function
fn.read()

Description

Return entire remaining contents of file as a string.
fn.read(k) Return next k characters from the file as a string.
fn.readline() Returns the next line as a string.
fn.readlines() Returns all remaining lines in the file as a list of strings.
fn .wri te (s t r) Writes the string to the file.

These functions advance an internal file pointer (like a
cursor in a word processing document or a program editor)
that indicates where in the file you’re reading/writing.

open sets the file pointer or cursor at the beginning of

the file.

CS303E Slideset 6: 15 Files

Testing File Existence

Sometimes you need to know whether a file exists,

otherwise you may overwrite an existing file.

Use the i s f i l e function from the os.path module.

Here the filepath given is relative to the current directory.

CS303E Slideset 6: 16 Files

Example: Read Lines from File

CS303E Slideset 6: 17 Files

Example: Read Lines from File

…

CS303E Slideset 6: 18 Files

Example: Write File

Let's write out the flip of 10,000 coins to a file, H for heads,

T for tails. 50 results per line separated by a space.

One major difference is that print inserts a newline at the

end of each line, unless you ask it not to. write does not

do that.

CS303E Slideset 6: 19 Files

Part of Resulting File - Coin Flip Results

Note, the line numbers are NOT part of the
file. They are shown by the text editor I used.

CS303E Slideset 6: 20 Files

Aside: Redirecting Output

There’s another way to get the output of a program into a file.

When your file does a print, it sends the output to

standard out, which is typically the terminal.

You can redirect the output to a file, using > filename on

Linux systems. Anything that would have been printed on the

screen goes into a file instead.

Notice that this happens at the OS level, not at the Python level.
Programmers know how to do things multiple ways!

Can even redirect standard output inside of a Python program.
This is part of how the auto grader works. Redirecting your program's
standard output so we can compare it to what we expect the output
to be.

CS303E Slideset 6: 21 Files

Aside: Redirecting Output

CS303E Slideset 6: 22 Files

Example: Reading and Writing File

i mpor t os . pat h

def copy_file () :
' ' ' Copy c ont e nt s f r om f i l e 1 t o f i l e 2 . ' ' '
Ask user f o r f i l e n a m e s
f 1 = i nput (' Sour c e f i l e name : ') . s t r i p()
f 2 = i nput (' Tar ge t f i l e name : ') . s t r i p()
Check i f t a r g e t f i l e e x i s t s .
i f os . pat h. i s f i l e (f 2) :

p r i n t (f 2 + ' a l ready e x i s t s ')
r e t u r n

Open f i l e s f o r input and output
i nf i l e = ope n(f 1 , ' r ')
out f i l e = ope n(f 2 , ' w')
Copy from input to output a l i n e a t a time
f or l i ne i n i nf i l e :

out f i l e . wr i t e (l i ne)
Close both f i l e s
i nf i l e . c l os e ()
out f i l e . c l os e ()

copy_file()

Notice the use of a
for loop to read all
the lines in the file.

CS303E Slideset 6: 23 Files

Example: Reading and Writing File

One cannot simultaneously read and write a file in Python.

However, you can write a file, close it, and re-open it for reading.

CS303E Slideset 6: 24 Files

Reading and Writing File

CS303E Slideset 6: 25 Files

Append Mode

Opening a file in append mode 'a', means that writing a value to

the file appends it at the end of the file.

It does not overwrite the

previous content of the file.

You might use this to maintain

a log file of transactions on an

account.

New transactions are added at

the end, but all transactions

are recorded.

CS303E: Elements of Computers and Programming

Lists

Mike Scott

Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: June 28, 2023

CS303E Slideset 7: 2 Lists

Lists

The l i s t class is a very useful tool in Python.

Both lists and strings are sequence types in Python, so

share many similar methods. Unlike strings, lists are

mutable.

If you change a list, it doesn’t create a new copy; it
changes the actual contents of the list.

CS303E Slideset 7: 3 Lists

Value of Lists

Suppose you have 30 different test grades to average.You could

use30 variables: grade1, grade2, ..., grade30. Or you could use

one list with 30 elements: grades[0], grades[1], ..., grades[29].

CS303E Slideset 7: 4 Lists

Indexing and Slicing

With Lists you can get sublists using slicing

CS303E Slideset 7: 5 Lists

List Slicing

• List slicing format: list[start : end]

• Span is a list containing copies of elements
from start up to, but not including, end

•If start not specified, 0 is used for start index
•If end not specified, len(list) is used for end
index

• Slicing expressions can include a step value
and negative indexes relative to end of list

CS303E Slideset 7: 6 Lists

Creating Lists

Lists can be created with the l i s t class constructor or using

special syntax.

>>> l i s t ()
[]
>>> l i s t ([1 , 2 , 3])

c r e at e e mpt y l i s t , wi t h c ons t r uc t or

c r e at e l i s t [1 , 2 , 3]

[1 , 2 , 3]
>>> l i s t ([" red " , 3 , 2 . 5]) # c r e a t e heterogeneous l i s t

c r e a t e l i s t , no e x p l i c i t c o n s t r u c t o r

not an a c t u a l l i s t

c r e a t e l i s t using range

c r e a t e c h a r a c t e r l i s t from s t r i n g

[’ r ed’ , 3 , 2 . 5]
>>> [" r ed" , 3 , 2 . 5]
[’ r ed’ , 3 , 2 . 5]
>>> r ange (4)
r ange (0 , 4)
>>> l i s t (r ange (4))
[0 , 1 , 2 , 3]
>>> l i s t (" abc d")
[’ a ’ , ’ b ’ , ’ c ’ , ’d ’]

CS303E Slideset 7: 7 Lists

Lists vs. Arrays

Many programming languages have an array type.

Arrays are:

homogeneous(all elements

are of the same type)

fixed size

permit very fast access time

Python lists are:

heterogeneous(can contain

elements of different types)

variable size

permit fast access time

Lists and arrays are examples of data structures. A very simple definition of

a data structure is a variable that stores other variables.

CS313e explores many standard data structures.

CS303E Slideset 7: 8 Lists

Sequence Operations

Lists are sequences and inherit various functions

from sequences.

Function

x in s
Description

x is in sequence s
x not in s
s1 + s2
s * n
s [i]
s [i : j]
l en(s)
min(s)
max(s)
sum(s)
for loop
< , <=, > , >=
==, ! =

x is not in sequences

concatenates two sequences

repeat sequence s n times

ith element of sequence (0-based)

slice of sequence sfrom i to j-1

number of elements in s

minimum element of s

maximum element of s
sum of elements in s

traverse elements of sequence

compares two sequences

compares two sequences

CS303E Slideset 7: 9 Lists

Calling Functions on Lists

>>> l 1 = [1 , 2 , 3 , 4 , 5]
>>> l en(l 1)
5
>>> mi n(l 1)
1
>>> max (l 1)
5
>>> s um(l 1)

assumes e lements are comparable

assumes e lements are comparable

assumes summing makes sense

15
>>> l 2 = [1 , 2 , " r ed"]
>>> s um(l 2)
Tr ac e bac k (mos t r e c e nt c al l l as t) :

Fi l e " < s t di n >" , l i ne 1 , i n < modul e >
Type E r r o r : unsupported operand type (s) f o r + : ’ i n t ’ and ’ s t r

