OURTH EDITION

CHAPTER 12

Recursion

TONY GADDIS

@ Pearson Copyright © 2018 Pearson Education, Inc.

An Interesting Problem

 Write a method that determines how
much space Is take up by the files in a
directory

* A directory can contain files and
directories

« How many directories does our code have
to examine?

« How would you add up the space taken
up by the files in a single directory

« Hint: don't worry about any sub directories at first

@ Pearson Copyright © 2018 Pearson Education, Inc.

Sample ?irectory Structure

scottm

‘ cs303e AP

ml.txt m2.txt
A.pdtf

AB.pdf
hw

al.htm a2.htm a3.htm a4.htm

@ Pearson Copyright © 2018 Pearson Education, Inc.

0s.path
 We used os.path to check if a path (location

of a file or directory) refers to a file that
exists

 Lots of other useful methods:
 0s.path.isfile(path)
 0s.path.isdir(path)

 0S.path.getsize(path)

« Return the size, in bytes, of path. Raise OSError if the
file does not exist or is inaccessible.

* os.listdir(path="."

« Return a list containing the names of the entries in the
directory given by path.
@ Pearson Copyright © 2018 Pearson Education, Inc.

Implementation

The 5 Levels Of

* Write a function that
given the name of a

LEVEL \HO

SLEVELT No one...

-REAL-lTYg We think

directory returns the size % &
CHASE

Yusuf
“The Chemist”

of the files In that
directory

e ... and if the directory has
directories In it
(subdirectories) return the
size of the files in those
subdirectories BT

LIMBO ,e«
e ... and if those subdirectories * 7N

have subdirectories..
@ Pearson Copyright © 2018 Pearson Education, Inc.

Y/ LEVELS

THE

Arthur

»“The Point Man™

P

?-.
FORTRESS

“The Forger”

DREAMED IT?

WHO
GOES THERE?

Cobb, Arthur,
Ariadne, Eames,
Saito, Yusuf and

Robert Fischer Jr.

Cobb, Arthur,
Ariadne, Eames,
Saito, Yusuf and
Robert Fischer Jr.

Cobb, Arthur,
Ariadne, Eames,
Saito and
Robert Fischer Jr.

Cobb, Ariadne,
Eames, Saito and

Robert Fischer Jr.

Cobb, Ariadné,":‘
Saito, Robert = 3

tFischer Jr'and

Mal’s projection =

WHY ARE
THEY THERE?

To drug Fischer
Jr.and bring
his subconscious
into a dream.

Fisher Jr.is
kidnapped. They
force him to give

them random
numbers which are
used later, and
begin planting the
ideain his head
that his father
wants him to break
up the company.

FischerJr.is
tricked into believ-
ing Browning is a
traitor. He joins
the team for their
next mission.

Fischer Jr. must be
taken to the fort,
where the idea
they wish to
plant will finally
take hold.

To get Fischer Jr.
* and Saito out.

THE KICK

There isn’t one.
The timer
counts down
and the machine
shuts off.

:

Yusuf drives
the van off a
bridge. That
fails. A second
Kick occurs
when the van
hits the water.

B.

Arthur blows
up an elevator,
simulating
freefall.

A,

Eames blows up
the supports of
the fortress,
dropping itand
causing freefall.

.

Ariadne and
Fischer fall off a
building. Cobb
and Saito shoot

themselves.

https://www.cinemablend.com/new/An-Illustrated-Guide-5-Levels-Inception-19643.html

Introduction to Recursion

* Recursive function: a function that
calls itself (with different arguments)

* Recursive function must have a way to
control the number of times it repeats

e Usually involves an i f-else statement
which defines when the function should return
a value and when it should call itself

* Depth of recursion: the number of
times a function calls i1tself

@ Pearson Copyright © 2018 Pearson Education, Inc.

Figure f.o-L

204 Ldlls L0 e message [UnCeuor

The function is first called
from the main function.

The second through sixth
calls are recursive.

First call of the function

Value of times: 5

Second call of the function

Value of times: 4

Third call of the function

Value of times: 3

def main() :
message (5)

def message (x) :
if x == 0:
print (x,
else:
print (x)

'last!')

message(x - 1)

Fourth call of the function

Value of times: 2

Fifth call of the function

Value of times: 1

Sixth call of the function

Value of times: 0

@ Pearson Copyright © 2018 Pearson Education, Inc.

Introduction to Recursion
(cont’d.)

3 Control returns to the point after the recursive function call

Recursive function call def message(times) :
1f times > 0:
print('This is a recursive function.')
p mMessage(times - 1)
e

Control returns here from the recursive call.
There are no more statements to execute
in this function, so the function returns.

@ Pearson Copyright © 2018 Pearson Education, Inc.

Problem Solving with

Recursion

 Recursion is a powerful tool for solving
repetitive problems

e Recursion IS never required to solve
a problem

* Any problem that can be solved recursively
can be solved with a loop

« Recursive algorithms may be less efficient than
iterative ones in the number of computations

 Due to overhead of each function call

@ Pearson Copyright © 2018 Pearson Education, Inc.

Problem Solving with

Recursion (cont’d.)

« Some repetitive problems are more
easlly solved with recursion

e General outline of recursive function:

* If the problem can be solved now without
recursion, solve and return
« Known as the base case
« Otherwise, reduce problem to smaller

problem of the same structure and call the
function again to solve the smaller problem

« Known as the recursive case
@ Pearson Copyright © 2018 Pearson Education, Inc.

Using Recursion to Calculate

the Factorial of a Number

* |n mathematics, the n! notation
represents the factorial of a number n
e Forn=0,nl=1
e Forn>0,n!'=1x2x3x...xNn
* The above definition lends itself to
recursive programming
* n =0 Is the base case

 n> 0 Is the recursive case
« factorial(n) = n x factorial(n-1)

@ Pearson Copyright © 2018 Pearson Education, Inc.

