
Copyright © 2015 Pearson Education, Inc.

C H A P T E R 10

Classes and

Object-

Oriented

Programming

Copyright © 2015 Pearson Education, Inc.

Procedural Programming

• Procedures: synonym for functions and

sub-routines

• Procedural programming: writing

programs made of functions that

perform specific tasks

• Functions typically operate on data items that

are separate from the functions

• Data items commonly passed from one

function to another

• Focus: On the algorithm and steps. Create

functions that operate on the program’s data

Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming
• Object-oriented programming: focuses on

creating classes and objects

• Model the problem on the data involved first,

not the big steps.

• Class: A programmer defined data type

• Object: entity that contains data and

functions

• Data is known as data attributes and functions are

known as methods

• Methods perform operations on the data attributes

• Encapsulation: combining data and code into

a single object

Copyright © 2015 Pearson Education, Inc.

Object Oriented Programming

• Recall a CPU only knows how to perform

on the order of 100 operations

• High level languages such as Python allow

us to, seemingly, create new operations

by defining new functions

• Object oriented languages allow

programmers to create new data types in

addition to the ones built into the language

• int, float, string, list, tuple, file, dictionary, set

Copyright © 2015 Pearson Education, Inc.

5

Object Oriented Design

Example - Monopoly

If we had to start

from scratch what

new data types would

we need to create?

Data Types Needed:

Copyright © 2015 Pearson Education, Inc.

Object Orientation
• The basic idea of object oriented programming (OOP) is

to view your problem as a collection of objects, each of

which has certain state and can perform certain actions.

• Each object has:

• some data that it maintains characterizing its current

state;

• a set of actions (methods) that it can perform.

• A programmer interacts with an object by calling its

methods; this is called method invocation. That should be

the only way that another programmer interacts with an

object.

• Significant object-oriented languages include Python,

Java, C++, C#, Perl, JavaScript, Objective C, and

others.

Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming

(cont’d.)

Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming

(cont’d.)
• Data hiding: object’s data attributes are

hidden from code outside the object

• Access restricted to the object’s methods

• Protects from accidental corruption

• Outside code does not need to know internal

structure of the object

• Object reusability: the same object can

be used in different programs

• Example: 3D image object can be used for

architecture and game programming

Copyright © 2015 Pearson Education, Inc.

Object-Oriented Programming

(cont’d.)

Copyright © 2015 Pearson Education, Inc.

An Everyday Example of an

Object
• Data attributes: define the state of an

object

• Example: clock object would have second,

minute, and hour data attributes

• Public methods: allow external code to

manipulate the object

• Example: set_time, set_alarm_time

• Private methods: used for object’s inner

workings

Copyright © 2015 Pearson Education, Inc.

Classes

• Class: code that specifies the data

attributes and methods of a particular

type of object

• Similar to a blueprint of a house or a cookie

cutter

• Instance: an object created from a

class

• Similar to a specific house built according to

the blueprint or a specific cookie

• There can be many instances of one class

Copyright © 2015 Pearson Education, Inc.

Classes

Copyright © 2015 Pearson Education, Inc.

Classes

Copyright © 2015 Pearson Education, Inc.

Simple Example
Class Definition for Playing cards

Playing cards have:

A Rank

A Suit
Define a

PlayingCard

class and then

create objects of

type PlayingCard

to form a deck

or a hand

of cards.

Copyright © 2015 Pearson Education, Inc.

A Concrete Example
• Imagine that you’re trying to do some

simple arithmetic. You need a Calculator

application, programmed in an OO manner.

It will have:

• Some data: the current value of its

• accumulator (the value stored and

displayed on the screen).

• History of ops?

• Memory?

• Some methods: things that you can ask
of the calculator to do:

• add a number to the accumulator, subtract a
number, multiply by a number, divide by a
number, zero out the accumulator value, etc.

Copyright © 2015 Pearson Education, Inc.

Calculator Specification
• In Python, you implement a particular type of object (soda

machine, calculator, etc.) with a class.

