
CS303E: Elements of Computers and Programming

Python

Mike Scott

Department of Computer Science

University of Texas at Austin

Adapted from Dr. Bill Young's Slides

Last updated: May 23, 2023

CS303E Slideset 1: 2 Python

Some Thoughts about Programming

“The only way to learn a new programming language is by writing

programs in it.” –B. Kernighan and D. Ritchie

"Computers are good at following instructions, but not at reading

your mind." –D. Knuth

"Programming is not a spectator sport." - Bill Young

Program:

n. A magic spell cast over a computer allowing it to turn

one’s input into error messages.

tr. v. To engage in a pastime similar to banging one’s head

against a wall, but with fewer opportunities for reward.

CS303E Slideset 1: 3 Python

What is Python?

Python is a high-level programming language developed by

Guido van Rossum in the Netherlands in the late 1980s. It

was released in 1991.

Python has twice

received recognition

as the language with

the largest growth

in popularity for the

year (2007, 2010).

It’s named after the

British comedy

troupe Monty

Python.

CS303E Slideset 1: 4 Python

What is Python?

Python is a simple but powerful scripting language. It has

features that make it an excellent first programming language.

• Easy and intuitive mode of interacting with the system.

• Clean syntax that is concise. You can say/do a lot with

few words.

• Design is compact. You can carry the most

important language constructs in your head.

• There is a very powerful library of useful functions
available.

You can be productive quite quickly. You will be spending more

time solving problems and writing code, and less time grappling

with the idiosyncrasies of the language.

CS303E Slideset 1: 5 Python

What is Python?

Python is a general purpose programming language.

That means you can use Python to write code for any

programming tasks.

• Python was used to write code

for: the Google search engine

• mission critical projects at NASA

• programs for exchanging financial transactions at

the NY Stock Exchange

• the grading scripts for this class

CS303E Slideset 1: 6 Python

What is Python?

Python can be an object-oriented programming language.
Object-oriented programming is a powerful approach to

developing reusable software. More on that later!

Python is interpreted, which means that Python

code is translated and executed one statement at a

time.

This is different from other languages such as C which are

compiled, the code is converted to machine code and

then the program can be run after the compilation is

finished.

CS303E Slideset 1: 7 Python

The Interpreter

Actually, Python is always translated into byte code, a lower level

representation.

The byte code is then interpreted by the Python Virtual Machine.

CS303E Slideset 1: 8 Python

Getting Python

To install Python on your personal computer / laptop, you can

download it for free at: www.python.org/downloads

There are two major versions: Python 2 and Python 3.

Python 3 is newer and is not backward compatible with

Python 2. Make sure you’re running Python 3.8.

It’s available for Windows, Mac OS, Linux.

If you have a Mac, it may already be pre-installed.

It should already be available on most computers on campus.

It comes with an editor and user interface called IDLE.

I strongly recommend downloading and installing the

PyCharm, Educational version, IDE.

http://www.python.org/downloads

CS303E Slideset 1: 9 Python

A Simple Python Program: Interactive Mode

This illustrates using Python in interactive mode from the

command line. Your command to start Python may be different.

Here you see the prompt for the OS/command loop for the

Python interpreter read, eval, print loop.

CS303E Slideset 1: 10 Python

A Simple Python Program: Script Mode

Here’s the “same” program as I’d be more likely to write it. Enter

the following text using a text editor into a file called, say,

MyFirstProgram.py. This is called script mode.

In file my_first_program.py:

CS303E Slideset 1: 11 Python

A Simple Python Program

This submits the program in file my_first_program.py to

the Python interpreter to execute.

This is better, because you have a file containing your program and

you can fix errors and resubmit without retyping a bunch of stuff.

CS303E Slideset 1: 12 Python

Aside: About Print

If you do a computation and want to display the result use the

print function.

You can print multiple values with one print statement:

Notice that if you’re computing an expression in interactive mode,
it will display the value without an explicit print.

Python will figure out the type of the value and print it

appropriately. This is very handy when learning the basics

of computations in Python.