’
>>> mi n(l 2)
Tr ac e bac k (mos t r e c e nt c al l l as t) :

Fi l e " < s t di n >" , l i ne 1 , i n < modul e >
Type E r r o r : ’ < ’ not supported between i n s t a n c e s of ’ s t r ’ and

’ i nt ’
>>>

CS303E Slideset 7: 10 Lists

Using Functions

We could rewrite the grades_examples function as follows:

CS303E Slideset 7: 11 Lists

Traversing Elements with a For Loop

General Form:
for u in l i s t :

body

In file test.py :

not r e a l l y a l i s t

not r e a l l y a l i s t

f or u i n r ange (3) :
pr i nt (u, end= " ")

pr i nt ()

f or u i n [2 , 3 , 5 , 7] :
pr i nt (u, end= " ")

pr i nt ()

f or u i n r ange (15 , 1 , - 3) :
pr i nt (u, end= " ")

pr i nt ()

> pyt hon t e s t . py
0 1 2
2 3 5 7
15 12 9 6 3

CS303E Slideset 7: 12 Lists

Comparing Lists

Compare lists using the operators: > , >=, < , <=, ==, !=. Uses

lexicographic ordering: Compare the first elements of the two lists;

if they match, compare the secondelements, and soon. The

elements must be of comparable classes.

>>> l i s t 1 = [" r ed" , 3 , " gr e e n"]
>>> l i s t 2 = [" r ed" , 3 , " gr e y"]
>>> l i s t 1 < l i s t 2
True
>>> l i s t 3 = [" r ed" , 5 , " gr e e n"]
>>> l i s t 3 > l i s t 1
True
>>> l i s t 4 = [5 , " r ed" , " gr e e n"]
>>> l i s t 3 < l i s t 4
Tr ac e bac k (mos t r e c e nt c al l l as t) :

Fi l e " < s t di n >" , l i ne 1 , i n < modul e >
Type E r r o r : ’ < ’ not supported between i n s t a n c e s of ’ s t r ’ and

’ i nt ’
>>> [" r ed" , 5 , " gr e e n"] == [5 , " r ed" , " gr e e n"]
F a l s e

CS303E Slideset 7: 13 Lists

List Comprehension

List comprehension gives a compact syntax for

building lists.

>>> r ange (4)
r ange (0 , 4)
>>> [x f or x i n r ange (4)]

not a c t u a l l y a l i s t

c r e a t e l i s t from range

[0 , 1 , 2 , 3]
>>> [x * * 2 f or x i n r ange (4)]
[0 , 1 , 4 , 9]
>>> l s t = [2 , 3 , 5 , 7 , 11 , 13]
>>> [x * * 3 f o r x in l s t]
[8 , 27 , 125 , 343 , 1331 , 2197]
>>> [x f o r x in l s t i f x > 2]
[3 , 5 , 7 , 11 , 13]
>>> [s [0] f o r s in [" red " , " green " , " blue "] i f s <= " green "]
[’ g ’ , ’ b ’]
>>> from IsPr ime3 import *
>>> [x f or x i n r ange (100) i f i s Pr i me (x)]
[2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 ,

59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97]

CS303E Slideset 7: 14 Lists

List Comprehension with Files

List comprehension gives a compact syntax for

building lists, even from files.

CS303E Slideset 7: 15 Lists

List Comprehension with Files

List comprehension gives a compact syntax for

building lists, even from files.

CS303E Slideset 7: 16 Lists

List Comprehension with Files

List comprehension gives a compact syntax for

building lists, even from files.

CS303E Slideset 7: 17 Lists

Let’s Take a Break

CS303E Slideset 7: 18 Lists

More List Methods

These are methods from class l i s t .

Since lists are mutable, these actually change t .

Method

t.append(x)
Description

add x to the end of t
t .count(x)
t .extend(l1)
t . index(x)
t . i n s e r t (i , x)
t .pop()
t .pop(i)
t.remove(x)
t . reverse()
t . s o r t ()

number of times x appears in t

append elements of l1 to t

index of first occurence of x in t

insert x into t at position i
remove and return the last element of t

remove and return the ith element of t

remove the first occurence of x from t

reverse the elements of t

order the elements of t

CS303E Slideset 7: 19 Lists

List Examples

>>> l1 = [1 , 2 , 3]
>>> l1 . append (4) # add 4 to the end of l1
>>> l1 # note : changes l1
[1 , 2 , 3 , 4]
>>> l1 . count (4) # count occurrences of 4 in l1
1
>>> l2 = [5 , 6 , 7]
>>> l1 . extend (l2) # add elements of l2 to l1
>>> l1
[1 , 2 , 3 , 4 , 5 , 6 , 7]
>>> l1 . index (5) # where does 5 occur in l1 ?
4
>>> l1 . insert (0 , 0) # add 0 at the start of l1
>>> l1 # note new value of l1
[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7]
>>> l1 . insert (3 , ’ a ’) # l i s t s are heterogenous
>>> l1
[0 , 1 , 2 , ’a’, 3 , 4 , 5 , 6 , 7]
>>> l1 . remove (’ a ’) # what goes in can come out
>>> l1
[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7]

CS303E Slideset 7: 20 Lists

List Examples

>>> l1 . pop () # remove and return last element
7
>>> l1
[0 , 1 , 2 , 3 , 4 , 5 , 6]
>>> l1 . reverse () # reverse order of elements
>>> l1
[6 , 5 , 4 , 3 , 2 , 1 , 0]
>>> l1 . sort () # elements must be comparable
>>> l1
[0 , 1 , 2 , 3 , 4 , 5 , 6]
>>> l2 = [4 , 1.3 , " dog "]

>>> l 2 . s o r t () # e lements must be comparable
Traceback (most r e c e n t c a l l l a s t) :

Fi l e " < s t di n >" , l i ne 1 , i n < modul e >
Type E r r o r : ’ < ’ not supported between i n s t a n c e s of ’ s t r ’ and

’ f l o a t ’
remove 'dog'

i n t and f l o a t are comparable

>>> l 2 . pop()
’ dog ’
>>> l 2
[4 , 1 . 3]
>>> l 2 . s or t ()
>>> l 2
[1. 3 , 4]

CS303E Slideset 7: 21 Lists

Random Shuffle

A useful method on lists is random.shuffle()
from the random module.

>>> l i s t 1 = [x f or x i n r ange (9)]
>>> l i s t 1
[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8]
>>> r andom. s huf f l e (l i s t 1)
>>> l i s t 1
[7 , 4 , 0 , 8 , 1 , 6 , 5 , 2 , 3]
>>> r andom. s huf f l e (l i s t 1)
>>> l i s t 1
[4 , 1 , 5 , 0 , 7 , 8 , 3 , 2 , 6]
>>> r andom. s huf f l e (l i s t 1)
>>> l i s t 1
[7 , 5 , 2 , 6 , 0 , 4 , 3 , 1 , 8]

CS303E Slideset 7: 22 Lists

Processing CSV Lines

Supposegrades for aclasswere stored in a list of csv strings, such

as:

s t ude nt_ d at a = [' Alice , 90 , 75 ' ,
' Robert , 8 , 77 ' ,
' C h a r l i e , 60 , 80 ']

Here the fields are: Name, Midterm grade, Final Exam grade.