• Let’s define a class for our simple interactive calculator.

• Data: the current value of the accumulator.

Maybe a history of operations? Memory spots, aka variables?

• Methods: any of the following.

• clear: zero the accumulator

• print: display the accumulator value

• add k: add k to the accumulator

• sub k: subtract k from the accumulator

• mult k: multiply accumulator by k

• div k: divide accumulator by k

Copyright © 2015 Pearson Education, Inc.

Yet Another Example

• Example: A soda machine has:

• Data: products inside,

change available, amount

previously deposited, etc.

• Methods: accept a coin,

select a product, dispense a

soda, provide change after

purchase, return money

deposited, etc.

• Assignment 13

Copyright © 2015 Pearson Education, Inc.

Class Definitions
• Class definition: set of statements that

define a class’s methods and data attributes

• Format: begin with class ClassName:

• Class names typically start with uppercase letter and

internal words are capitalized, aka CamelCase

• Method definition like other Python

function definitions

•self parameter: required in every method in the class –

references the specific object that the method is working

on - The object the method is working on. The object

that called the method

name = 'Olivia'

name.upper() # name is the argument to self

https://peps.python.org/pep-0008/#class-names

Copyright © 2015 Pearson Education, Inc.

Class Definitions (cont’d.)

• Initializer method: automatically executed

when an instance of the class is created

• Initializes object’s data attributes and assigns
self parameter to the object that was just

created.

• Format: def __init__ (self):

• That's two underscores before and after init.

• Typically the first method in a class definition.

Copyright © 2015 Pearson Education, Inc.

Class Definitions (cont’d.)

Copyright © 2015 Pearson Education, Inc.

Class Definitions (cont’d.)

• To create a new instance of a class call

the initializer method

• Format: my_instance = ClassName()

• To call any of the class methods using

the created instance, use dot notation

• Format: my_instance.method()

• Because the self parameter references the

specific instance of the object, the method will

affect this instance

• Reference to self is passed automatically

Copyright © 2015 Pearson Education, Inc.

Hiding Attributes and Storing

Classes in Modules
• An object’s data attributes (aka the internal

variables) should be difficult to access

• To make sure of this, place two underscores (__) in

front of attribute name

• Example: __current_minute

• Classes can be stored in modules

• Filename for module must end in .py

• Module can be imported to programs that use the

class

Copyright © 2015 Pearson Education, Inc.

The Circle Class - in Circle.py

Copyright © 2015 Pearson Education, Inc.

The Circle Class - in Circle.py

Copyright © 2015 Pearson Education, Inc.

Client Code of Circle Class

• Recall, variables prefixed with the

double underscore (_ _) are hidden

from clients.

• Careful, easy to create logic errors

Copyright © 2015 Pearson Education, Inc.

Logic Error in Client Code
• Clients can add attributes (internal

data, internal variables) to objects

• Flexible? Yes. Dangerous? You bet!

Copyright © 2015 Pearson Education, Inc.

The BankAccount Class –

More About Classes
• Class methods can have multiple

parameters in addition to self

• For __init__, parameters needed to create

an instance of the class

• Example: a BankAccount object is created with a

balance

• When called, the initializer method receives a value to be
assigned to a __balance attribute

• For other methods, parameters may be

needed to perform required task
• Example: deposit method amount to be deposited

Copyright © 2015 Pearson Education, Inc.

The __str__ method

• Object’s state: the values of the object’s

attribute at a given moment

• __str__ method: return a string version

of the object, typically the state of its

internal data

• Automatically called when the object is

passed as an argument to the
print function

• Automatically called when the object is
passed as an argument to the str function

Copyright © 2015 Pearson Education, Inc.

Working With Instances

• Instance attribute: belongs to a specific

instance of a class

• Created when a method uses the self

parameter to create an attribute

• Can be local to a method, but continues to

exist after that method completes

• If many instances of a class are

created, each would has its own set of

attributes

Copyright © 2015 Pearson Education, Inc.