CS303E Slideset 1: 13 Python

Another aside: Binary Numbers, Base 2 Numbers

▪ The vast majority of computer systems use
digital storage

▪ Some physical phenomena that is interpreted
to be a 0 or 1

▪ abstraction, pretending something is different,
simpler, than it really is

▪ also known as binary representations
▪ 1 bit -> 1 binary digit, a 0 or a 1
▪ 1 byte -> 8 bits
▪ binary numbers, base 2 numbers

CS303E Slideset 1: 14 Python

Base 2 Numbers

▪ 537210

▪ = (5 * 1,000) + (3 * 100) + (7 * 10) + (2 * 1)

▪ = (5 * 103)+ (3 * 102)+ (7 * 101)+ (2 * 100)
▪ Why do we use base 10? 10 fingers?
▪ Choice of base is somewhat arbitrary
▪ In computing we also use base 2, base 8, and

base 16 depending on the situation
▪ In base 10, 10 digits, 0 - 9
▪ In base 2, 2 digits, 0 and 1

CS303E Slideset 1: 15 Python

Base 2 Numbers

▪ 10110112

▪ = (1 * 64) + (0 * 32) + (1 * 16) + (1 * 8) +
(0 * 4) + (1 * 2) + (1 * 1) = 91

▪ = (1 * 26) + (0 * 25) + (1 * 24) + (1 * 23) +
(0 * 22) + (1 * 21) + (1 * 20) = 91

▪ Negative numbers and real numbers are
typically stored in a non-obvious way

▪ If the computer systems only stores 0s and 1s
how do we get digital images, characters,
colors, sound, …

▪ Encoding

CS303E Slideset 1: 16 Python

Encoding

▪ Encoding is a system or standard that dictates
what "thing" is representing by what number

▪ Example ASCII or UTF-8
▪ This number represents this character
▪ First 128 numbers of ASCII and UTF-8 same
▪ 32 -> space character
▪ 65 -> capital A
▪ 97 -> lower case a
▪ 48 -> digit 0

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/UTF-8

CS303E Slideset 1: 17 Python

Computer Memory

▪ Recall, 1 bit -> a single 0 or 1
▪ 1 byte = 8 bits
▪ A typical laptop or desktop circa 2023
▪ … has 4 to 32 Gigabytes of RAM, also known

as main memory.
▪ 1 Gigabyte -> 1 billion bytes

▪ The programs that are running store their
instructions and data (typically) in the RAM

▪ … have 100s of Gigabytes up to several
Terabytes (trillions of bytes) in secondary
storage. Long term storage of data, files

▪ Typically spinning disks or solid state drives.

CS303E Slideset 1: 18 Python

The Framework of a Simple Python Program

Define your program in file
Filename.py:

def main () :

Python s t a t e m e n t
Python s t a t e m e n t
Python s t a t e m e n t

. . .
Python s t a t e m en t
Python s t a t e m e n t
Python s t a t e m e n t

main ()

To run it:

> python file_name.py

Defining a function called main.

These are the instructions that make up

your program. Indent all of them the

same amount (usually 4 spaces).

This says to execute the function main.

This submits your program in

file_name.py to the Python

interpreter.

CS303E Slideset 1: 19 Python

Aside: Running Python From a File

Typically, if your program is in file hello.py, you can run your

program by typing at the command line:

> python hello.py

You can also create a stand alone script. On a Unix / Linux

machine you can create a script called hello.py containing the

first line below (assuming that’s where your Python

implementation lives):

! / l us r / bi n/ pyt hon3
The line above may vary based on your system
pr i nt ('Hello World!')

CS303E Slideset 1: 20 Python

Program Documentation

Documentation refers to comments included within a source code

file that explain what the code does.

Include a file header: a summary at the beginning of each file

explaining what the file contains, what the code does, and

what key feature or techniques appear.

You shall always include your name, email, grader, and

a brief description of the program.

File: <NAME OF FILE>
Description: <A DESCRIPTION OF YOUR PROGRAM>
Assignment Number: <Assignment Number, 1 - 13>
#
Name: <YOUR NAME>
EID: <YOUR EID>
Email: <YOUR EMAIL>
Grader: <YOUR GRADER'S NAME Carolyn OR Emma or Ahmad>
#
On my honor, <YOUR NAME>, this programming assignment is my own work
and I have not provided this code to any other student.