Compute the average for each student and print a table of results.

CS303E Slideset 7: 23 Lists

Processing CSV Lines from List

CS303E Slideset 7: 24 Lists

Processing CSV Lines

CS303E Slideset 7: 25 Lists

Copying Lists

Suppose you want to make a copy of a list. The following won’t work!

CS303E Slideset 7: 26 Lists

Copying Lists

But, many ways of making a copy of a list.

CS303E Slideset 7: 27 Lists

Passing Lists to Functions

Like any other mutable object, when you passa list to a function,

you’re really passing a reference (pointer) to the object in memory.

def a l t e r (l s t) :
l s t . pop()

def mai n() :
l s t = [1 , 2 , 3 , 4]
pr i nt (" Be f or e c al l : " , l s t)
a l t e r (l s t)

pr i nt (" Af t er c al l : " , l s t)

mai n()

> pyt hon Li s t Ar g. py
Be f or e c al l : [1 , 2 , 3 , 4]
Af t er c al l : [1 , 2 , 3]

CS303E Slideset 7: 28 Lists

Let’s Take a Break

CS303E Slideset 7: 29 Lists

Example Problems

To get good at working with lists, we must practice!

• CodingBat: https://codingbat.com/python

• List1: first_last6, same_first_last, max_end3

• List2: count_even, big_diff, has_22

• given list of ints or floats, is it sorted in descending order?

• get last index of a given value in list

• given two lists of ints, return a list that contains the

difference between corresponding elements

• change to be the max

• are all the elements of a given list unique? In other words,

no duplicate values in the list

• given a list of ints place all even values before all odd

values

https://codingbat.com/python

CS303E: Elements of Computers and Programming

Lists of Lists

Mike Scott

Department of Computer Science

University of Texas at Austin

Last updated: May 30, 2024

CS303E Slideset 7: 2 List of Lists

Creating list of lists

Can create list of lists in Python
table = [[1, 2], [3, 6], [7,-3], [5, 6]]
• Access an element with 2 subscripts.
• By convention first subscript is row and the

second is the column

1 2

3 6

7 -3

5 6

0
1
2
3

0 1

index of row

index of column

access element with
2 subscripts:
table[2][0] -> 7

CS303E Slideset 7: 3 List of Lists

Creating list of lists

Can also use list comprehension
table2 = [[0] * 12] * 10
A list of lists with 10 rows and 12 columns
per row.

flips = [['H' if random.random() <= 0.5 else 'T'
for x in range(12)] for x in range(10)]

A table with 10 rows and 12 columns per row.
Each elements is a random coin flip.

CS303E Slideset 7: 4 List of Lists

List of Lists Problems

Write a function that returns the index
of the row of a list of lists of ints has the
largest sum. In the case of a tie return
the index closest to 0.

Write a function that returns the index
of the column of a list of lists of ints has
the largest sum. In the case of a tie
return the index closest to 0.

CS303E Slideset 7: 5 List of Lists

Example of using a list of lists

Conway's Game of Life
• a cellular automaton designed by John

Conway, a mathematician
• not really a game
• a simulation
• takes place on a 2d grid
• each element of the grid is occupied

or empty by a simple organism, but not
any known organism

CS303E Slideset 7: 6 List of Lists

Simulation

http://www.cuug.ab.ca/dewara/life/life.html

• Select pattern from menu
• Select region in large area with

mouse by pressing the control key
and left click at the same time

• Select the paste button

http://www.cuug.ab.ca/dewara/life/life.html

CS303E Slideset 7: 7 List of Lists

Generation 0

0 1 2 3 4 5

0

1

2

3

. * . * . *

* . * * * *

. . * * . *

. * * * . *

* indicates occupied, . indicates empty

CS303E Slideset 7: 8 List of Lists

Or

0 1 2 3 4 5

0

1

2

3

CS303E Slideset 7: 9 List of Lists

Generation 1

0 1 2 3 4 5

0

1

2

3

. * . * . *

. *

. *

. * . * . .

* indicates occupied, . indicates empty

CS303E Slideset 7: 10 List of Lists

Or , Generation 1

0 1 2 3 4 5

0

1

2

3

CS303E Slideset 7: 11 List of Lists

Rules of the "Game"

If a cell is occupied in this generation.
• it survives if it has 2 or 3 neighbors in this generation
• it dies if it has 0 or 1 neighbors in this generation
• it dies if it has 4 or more neighbors in this generation

If a cell is unoccupied in this generation.
there is a birth if it has exactly 3 neighboring cells that are
occupied in this generation

Neighboring cells are up, down, left, right,
and diagonal. In general a cell has 8
neighboring cells

CS303E Slideset 7: 12 List of Lists

Case study

Design and implement a complete
Python program to automate Conway's
Game of Life

• text based
• user input for size of world
• wrapped or bounded?
• border or not?
• high level design first,
then implement solution

• test, test, test, test

Copyright © 2018 Pearson Education, Inc.

7.9 and Chapter 8

Tuples

and

More About

Strings

Copyright © 2018 Pearson Education, Inc.

Tuples
• Tuple: an immutable sequence

• similar to a list, but ….

• Once it is created it cannot be changed

• Format: tuple_name = (item1, item2)

• Notice the use of () instead of []

• Tuples have operations similar to lists

• Subscript indexing for retrieving elements

• Methods such as index

• Built in functions such as len, min, max

• Slicing expressions

• The in, +, and * operators

Copyright © 2018 Pearson Education, Inc.

Tuples (cont’d.)

• Tuples do not support the methods:

• append

• remove

• insert

• reverse

• sort

• Why not? They are immutable.

Copyright © 2018 Pearson Education, Inc.

Tuples (cont’d.)

• Advantages for using tuples over lists:

• Processing tuples is faster than processing

lists

• Tuples can be safer (immutable)

• Some operations in Python require use of

tuples

• list() function: converts tuple to list

• tuple() function: converts list to tuple

• Fun fact, a function that returns 2 or

more values returns them in a tuple

Copyright © 2018 Pearson Education, Inc.

Basic String Operations

• Many types of programs perform

operations on strings

• In Python, many tools for examining

and manipulating strings

• Strings are sequences, so many of the tools

that work with sequences (such as ranges,

lists, and tuples) also can be used

with strings

Copyright © 2018 Pearson Education, Inc.

Accessing the Individual

Characters in a String
• To access an individual character in a

string:

• Use a for loop

• Format: for character in string:

• Useful when need to iterate over the whole string,

such as to count the occurrences of a specific

character

• Each ‘character’ is simply a string of length 1

• Use indexing

• Each character has an index specifying its position

in the string, starting at 0

• Format: character = my_string[i]

Copyright © 2018 Pearson Education, Inc.

Copyright © 2018 Pearson Education, Inc.

Accessing the Individual

Characters in a String (cont’d.)

ch = my_string[6]

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Copyright © 2018 Pearson Education, Inc.

Accessing the Individual

Characters in a String (cont’d.)