Using Recursion (cont’d.)

The factorial function uses recursion to
calculate the factorial of its argument,
which is assumed to be nonnegative.
def factorial(num):
if num == O0:
return 1
else:
return num * factorial(num - 1)

@ Pearson Copyright © 2018 Pearson Education, Inc.

Figure 12-4 The value of num and the return value during each call of the function

The function is first called . i
from the main function. First call of the function

Walue of num: 4

Return value: 24

The second through fifth
calls are recursive.

Second call of the function

¥

Value of num: 3

Returm value: 6

Yy

Third call of the function

Value of num: 2

Return value: 2

Fourth call of the function

A

Value of num: 1

Return value: 1

—| Fifth call of the function

Value of num: 0

Return value: 1

Using Recursion (cont’d.)

 Since each call to the recursive
function reduces the problem:

« Eventually, it will get to the base case which
does not require recursion, and the recursion
will stop

* Usually the problem is reduced by
making one or more parameters
smaller at each function call

@ Pearson Copyright © 2018 Pearson Education, Inc.

Direct and Indirect Recursion

 Direct recursion: when a function
directly calls itself

 All the examples shown so far were of direct
recursion

* Indirect recursion: when function A
calls function B, which in turn calls
function A
* also known as mutual recursion

@ Pearson Copyright © 2018 Pearson Education, Inc.

Examples of Recursive
Algorithms

« Summing arange of list elements with
recursion
« Function receives a list containing range of
elements to be summed, index of starting item

In the range, and index of ending item In the
range

e Base case:

e 1f start index > end index return O

 Recursive case:

* return current number + sum(list, start+l, end)

@ Pearson Copyright © 2018 Pearson Education, Inc.

Examples of Recursive
Algorithms (cont’d.)

The range sum function returns the sum of a specified

5
range of items in num list. The start parameter
specifies the index of the starting item. The end
parameter specifies the index of the ending item.
def range sum(num list, start, end):

if start > end:

return O
else:

return num list[start] + range sum(num list, start + 1, end)

@ Pearson Copyright © 2018 Pearson Education, Inc.

The Fibonaccl Series

* Fibonacci series: has two base cases
e if n = 0 then Fib(n) = 0
e if n = 1 then Fib(n) =1
e if n > 1 then Fib(n) = Fib(n-1) + Fib(n-2)

* Corresponding function code:

The fib function returns the nth number
in the Fibonacci series.
def fib(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib(n - 1) + fib(n - 2)

@ Pearson Copyright © 2018 Pearson Education, Inc.

Finding the Greatest Common
Divisor

« Calculation of the greatest common divisor (GCD) of
two positive integers

 If x can be evenly divided by y, then

Y gcd(xy) =y
« Otherwise, gcd(x,y) = gcd(y, remainder of x/y)
« Corresponding function code:

The gcd function returns the greatest common
divisor of two numbers.
def gcd(x, y):
if x 8 y ==
return y
else:
return gcd(x, X % V)
@ PeaI‘SOIl Copyright © 2018 Pearson Education, Inc.

The Towers of Hanol

 Mathematical game commonly used to
Illustrate the power of recursion

« Uses three pegs and a set of discs In
decreasing sizes

« Goal of the game: move the discs from
leftmost peg to rightmost peg
* Only one disc can be moved at a time
« A disc cannot be placed on top of a smaller disc

« All discs must be on a peg except while being
moved

@ Pearson Copyright © 2018 Pearson Education, Inc.

The Towers of Hanoi (cont’d.)

Figure 12-5 The pegs and discs in the Tower of Hanoi game

|

= —

@ Pearson Copyright © 2018 Pearson Education, Inc.

Figure 12-6 Steps for moving three pegs

Second move: Move disc 2 to peg 2.

. " .9 (T
ﬂ, & ‘@b TS

Fouwrth move: Move disc 3 1o peg 2.

6 AN B 7 Y rr#ﬁ'____ﬂ_ '.

Sixth move: Move disc 2 1o pag 3.

@ Pearson Copyright © 2018 Pearson Education, Inc.

Seventh move: Move disc 1 to pag 3.

The Towers of Hanoi (cont’d)

« Problem statement: move n discs from
peg 1to peg 3using peg 2as a
temporary peg

 Recursive solution:
* If n ==1: Move disc from peg 1 to peg 3
* Otherwise:
* Move n-1 discs from peg 1 to peg 2, using peg 3
« Move remaining disc from peg 1 to peg 3
* Move n-1 discs from peg 2 to peg 3, using peg 1

@ Pearson Copyright © 2018 Pearson Education, Inc.

The Towers of Hanoi (cont’d.)

The moveDiscs function displays a disc move in
the Towers of Hanol game.

The parameters are:

- num: The number of discs to move.

i from peg: The peg to move from.

to peg: The peg to move to.

- temp peg: The temporary peg.

def move discs(num, from peg, to peg, temp peqg):
if num > O0:
move discs(num - 1, from peg, temp peg, to peqg)
print('Move a disc from peg', from peg, 'to peg’',
move discs(num - 1, temp peg, to peg, from peg)

@ Pearson Copyright © 2018 Pearson Education, Inc.

to_peg)

Recursion versus Looping

« Reasons not to use recursion:

 Less efficient: entails function calling
overhead that is not necessary with a loop

« Usually a solution using a loop is more
evident than a recursive solution

« Some problems are more easily solved
with recursion than with a loop

« Example: Factorial, where the mathematical
definition lends itself to recursion

@ Pearson Copyright © 2018 Pearson Education, Inc.