CS303E Slideset 1: 21 Python

Program Documentation

Comments shall also be interspersed in your code:
Before each function or class definition (i.e., program

subdivision);

Before each major code block that performs a significant task;
Before or next to any line of code that may be hard to
understand.

sum = 0
s um t he i nt e ge r s [s t ar t . . . end]
f or i i n r ange (s t ar t , end + 1) :

sum += i

CS303E Slideset 1: 22 Python

Don’t Over Comment

Comments are useful so that you and others can understand your

code. Useless comments just clutter things up:

x = 1
y = 2

ass i gn 1 to x
ass i gn 2 to y

CS303E Slideset 1: 23 Python

Programming Style

Every language has

its own unique

syntax and style.

This is a C

program.

Good programmers

follow certain

conventions to

make programs

clear and easy to

read, understand,

debug, and

maintain. We have

conventions in

303e. Check the

assignment page.

i nc l ude < s t di o . h>

/ * p r i n t t a b l e o f Fa h r e n h e i t to C e l s i u s
[C = 5/ 9(F- 32)] f or f ahr = 0 , 20 , . . . ,

300 * /

mai n()
{

i nt f ahr , c e l s i us ;
i nt l ower , upper , s t e p;

lower = 0 ; / * low l i m i t o f t a b l e * /
upper = 3 0 0 ; / * high l i m i t o f t a b l e * /
s t ep = 2 0 ; / * s t ep s i z e * /
f a h r = l o w e r ;
whi l e (f ahr <= uppe r) {

c e l s i us = 5 * (f ahr - 32) / 9;
pr i nt f (" %d\t %d\n" , f ahr , c e l s i us) ;
f ahr = f ahr + s t e p;

}
}

CS303E Slideset 1: 24 Python

Programming Style

Some important Python programming conventions:

Follow variable and function naming conventions.

Use meaningful variable/function names.

Document your code effectively.

Each level indented the same (4 spaces).

Use blank lines to separate segments of code inside functions.

2 blank lines before the first line of function (the function header) and

after the last line of code of the function

We’ll learn more elements of style as we go.

Check the assignments page for more details.

https://www.cs.utexas.edu/~scottm/cs303e/Assignments/index.htm

CS303E Slideset 1: 25 Python

Errors:
Syntax

Remember: “Program: n. A magic spell cast over a computer allowing it

to turn one’s input into error messages.”

We will encounter three types of errors when developing

our Python program.

syntax errors: these are ill-formed Python and caught by the interpreter

prior to executing your code.

>>> 3 = x
Fi l e " < s t di n >" , l i ne 1

Synt axEr r or : c an’ t as s i gn t o
l i t e r al

These are typically the easiest to find and fix.

CS303E Slideset 1: 26 Python

Errors: Runtime

runtime errors: you try something illegal while your code is

executing

>>> x = 0
>>> y = 3
>>> y / x
Tr ac e bac k (mos t r e c e nt c al l l as t) :

Fi l e " < s t di n >" , l i ne 1 , i n < modul e >

Ze r oDi vi s i onEr r or : di vi s i on by zer o

CS303E Slideset 1: 27 Python

Almost Certainly It’s Our Fault!

At some point we all say: “My program is obviously right. The

interpreter / Python must be incorrect / flaky / and i t hates me.”

"As soon as we started programming, we found out
to our surprise that it wasn't as easy to get programs
right as we had thought. Debugging had to be
discovered. I can remember the exact instant when
I realized that a large part of my life from
then on was going to be spent in finding
mistakes in my own programs."

-Sir Maurice V Wilkes

https://en.wikipedia.org/wiki/Maurice_Wilkes

CS303E Slideset 1: 28 Python

Errors: Logic

logic errors: C a l c u l a t e 6 ! (6 * 5 * 4 * 3 * 2 * 1)
your program runs but returns an incorrect result.

>>> prod = 0
>>> f o r x in r a n g e (1 , 6) :
. . . prod *= x
>>> pr i nt (pr od)
0

This program is syntactically fine and runs without error. But it

probably doesn’t do what the programmer intended; it always

returns 0 no matter the values in range. How would you fix it?

Logic errors are typically the hardest errors to find and fix.

CS303E Slideset 1: 29 Python

Try It!

“The only way to learn a new programming language is by writing

programs in it.” –B. Kernighan and D. Ritchie

Python is wonderfully accessible. If you

wonder whether something works or is legal,

just try it out.

Programming is not a spectator sport!

Write programs! Do exercises!