• IndexError exception will occur if:

• You try to use an index that is out of range for

the string

Likely to happen when loop iterates beyond the

end of the string

• use the len(string) function to

obtain the length of a string

Useful to prevent loops from iterating beyond

the end of a string

Copyright © 2018 Pearson Education, Inc.

Accessing the Individual

Characters in a String
• How to access the individual elements

of the string using a for loop and the

range function?

name = 'Olivia A.'

for in range(len(name)):

print(name[i],

type(name[i])

• Or
for ch in string_var:

if we don’t care about position

Copyright © 2018 Pearson Education, Inc.

String Concatenation

• Concatenation: appending one string to

the end of another string

• Use the + operator to produce a string that is

a combination of its operands

• The augmented assignment operator += can

also be used to concatenate strings

• The operand on the left side of the += operator

must be an existing variable; otherwise, an

exception is raised

Copyright © 2018 Pearson Education, Inc.

Strings Are Immutable

• Strings are immutable

• Once they are created, they cannot be changed

• Concatenation doesn’t actually change the existing

string, but rather creates a new string and assigns the

new string to the previously used variable

• Cannot use an expression of the form

• string[index] = new_character

• Statement of this type will raise an exception

Copyright © 2018 Pearson Education, Inc.

Strings Are Immutable,

Variables Are Not

Copyright © 2018 Pearson Education, Inc.

String Slicing

• Slice: span of items taken from a

sequence, known as substring

• Slicing format: string[start : end]

• Expression will return a string containing a copy of
the characters from start up to, but not including,

end

• If start not specified, 0 is used for start index

• If end not specified, len(string) is used for end

index

• Slicing expressions can include a step value
and negative indexes relative to end of string

Copyright © 2018 Pearson Education, Inc.

Testing, Searching, and

Manipulating Strings
• You can use the in operator to

determine whether one string is

contained in another string

• General format: string1 in string2

•string1 and string2 can be string literals or

variables referencing strings

• Similarly you can use the not in

operator to determine whether one
string is not contained in another string

Copyright © 2018 Pearson Education, Inc.

String Methods

• Strings in Python have many types of

methods, divided into different types of

operations

• General format:
mystring.method(arguments)

• Some methods test a string for

specific characteristics

• Generally Boolean methods, that return True

if a condition exists, and False otherwise

Copyright © 2018 Pearson Education, Inc.

String Methods (cont’d.)

Implement a function that prompts the user for an int

and error checks it. Keep prompting until they enter an int

Copyright © 2018 Pearson Education, Inc.

String Methods (cont’d.)

• Some methods create and return a

modified version of the string

• Simulate strings as mutable objects

• String comparisons are case-sensitive

• Uppercase characters are distinguished from

lowercase characters

• lower and upper methods can be used for

making case-insensitive string comparisons

Copyright © 2018 Pearson Education, Inc.

String Methods (cont’d.)

Copyright © 2018 Pearson Education, Inc.

String Methods (cont’d.)

• Programs commonly need to search for

substrings

• Several methods to accomplish this:

• endswith(substring): checks if the string

ends with substring

• Returns True or False

• startswith(substring): checks if the

string starts with substring

• Returns True or False

Copyright © 2018 Pearson Education, Inc.

String Methods (cont’d.)

• Several methods to accomplish this

(cont’d):

• find(substring): searches for

substring within the string

• Returns lowest index of the substring, or if the

substring is not contained in the string, returns -1

• replace(substring, new_string):

• Returns a copy of the string where every
occurrence of substring is replaced with

new_string

Copyright © 2018 Pearson Education, Inc.

String Methods (cont’d.)

Copyright © 2018 Pearson Education, Inc.

The Repetition Operator

• Repetition operator: makes multiple

copies of a string and joins them

together

• The * symbol is a repetition operator when

applied to a string and an integer

• String is left operand; number is right

• General format: string_to_copy * n

• Variable references a new string which

contains multiple copies of the original string

Copyright © 2018 Pearson Education, Inc.

Splitting a String

• split method: returns a list containing

the words in the string

• By default, uses space as separator

• Can specify a different separator by passing it
as an argument to the split method

• Also referred to as parsing a string.

Copyright © 2018 Pearson Education, Inc.

chr and ord Functions
• Recall, the vast majority of

computer systems store data in

a binary form, 0's and 1's

• We have encoding schemes to

specify what a given sequence

of 0's and 1's represents, such

as characters, colors, sound

• In Python, the built in chr and

ord functions can be used to

see the encoding for strings of

length 1

Copyright © 2018 Pearson Education, Inc.

C H A P T E R 9

Dictionaries

and Sets

Copyright © 2018 Pearson Education, Inc.

Topics

• Dictionaries

• Sets

• Serializing Objects

Copyright © 2018 Pearson Education, Inc.

DNA Count
• DNA Deoxyribonucleic acid

• "The polymer carries genetic instructions for the

development, functioning, growth and

reproduction of all known organisms and many

viruses. "

• Part of the building blocks of DNA are 4

nitrogen containing nucleobases

• cytosine [C], guanine [G], adenine [A]

or thymine [T]

Copyright © 2018 Pearson Education, Inc.

DNA Data

• Massive amounts of work to catalog

and decode DNA in organisms has

been done.
• https://www.kaggle.com/datasets/nageshsingh/dna-

sequence-dataset?select=dog.txt

• ATGCCACAGCTAGATACATCCACCTGATTTATTATA

ATCTTTTCAATATTTCTCACCCTCTTCATCCTATTTC

AACTAAAAATTTCAAATCACTACTACCCAGAAAAC

CCGATAACCAAATCTGCTAAAATTGCTGGTCAACA

TAATCCTTGAGAAAACAAATGAACGAAAATCTATTC

GCTTCTTTCGCTGCCCCCTCAATAA

https://www.kaggle.com/datasets/nageshsingh/dna-sequence-dataset?select=dog.txt

Copyright © 2018 Pearson Education, Inc.

DNA Counts

• Write a function that given a string that

represents a portion of DNA returns the

frequency of the four nucleobases

• cytosine [C], guanine [G], adenine [A]

or thymine [T]

Copyright © 2018 Pearson Education, Inc.

Dictionaries
• Dictionary: data structure that stores a

collection of key-value pairs

• Each element consists of a key and a value

• Often referred to as mapping of key to value

• Key must be an immutable object

• A real world dictionary, the words are the keys and the

definitions are the values

• Given the word you can find the value quickly

• To retrieve a specific value, use the key associated

with it

• Format for creating a dictionary with given values

dictionary = {key1:val1, key2:val2}

Copyright © 2018 Pearson Education, Inc.

Visualization of Dictionary

• https://docs.swift.org/swift-book/LanguageGuide/CollectionTypes.html

Copyright © 2018 Pearson Education, Inc.

Retrieving a Value from a Dictionary

• Prior to Python 3.7 the keys in a dictionary are in

no discernible order from the client's perspective

• Python 3.7 and later, dictionaries maintain keys in

insertion order

• General format for retrieving value from
dictionary: dictionary[key]

• If key in the dictionary, associated value is returned,

otherwise, KeyError exception is raised

• Test whether a key is in a dictionary using the in

and not in operators

• Helps prevent KeyError exceptions

Copyright © 2018 Pearson Education, Inc.

