
Copyright © 2018 Pearson Education, Inc.

C H A P T E R 12

Recursion

Copyright © 2018 Pearson Education, Inc.

An Interesting Problem

• Write a method that determines how

much space is take up by the files in a

directory

• A directory can contain files and

directories

• How many directories does our code have

to examine?

• How would you add up the space taken

up by the files in a single directory

• Hint: don't worry about any sub directories at first

Copyright © 2018 Pearson Education, Inc.

Sample Directory Structure
scottm

cs303e

m1.txt m2.txt

hw

a1.htm a2.htm a3.htm a4.htm

AP

A.pdf

AB.pdf

Copyright © 2018 Pearson Education, Inc.

os.path
• We used os.path to check if a path (location

of a file or directory) refers to a file that

exists

• Lots of other useful methods:

• os.path.isfile(path)

• os.path.isdir(path)

• os.path.getsize(path)

• Return the size, in bytes, of path. Raise OSError if the

file does not exist or is inaccessible.

• os.listdir(path='.')

• Return a list containing the names of the entries in the

directory given by path.

Copyright © 2018 Pearson Education, Inc.

Implementation

• Write a function that

given the name of a

directory returns the size

of the files in that

directory

• … and if the directory has

directories in it

(subdirectories) return the

size of the files in those

subdirectories

• … and if those subdirectories

have subdirectories…

https://www.cinemablend.com/new/An-Illustrated-Guide-5-Levels-Inception-19643.html

Copyright © 2018 Pearson Education, Inc.

Introduction to Recursion

• Recursive function: a function that

calls itself (with different arguments)

• Recursive function must have a way to

control the number of times it repeats

• Usually involves an if-else statement

which defines when the function should return

a value and when it should call itself

• Depth of recursion: the number of

times a function calls itself

Copyright © 2018 Pearson Education, Inc.

def main():

message(5)

def message(x):

if x == 0:

print(x, 'last!')

else:

print(x)

message(x - 1)

Copyright © 2018 Pearson Education, Inc.

Introduction to Recursion

(cont’d.)

Copyright © 2018 Pearson Education, Inc.

Problem Solving with

Recursion
• Recursion is a powerful tool for solving

repetitive problems

• Recursion is never required to solve

a problem

• Any problem that can be solved recursively

can be solved with a loop

• Recursive algorithms may be less efficient than

iterative ones in the number of computations

• Due to overhead of each function call

Copyright © 2018 Pearson Education, Inc.

Problem Solving with

Recursion (cont’d.)
• Some repetitive problems are more

easily solved with recursion

• General outline of recursive function:

• If the problem can be solved now without

recursion, solve and return

• Known as the base case

• Otherwise, reduce problem to smaller

problem of the same structure and call the

function again to solve the smaller problem

• Known as the recursive case

Copyright © 2018 Pearson Education, Inc.

Using Recursion to Calculate

the Factorial of a Number
• In mathematics, the n! notation

represents the factorial of a number n

• For n = 0, n! = 1

• For n > 0, n! = 1 x 2 x 3 x … x n

• The above definition lends itself to

recursive programming

• n = 0 is the base case

• n > 0 is the recursive case

• factorial(n) = n x factorial(n-1)

Copyright © 2018 Pearson Education, Inc.

Using Recursion (cont’d.)

Copyright © 2018 Pearson Education, Inc.

Copyright © 2018 Pearson Education, Inc.

Using Recursion (cont’d.)

• Since each call to the recursive

function reduces the problem:

• Eventually, it will get to the base case which

does not require recursion, and the recursion

will stop

• Usually the problem is reduced by

making one or more parameters

smaller at each function call

Copyright © 2018 Pearson Education, Inc.

Direct and Indirect Recursion

• Direct recursion: when a function

directly calls itself

• All the examples shown so far were of direct

recursion

• Indirect recursion: when function A

calls function B, which in turn calls

function A

• also known as mutual recursion

Copyright © 2018 Pearson Education, Inc.

Examples of Recursive

Algorithms
• Summing a range of list elements with

recursion

• Function receives a list containing range of

elements to be summed, index of starting item

in the range, and index of ending item in the

range

• Base case:

•if start index > end index return 0

• Recursive case:
• return current_number + sum(list, start+1, end)

Copyright © 2018 Pearson Education, Inc.

Examples of Recursive

Algorithms (cont’d.)

Copyright © 2018 Pearson Education, Inc.

The Fibonacci Series

• Fibonacci series: has two base cases
• if n = 0 then Fib(n) = 0

• if n = 1 then Fib(n) = 1

• if n > 1 then Fib(n) = Fib(n-1) + Fib(n-2)

• Corresponding function code:

Copyright © 2018 Pearson Education, Inc.

Finding the Greatest Common

Divisor
• Calculation of the greatest common divisor (GCD) of

two positive integers

• If x can be evenly divided by y, then

• gcd(x,y) = y

• Otherwise, gcd(x,y) = gcd(y, remainder of x/y)

• Corresponding function code:

Copyright © 2018 Pearson Education, Inc.

The Towers of Hanoi

• Mathematical game commonly used to

illustrate the power of recursion

• Uses three pegs and a set of discs in

decreasing sizes

• Goal of the game: move the discs from

leftmost peg to rightmost peg

• Only one disc can be moved at a time

• A disc cannot be placed on top of a smaller disc

• All discs must be on a peg except while being

moved

Copyright © 2018 Pearson Education, Inc.

The Towers of Hanoi (cont’d.)

Copyright © 2018 Pearson Education, Inc.

Copyright © 2018 Pearson Education, Inc.

The Towers of Hanoi (cont’d)

• Problem statement: move n discs from

peg 1 to peg 3 using peg 2 as a

temporary peg

• Recursive solution:

• If n == 1: Move disc from peg 1 to peg 3

• Otherwise:

• Move n-1 discs from peg 1 to peg 2, using peg 3

• Move remaining disc from peg 1 to peg 3

• Move n-1 discs from peg 2 to peg 3, using peg 1

Copyright © 2018 Pearson Education, Inc.

The Towers of Hanoi (cont’d.)

Copyright © 2018 Pearson Education, Inc.

Recursion versus Looping

• Reasons not to use recursion:

• Less efficient: entails function calling

overhead that is not necessary with a loop

• Usually a solution using a loop is more

evident than a recursive solution

• Some problems are more easily solved

with recursion than with a loop

• Example: Factorial, where the mathematical

definition lends itself to recursion