Copyright © 2015 Pearson Education, Inc.

Accessor and Mutator Methods
• Typically, all of a class’s data attributes

are private and provide methods to

access and change them

• Accessor methods: return a value from

a class’s attribute without changing it

• Safe way for code outside the class to retrieve

the value of attributes

• Mutator methods: store or change the

value of a data attribute

• You DO NOT have to have mutator methods

for all (or any) internal attributes

Copyright © 2015 Pearson Education, Inc.

Passing Objects as

Arguments
• Methods and functions often need to

accept objects as arguments

• When you pass an object as an

argument, you are actually passing a

reference to the object

• The receiving method or function has access

to the actual object

• Methods of the object can be called within the

receiving function or method, and data attributes

may be changed using mutator methods

Copyright © 2015 Pearson Education, Inc.

Other methods
• generally methods with the _ _name_ _

format are not meant to be called directly

• Instead we define them and then the are

called with other operators

_ _init_ _ ClassName()

_ _len_ _ len()

_ _str_ _ str

_ _add_ _ + _ _eq_ _ ==

_ _lt_ _ < _ _le_ _ <=

_ _gt_ _ > _ _ge_ _ >=

Copyright © 2015 Pearson Education, Inc.

Displaying New Classes in

Data Structures

Output of

print. Great!

Output of

print of list. Yuck!

Copyright © 2015 Pearson Education, Inc.

_ _str_ _ and _ _ repr_ _

• print calls the _ _str_ _ method on

objects sent to it

• a data structure calls the _ _repr_ _

method on the objects inside it to

• repr for representation

• Like _ _str_ _ but should display the

object in a way that we could use to

rebuild the object

Copyright © 2015 Pearson Education, Inc.

_ _repr_ _ method for Circle

Copyright © 2015 Pearson Education, Inc.

Techniques for Designing

Classes
• UML diagram: standard diagrams for

graphically depicting object-oriented

systems

• Stands for Unified Modeling Language

• General layout: box divided into three

sections:

• Top section: name of the class

• Middle section: list of data attributes

• Bottom section: list of class methods

Copyright © 2015 Pearson Education, Inc.

Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a

Problem
• When developing object oriented

program, first goal is to identify classes

• Typically involves identifying the real-world

objects that are in the problem

• Technique for identifying classes:

1. Get written description of the problem domain

2. Identify all nouns in the description, each of

which is a potential class

3. Refine the list to include only classes that are

relevant to the problem

Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a

Problem (cont’d.)
1. Get written description of the problem

domain

• May be written by you or by an expert

• Should include any or all of the following:

• Physical objects simulated by the program

• The role played by a person

• The result of a business event

• Recordkeeping items

Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a

Problem (cont’d.)
2. Identify all nouns in the description,

each of which is a potential class

• Should include noun phrases and pronouns

• Some nouns may appear twice

Copyright © 2015 Pearson Education, Inc.

Finding the Classes in a

Problem (cont’d.)
3. Refine the list to include only classes

that are relevant to the problem

• Remove nouns that mean the same thing

• Remove nouns that represent items that the

program does not need to be concerned with

• Remove nouns that represent objects, not

classes

• Remove nouns that represent simple values

that can be assigned to a variable

Copyright © 2015 Pearson Education, Inc.

Identifying a Class’s

Responsibilities
• A classes responsibilities are:

• The things the class is responsible for

knowing

• Identifying these helps identify the class’s data

attributes

• The actions the class is responsible for doing

• Identifying these helps identify the class’s methods

• To find out a class’s responsibilities

look at the problem domain

• Deduce required information and actions

Copyright © 2015 Pearson Education, Inc.

Summary

• This chapter covered:

• Procedural vs. object-oriented programming

• Classes and instances

• Class definitions, including:

• The self parameter

• Data attributes and methods

•__init__ and __str__ functions

• Hiding attributes from code outside a class

• Storing classes in modules

• Designing classes