Adding Elements to an

Existing Dictionary
• Dictionaries are mutable objects

• To add a new key-value pair:

dictionary[key] = value

• If key exists in the dictionary, the value

associated with it will be changed

• if the key doesn't exist this adds the key-value

pair to the dictionary

Copyright © 2018 Pearson Education, Inc.

Deleting Elements From an

Existing Dictionary
• To remove a key-value pair:

d.pop(key)

• If key is not in the dictionary, KeyError

exception is raised

• OR del dictionary[key]

Copyright © 2018 Pearson Education, Inc.

Getting the Number of Elements

and Mixing Data Types

• len function: used to obtain number of

key-value pairs in a dictionary

• Keys must be immutable objects, but

associated values can be any type of

object

• One dictionary can include keys of several

different immutable types. Heterogeneous.

• Values stored in a single dictionary can

be of different types

Copyright © 2018 Pearson Education, Inc.

Creating an Empty Dictionary and
Using for Loop to Iterate Over a

Dictionary
• To create an empty dictionary:

• Use {}

• Use built-in function dict()

• Elements can be added to the dictionary as

program executes

• Use a for loop to iterate over a

dictionary

• General format: for key in dictionary:

Copyright © 2018 Pearson Education, Inc.

Some Dictionary Methods

• clear method: deletes all the elements

in a dictionary, leaving it empty

• Format: dictionary.clear()

• get method: gets a value associated

with specified key from the dictionary

• Format: dictionary.get(key, default)

•default is returned if key is not found

• Alternative to [] operator

• Cannot raise KeyError exception

Copyright © 2018 Pearson Education, Inc.

Some Dictionary Methods

(cont’d.)
• items method: returns all the

dictionaries keys and associated

values

• Format: dictionary.items()

• Returned as a dictionary view

• Each element in dictionary view is a tuple which

contains a key and its associated value

• Use a for loop to iterate over the tuples in the

sequence

• Can use a variable which receives a tuple, or can

use two variables which receive key and value

Copyright © 2018 Pearson Education, Inc.

Some Dictionary Methods

(cont’d.)
• keys method: returns all the

dictionaries keys as a sequence

• Format: dictionary.keys()

• pop method: returns value associated

with specified key and removes that

key-value pair from the dictionary

• Format: dictionary.pop(key, default)

•default is returned if key is not found

Copyright © 2018 Pearson Education, Inc.

Some Dictionary Methods

(cont’d.)
• popitem method: returns a randomly

selected key-value pair and removes

that key-value pair from the dictionary

• Format: dictionary.popitem()

• Key-value pair returned as a tuple

• values method: returns all the

dictionaries values as a sequence

• Format: dictionary.values()

• Use a for loop to iterate over the values

Copyright © 2018 Pearson Education, Inc.

Some Dictionary Methods

(cont’d.)

Copyright © 2018 Pearson Education, Inc.

Dictionary Example

• Use a dictionary to determine which

"word" occurs the most in a text.

• What will be the keys?

• What will be the values?

Copyright © 2018 Pearson Education, Inc.

Sets

• Set: object that stores a collection of data

in same way as mathematical set

• Items are unique, duplicates don’t' exist in a set

• Set is unordered, from the client's perspective

• Elements can be of different data types

A Set

37

12.25

'Python'

['Python', 73, 'CS', 37]

Copyright © 2018 Pearson Education, Inc.

Creating a Set
• set function: used to create a set

• Simple set creation

• set1 = {12, 'Python', 37, 73}

• For empty set, call set()

• For non-empty set, call set(argument) where

argument is an object that contains iterable

elements

• e.g., argument can be a list, string, or tuple

• If argument is a string, each character becomes a set

element

• For set of strings, pass them to the function as a list

• If argument contains duplicates, only one of the

duplicates will appear in the set

Copyright © 2018 Pearson Education, Inc.

Creating Data Types
• List:

• data = [7, 37, 5, 37, 12, 37.5]

• List of lists:
• table = [[1, 2], [3, 7], [19, 73]]

• String:
• name = 'Python Language'

• Tuple:
• tup1 = (37, 'Python', 73, 12, 12)

• Dictionary:
• freq_map = {'Python': 3, 'Java': 7}

• Set:
• lang_set= {'Python', 'Java', 'C++'}

Copyright © 2018 Pearson Education, Inc.

Sets are Unordered

• Unlike the keys of a dictionary (which

are a set, no duplicates), the elements

in a Python set are unordered from the

client's perspective.

Copyright © 2018 Pearson Education, Inc.

Getting the Number of and

Adding Elements
• len function: returns the number of

elements in the set

• Sets are mutable objects

• add method: adds an element to a set

• What if set already contains that element?

• update method: adds a group of

elements to a set

• Argument must be a sequence containing

iterable elements, and each of the elements is

added to the set

Copyright © 2018 Pearson Education, Inc.

Deleting Elements From a Set

• remove and discard methods: remove

the specified item from the set

• The item that should be removed is passed to

both methods as an argument

• Behave differently when the specified item is

not found in the set

•remove method raises a KeyError exception

•discard method does not raise an exception

• clear method: clears all the elements

of the set

Copyright © 2018 Pearson Education, Inc.

Using the for Loop, in, and

not in Operators With a Set
• A for loop can be used to iterate over

elements in a set

• General format: for item in set:

• The loop iterates once for each element in

the set

• The in operator can be used to test

whether a value exists in a set

• Similarly, the not in operator can be used to

test whether a value does not exist in a set

Copyright © 2018 Pearson Education, Inc.

Finding the Union of Sets

• Union of two sets: a set that

contains all the elements of both

sets

• To find the union of two sets:

• Use the union method

• Format: set1.union(set2)

• Use the | operator

• Format: set1 | set2

• Both techniques return a new set

which contains the union of both sets

Copyright © 2018 Pearson Education, Inc.

Finding the Intersection of Sets
• Intersection of two sets: a set that

contains only the elements found

in both sets

• To find the intersection of two

sets:

• Use the intersection method

• Format: set1.intersection(set2)

• Use the & operator

• Format: set1 & set2

• Both techniques return a new set

which contains the intersection of

both sets

Copyright © 2018 Pearson Education, Inc.

Finding the Difference of Sets

• Difference of two sets: a set

that contains the elements

that appear in the first set but

do not appear in the second

set

• To find the difference of two

sets:

• Use the difference method

• Format: set1.difference(set2)

• Use the - operator

• Format: set1 - set2

set2

set1

Copyright © 2018 Pearson Education, Inc.

Finding the Symmetric

Difference of Sets
• Symmetric difference of two

sets: a set that contains the

elements that are not shared by

the two sets

• To find the symmetric difference

of two sets:

• Use the symmetric_difference

method

• Format:
set1.symmetric_difference(set2)

• Use the ^ operator

• Format: set1 ^ set2

Copyright © 2018 Pearson Education, Inc.

Finding Subsets and

Supersets
• Set A is subset of set B if all the

elements in set A are included in set B

• To determine whether set A is subset of

set B

• Use the issubset method

• Format: setA.issubset(setB)

• Use the <= operator

• Format: setA <= setB

Copyright © 2018 Pearson Education, Inc.

Finding Subsets and

Supersets (cont’d.)
• Set A is superset of set B if it contains

all the elements of set B

• To determine whether set A is superset

of set B

• Use the issuperset method

• Format: setA.issuperset(setB)

• Use the >= operator

• Format: setA >= setB

Copyright © 2018 Pearson Education, Inc.

Serializing Objects

• Serialize an object: convert the object

to a stream of bytes that can easily be

stored in a file

• Pickling: serializing an object

Copyright © 2018 Pearson Education, Inc.

Serializing Objects (cont’d.)

• To pickle an object:

• Import the pickle module

• Open a file for binary writing, 'wb' option

• Call the pickle.dump function

• Format: pickle.dump(object, file)

• Close the file

• You can pickle multiple objects to one

file prior to closing the file

Copyright © 2018 Pearson Education, Inc.

Serializing Objects (cont’d.)

• Unpickling: retrieving pickled object

• To unpickle an object:

• Import the pickle module

• Open a file for binary writing, 'rb'

• Call the pickle.load function

• Format: pickle.load(file)

• Close the file

• You can unpickle multiple objects from

the file

Copyright © 2015 Pearson Education, Inc.

C H A P T E R 10

Classes and

Object-

Oriented

Programming

Copyright © 2015 Pearson Education, Inc.

Procedural Programming

• Procedures: synonym for functions and

sub-routines

• Procedural programming: writing

programs made of functions that

perform specific tasks

• Functions typically operate on data items that

are separate from the functions

• Data items commonly passed from one

function to another

• Focus: On the algorithm and steps. Create

functions that operate on the program’s data

Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming
• Object-oriented programming: focuses on

creating classes and objects

• Model the problem on the data involved first,

not the big steps.

• Class: A programmer defined data type

• Object: entity that contains data and

functions

• Data is known as data attributes and functions are

known as methods

• Methods perform operations on the data attributes

• Encapsulation: combining data and code into

a single object

Copyright © 2015 Pearson Education, Inc.

Object Oriented Programming

• Recall a CPU only knows how to perform

on the order of 100 operations

• High level languages such as Python allow

us to, seemingly, create new operations

by defining new functions

• Object oriented languages allow

programmers to create new data types in

addition to the ones built into the language

• int, float, string, list, tuple, file, dictionary, set

Copyright © 2015 Pearson Education, Inc.

5

Object Oriented Design

Example - Monopoly

If we had to start

from scratch what

new data types would

we need to create?

Data Types Needed:

Copyright © 2015 Pearson Education, Inc.

Object Orientation
• The basic idea of object oriented programming (OOP) is

to view your problem as a collection of objects, each of

which has certain state and can perform certain actions.

• Each object has:

• some data that it maintains characterizing its current

state;

• a set of actions (methods) that it can perform.

• A programmer interacts with an object by calling its

methods; this is called method invocation. That should be

the only way that another programmer interacts with an

object.

• Significant object-oriented languages include Python,

Java, C++, C#, Perl, JavaScript, Objective C, and

others.

Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming

(cont’d.)

Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming

(cont’d.)
• Data hiding: object’s data attributes are

hidden from code outside the object

• Access restricted to the object’s methods

• Protects from accidental corruption

• Outside code does not need to know internal

structure of the object

• Object reusability: the same object can

be used in different programs

• Example: 3D image object can be used for

architecture and game programming

Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming

(cont’d.)

Copyright © 2015 Pearson Education, Inc.

An Everyday Example of an

Object
• Data attributes: define the state of an

object

• Example: clock object would have second,

minute, and hour data attributes

• Public methods: allow external code to

manipulate the object

• Example: set_time, set_alarm_time

• Private methods: used for object’s inner

workings

Copyright © 2015 Pearson Education, Inc.

Classes

• Class: code that specifies the data

attributes and methods of a particular

type of object

• Similar to a blueprint of a house or a cookie

cutter

• Instance: an object created from a

class

• Similar to a specific house built according to

the blueprint or a specific cookie

• There can be many instances of one class

Copyright © 2015 Pearson Education, Inc.

Classes

Copyright © 2015 Pearson Education, Inc.

Classes

Copyright © 2015 Pearson Education, Inc.

Simple Example
Class Definition for Playing cards

Playing cards have:

A Rank

A Suit
Define a

PlayingCard

class and then

create objects of

type PlayingCard

to form a deck

or a hand

of cards.

Copyright © 2015 Pearson Education, Inc.

A Concrete Example
• Imagine that you’re trying to do some

simple arithmetic. You need a Calculator

application, programmed in an OO manner.

It will have:

• Some data: the current value of its

• accumulator (the value stored and

displayed on the screen).

• History of ops?

• Memory?

• Some methods: things that you can ask
of the calculator to do:

• add a number to the accumulator, subtract a
number, multiply by a number, divide by a
number, zero out the accumulator value, etc.

Copyright © 2015 Pearson Education, Inc.

Calculator Specification
• In Python, you implement a particular type of object (soda

machine, calculator, etc.) with a class.

• Let’s define a class for our simple interactive calculator.

• Data: the current value of the accumulator.

Maybe a history of operations? Memory spots, aka variables?

• Methods: any of the following.

• clear: zero the accumulator

• print: display the accumulator value

• add k: add k to the accumulator

• sub k: subtract k from the accumulator

• mult k: multiply accumulator by k

• div k: divide accumulator by k

Copyright © 2015 Pearson Education, Inc.

Yet Another Example

• Example: A soda machine has:

• Data: products inside,

change available, amount

previously deposited, etc.

• Methods: accept a coin,

select a product, dispense a

soda, provide change after

purchase, return money

deposited, etc.

• Assignment 13

Copyright © 2015 Pearson Education, Inc.

Class Definitions
• Class definition: set of statements that

define a class’s methods and data attributes

• Format: begin with class ClassName:

• Class names typically start with uppercase letter and

internal words are capitalized, aka CamelCase

• Method definition like other Python

function definitions

•self parameter: required in every method in the class –

references the specific object that the method is working

on - The object the method is working on. The object

that called the method

name = 'Olivia'

name.upper() # name is the argument to self

https://peps.python.org/pep-0008/#class-names

Copyright © 2015 Pearson Education, Inc.

Class Definitions (cont’d.)

• Initializer method: automatically executed

when an instance of the class is created

• Initializes object’s data attributes and assigns
self parameter to the object that was just

created.

• Format: def __init__ (self):

• That's two underscores before and after init.

• Typically the first method in a class definition.

Copyright © 2015 Pearson Education, Inc.

Class Definitions (cont’d.)

Copyright © 2015 Pearson Education, Inc.

Class Definitions (cont’d.)

• To create a new instance of a class call

the initializer method

• Format: my_instance = ClassName()

• To call any of the class methods using

the created instance, use dot notation

• Format: my_instance.method()

• Because the self parameter references the

specific instance of the object, the method will

affect this instance

• Reference to self is passed automatically

Copyright © 2015 Pearson Education, Inc.

Hiding Attributes and Storing

Classes in Modules
• An object’s data attributes (aka the internal

variables) should be difficult to access

• To make sure of this, place two underscores (__) in

front of attribute name

• Example: __current_minute

• Classes can be stored in modules

• Filename for module must end in .py

• Module can be imported to programs that use the

class

Copyright © 2015 Pearson Education, Inc.

The Circle Class - in Circle.py

Copyright © 2015 Pearson Education, Inc.

The Circle Class - in Circle.py

Copyright © 2015 Pearson Education, Inc.

Client Code of Circle Class

• Recall, variables prefixed with the

double underscore (_ _) are hidden

from clients.

• Careful, easy to create logic errors

Copyright © 2015 Pearson Education, Inc.

Logic Error in Client Code
• Clients can add attributes (internal

data, internal variables) to objects

• Flexible? Yes. Dangerous? You bet!

Copyright © 2015 Pearson Education, Inc.

The BankAccount Class –

More About Classes
• Class methods can have multiple

parameters in addition to self

• For __init__, parameters needed to create

an instance of the class

• Example: a BankAccount object is created with a

balance

• When called, the initializer method receives a value to be
assigned to a __balance attribute

• For other methods, parameters may be

needed to perform required task
• Example: deposit method amount to be deposited

Copyright © 2015 Pearson Education, Inc.

The __str__ method

• Object’s state: the values of the object’s

attribute at a given moment

• __str__ method: return a string version

of the object, typically the state of its

internal data

• Automatically called when the object is

passed as an argument to the
print function

• Automatically called when the object is
passed as an argument to the str function

Copyright © 2015 Pearson Education, Inc.

Working With Instances

• Instance attribute: belongs to a specific

instance of a class

• Created when a method uses the self

parameter to create an attribute

• Can be local to a method, but continues to

exist after that method completes

• If many instances of a class are

created, each would has its own set of

attributes

Copyright © 2015 Pearson Education, Inc.

Copyright © 2015 Pearson Education, Inc.

Accessor and Mutator Methods
• Typically, all of a class’s data attributes

are private and provide methods to

access and change them

• Accessor methods: return a value from

a class’s attribute without changing it

• Safe way for code outside the class to retrieve

the value of attributes

• Mutator methods: store or change the

value of a data attribute

• You DO NOT have to have mutator methods

for all (or any) internal attributes

Copyright © 2015 Pearson Education, Inc.

Passing Objects as

Arguments
• Methods and functions often need to

accept objects as arguments

• When you pass an object as an

argument, you are actually passing a

reference to the object

• The receiving method or function has access

to the actual object

• Methods of the object can be called within the

receiving function or method, and data attributes

may be changed using mutator methods

Copyright © 2015 Pearson Education, Inc.

Other methods
• generally methods with the _ _name_ _

format are not meant to be called directly

• Instead we define them and then the are

called with other operators

_ _init_ _ ClassName()

_ _len_ _ len()

_ _str_ _ str

_ _add_ _ + _ _eq_ _ ==

_ _lt_ _ < _ _le_ _ <=

_ _gt_ _ > _ _ge_ _ >=

Copyright © 2015 Pearson Education, Inc.

Displaying New Classes in

Data Structures

Output of

print. Great!

Output of

print of list. Yuck!

Copyright © 2015 Pearson Education, Inc.

_ _str_ _ and _ _ repr_ _

• print calls the _ _str_ _ method on

objects sent to it

• a data structure calls the _ _repr_ _

method on the objects inside it to

• repr for representation

• Like _ _str_ _ but should display the

object in a way that we could use to

rebuild the object

Copyright © 2015 Pearson Education, Inc.

_ _repr_ _ method for Circle

Copyright © 2015 Pearson Education, Inc.

Techniques for Designing

Classes
• UML diagram: standard diagrams for

graphically depicting object-oriented

systems

• Stands for Unified Modeling Language

• General layout: box divided into three

sections:

• Top section: name of the class

• Middle section: list of data attributes

• Bottom section: list of class methods

Copyright © 2015 Pearson Education, Inc.

Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a

Problem
• When developing object oriented

program, first goal is to identify classes

• Typically involves identifying the real-world

objects that are in the problem

• Technique for identifying classes:

1. Get written description of the problem domain

2. Identify all nouns in the description, each of

which is a potential class

3. Refine the list to include only classes that are

relevant to the problem

Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a

Problem (cont’d.)
1. Get written description of the problem

domain

• May be written by you or by an expert

• Should include any or all of the following:

• Physical objects simulated by the program

• The role played by a person

• The result of a business event

• Recordkeeping items

Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a

Problem (cont’d.)
2. Identify all nouns in the description,

each of which is a potential class

• Should include noun phrases and pronouns

• Some nouns may appear twice

Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a

Problem (cont’d.)
3. Refine the list to include only classes

that are relevant to the problem

• Remove nouns that mean the same thing

• Remove nouns that represent items that the

program does not need to be concerned with

• Remove nouns that represent objects, not

classes

• Remove nouns that represent simple values

that can be assigned to a variable

Copyright © 2015 Pearson Education, Inc.

Identifying a Class’s

Responsibilities
• A classes responsibilities are:

• The things the class is responsible for

knowing

• Identifying these helps identify the class’s data

attributes

• The actions the class is responsible for doing

• Identifying these helps identify the class’s methods

• To find out a class’s responsibilities

look at the problem domain

• Deduce required information and actions

Copyright © 2015 Pearson Education, Inc.

Summary

• This chapter covered:

• Procedural vs. object-oriented programming

• Classes and instances

• Class definitions, including:

• The self parameter

• Data attributes and methods

•__init__ and __str__ functions

• Hiding attributes from code outside a class

• Storing classes in modules

• Designing classes

Copyright © 2018 Pearson Education, Inc.

C H A P T E R 12

Recursion

Copyright © 2018 Pearson Education, Inc.

An Interesting Problem

• Write a method that determines how

much space is take up by the files in a

directory

• A directory can contain files and

directories

• How many directories does our code have

to examine?

• How would you add up the space taken

up by the files in a single directory

• Hint: don't worry about any sub directories at first

Copyright © 2018 Pearson Education, Inc.

Sample Directory Structure
scottm

cs303e

m1.txt m2.txt

hw

a1.htm a2.htm a3.htm a4.htm

AP

A.pdf

AB.pdf

Copyright © 2018 Pearson Education, Inc.

os.path
• We used os.path to check if a path (location

of a file or directory) refers to a file that

exists

• Lots of other useful methods:

• os.path.isfile(path)

• os.path.isdir(path)

• os.path.getsize(path)

• Return the size, in bytes, of path. Raise OSError if the

file does not exist or is inaccessible.

• os.listdir(path='.')

• Return a list containing the names of the entries in the

directory given by path.

Copyright © 2018 Pearson Education, Inc.

Implementation

• Write a function that

given the name of a

directory returns the size

of the files in that

directory

• … and if the directory has

directories in it

(subdirectories) return the

size of the files in those

subdirectories

• … and if those subdirectories

have subdirectories…

https://www.cinemablend.com/new/An-Illustrated-Guide-5-Levels-Inception-19643.html

Copyright © 2018 Pearson Education, Inc.

Introduction to Recursion

• Recursive function: a function that

calls itself (with different arguments)

• Recursive function must have a way to

control the number of times it repeats

• Usually involves an if-else statement

which defines when the function should return

a value and when it should call itself

• Depth of recursion: the number of

times a function calls itself

Copyright © 2018 Pearson Education, Inc.

def main():

message(5)

def message(x):

if x == 0:

print(x, 'last!')

else:

print(x)

message(x - 1)

Copyright © 2018 Pearson Education, Inc.

Introduction to Recursion

(cont’d.)

Copyright © 2018 Pearson Education, Inc.

Problem Solving with

Recursion
• Recursion is a powerful tool for solving

repetitive problems

• Recursion is never required to solve

a problem

• Any problem that can be solved recursively

can be solved with a loop

• Recursive algorithms may be less efficient than

iterative ones in the number of computations

• Due to overhead of each function call

Copyright © 2018 Pearson Education, Inc.

Problem Solving with

Recursion (cont’d.)
• Some repetitive problems are more

easily solved with recursion

• General outline of recursive function:

• If the problem can be solved now without

recursion, solve and return

• Known as the base case

• Otherwise, reduce problem to smaller

problem of the same structure and call the

function again to solve the smaller problem

• Known as the recursive case

Copyright © 2018 Pearson Education, Inc.

Using Recursion to Calculate

the Factorial of a Number
• In mathematics, the n! notation

represents the factorial of a number n

• For n = 0, n! = 1

• For n > 0, n! = 1 x 2 x 3 x … x n

• The above definition lends itself to

recursive programming

• n = 0 is the base case

• n > 0 is the recursive case

• factorial(n) = n x factorial(n-1)

Copyright © 2018 Pearson Education, Inc.

Using Recursion (cont’d.)

Copyright © 2018 Pearson Education, Inc.

Copyright © 2018 Pearson Education, Inc.

Using Recursion (cont’d.)

• Since each call to the recursive

function reduces the problem:

• Eventually, it will get to the base case which

does not require recursion, and the recursion

will stop

• Usually the problem is reduced by

making one or more parameters

smaller at each function call

Copyright © 2018 Pearson Education, Inc.

Direct and Indirect Recursion

• Direct recursion: when a function

directly calls itself

• All the examples shown so far were of direct

recursion

• Indirect recursion: when function A

calls function B, which in turn calls

function A

• also known as mutual recursion

Copyright © 2018 Pearson Education, Inc.

Examples of Recursive

Algorithms
• Summing a range of list elements with

recursion

• Function receives a list containing range of

elements to be summed, index of starting item

in the range, and index of ending item in the

range

• Base case:

•if start index > end index return 0

• Recursive case:
• return current_number + sum(list, start+1, end)

Copyright © 2018 Pearson Education, Inc.

Examples of Recursive

Algorithms (cont’d.)

Copyright © 2018 Pearson Education, Inc.

The Fibonacci Series

• Fibonacci series: has two base cases
• if n = 0 then Fib(n) = 0

• if n = 1 then Fib(n) = 1

• if n > 1 then Fib(n) = Fib(n-1) + Fib(n-2)

• Corresponding function code:

Copyright © 2018 Pearson Education, Inc.

Finding the Greatest Common

Divisor
• Calculation of the greatest common divisor (GCD) of

two positive integers

• If x can be evenly divided by y, then

• gcd(x,y) = y

• Otherwise, gcd(x,y) = gcd(y, remainder of x/y)

• Corresponding function code:

Copyright © 2018 Pearson Education, Inc.

The Towers of Hanoi

• Mathematical game commonly used to

illustrate the power of recursion

• Uses three pegs and a set of discs in

decreasing sizes

• Goal of the game: move the discs from

leftmost peg to rightmost peg

• Only one disc can be moved at a time

• A disc cannot be placed on top of a smaller disc

• All discs must be on a peg except while being

moved

Copyright © 2018 Pearson Education, Inc.

The Towers of Hanoi (cont’d.)

Copyright © 2018 Pearson Education, Inc.

Copyright © 2018 Pearson Education, Inc.

The Towers of Hanoi (cont’d)

• Problem statement: move n discs from

peg 1 to peg 3 using peg 2 as a

temporary peg

• Recursive solution:

• If n == 1: Move disc from peg 1 to peg 3

• Otherwise:

• Move n-1 discs from peg 1 to peg 2, using peg 3

• Move remaining disc from peg 1 to peg 3

• Move n-1 discs from peg 2 to peg 3, using peg 1

Copyright © 2018 Pearson Education, Inc.

The Towers of Hanoi (cont’d.)

Copyright © 2018 Pearson Education, Inc.

Recursion versus Looping

• Reasons not to use recursion:

• Less efficient: entails function calling

overhead that is not necessary with a loop

• Usually a solution using a loop is more

evident than a recursive solution

• Some problems are more easily solved

with recursion than with a loop

• Example: Factorial, where the mathematical

definition lends itself to recursion

Sorting and Searching Lists

"There's nothing in your head

the sorting hat can't see. So try

me on and I will tell you where

you ought to be."

-The Sorting Hat,

Harry Potter and

the Sorcerer's Stone

Searching

Given a list of ints find the index of the first

occurrence of a target int

Given the above list and a target of 27 the

method returns 2

What if not present?

What if more than one occurrence?

index 0 1 2 3 4 5

value 89 0 27 -5 42 11

2

Using List Methods

3

linear or sequential search

4

Implement code for linear search in Python,

give a list.

Binary Search

5

https://xkcd.com/1153/

6

Searching in a Sorted List

If items are sorted then we can divide and
conquer

dividing your work in half with each step

– generally a good thing

The Binary Search on List in Ascending order

– Start at middle of list

– is that the item?

– If not is it less than or greater than the item?

– less than, move to second half of list

– greater than, move to first half of list

– repeat until found or sub list size = 0

7

Binary Search

list

low item middle item high item

Is middle item what we are looking for? If not is it

more or less than the target item? (Assume lower)

list

low middle high

item item item

and so forth…

8

Implement Binary Search

2 3 5 7 11 13 17 19 23 29 31 37 41 4743 53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

9

Trace When Key == 3

Trace When Key == 30

Variables of Interest?

Sorting

XKCD

http://xk

cd.com/

1185/

10

http://xkcd.com/1185/
http://xkcd.com/1185/

Sorting

A fundamental application for computers

Done to make finding data (searching) faster

Many different algorithms for sorting

One of the difficulties with sorting is working

with a fixed size storage container (array)

– if resize, that is expensive (slow)

– Trying to apply a human technique of sorting can

be difficult

– try sorting a pile of papers and clearly write out

the algorithm you follow
11

List sort Method
List has

a sort method

Works with

mixed ints and

floats

Works with

Strings

Does not work

with strings and

numbers mixed

Can work with

other data types 12

13

Insertion Sort

Another of the Simple sort

The first item is sorted

Compare the second item to the first

– if smaller swap

Third item, compare to item next to it

– need to swap

– after swap compare again

And so forth…

14

Insertion Sort in Practice
44 68 191 119 119 37 83 82 191 45 158 130 76 153 39 25

http://tinyurl.com/d8spm2l

animation of insertion sort algorithm

http://tinyurl.com/d8spm2l

Timing Question

Determine how long it takes to sort an array

with 100,000 elements in random order using

insertion sort. When the number of elements

is increased to 200,000 how long will it take

to sort the array?

A. About the same

B. 1.5 times as long

C. 2 times as long

D. 4 times as long

E. 8 times as long 15

