
CS303E Slideset 3: 1 Conditionals and Boolean Logic

CS303E: Elements of Computers and Programming
Conditionals and Boolean Logic

Mike Scott
Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: May 31, 2023

CS303E Slideset 3: 2 Conditionals and Boolean Logic

Booleans

So far been considering straight line code, meaning
executing one statement after another.

a.k.a

But often in programming, you need to ask a question, and do
different things based on the answer.

Boolean values are a useful
way to refer to the answer to a
yes/no question.

The Boolean literal values are
the values: True, False.
A Boolean expression
evaluates to a Boolean value.

CS303E Slideset 3: 3 Conditionals and Boolean Logic

Using Booleans

>>> import math
>>> b = (30. 0 < mat h. s qr t (1024))
>>> p r i n t (b)
True

s ta tement
boolean expres s i on

>>> x = 1
>>> x < 0
F a l s e
>>> x >= - 2 # boolean expres s i on
True
>>> b = (x == 0) # s ta tement c on ta i n i n g

boolean expres s i on
>>> pr i nt (b)
F a l s e

Booleans are implemented in the bool class.

CS303E Slideset 3: 4 Conditionals and Boolean Logic

Booleans

Internally, Python uses 0 to represent False and anything not 0 to
represent True. You can convert from Boolean to int using the
in t function and from in t to Boolean using the bool function.

CS303E Slideset 3: 5 Conditionals and Boolean Logic

Boolean Context

In a Boolean context one that expects a Boolean value False,
0, " " (the empty string), and Noneall is considered False and
any other value is considered True.
>>> bool (" xyz ")
True
>>> bool (0 . 0)
F a l s e
>>> b o o l (" ")
F a l s e
>>> i f 4 : p r i n t (" xyz ") # boolean c o n t e x t
xyz
>>> i f 4. 2: pr i nt (" xyz ")
xyz
>>> i f " ab" : pr i nt (" xyz ")
xyz

This may be confusion but can be very useful in some programming situations.

CS303E Slideset 3: 6 Conditionals and Boolean Logic

Comparison Operators

The following comparison (or relational) operators are
useful for comparing numeric values:

Operator Meaning Example
< Less than x < 0
<= Less than or equal x <= 0
> Greater than x > 0
>= Greater than or equal x >= 0
== Equal to x == 0

!= Not equal to x != 0

Each of these returns a Boolean value, True or False.

What happened
on that last line?

CS303E Slideset 3: 7 Conditionals and Boolean Logic

Caution

Be very careful using == when comparing floats, because float
arithmetic is approximate.

What happene d?
>>> (1 . 1 * 3 == 3 . 3)
F a l s e
>>> 1 . 1 * 3
3 . 3000000000000003

The problem: converting decimal 1.1 to binary yields a repeating binary
expansion: 1.000110011 . . . = 1.00011. That means it be
represented exactly in a fixed size binary representation.

Thought for the day. Some rational numbers are repeating
10 = 0.13

CS303E Slideset 3: 8 Conditionals and Boolean Logic

One Way If Statements

often useful to be able to perform an action only if some
conditions is true.

General form:
i f boolean-expression:

statement(s)
Note the colon after the
boolean-expression.
All of the statements
controlled by the if must
be indented the same
amount.

i f y ! = 0 :
z = (x / y)

CS303E Slideset 3: 9 Conditionals and Boolean Logic

If Statement Example
In file if_example.py:

Would i f x : have worked instead of i f (x ! = 0) :

CS303E Slideset 3: 10 Conditionals and Boolean Logic

Two-way If-else Statements

A two-way If-else statement executes one of two actions,
depending on the value of a Boolean expression.

General form:
i f boolean-expression:

true-case-statement(s)
e l s e :

false-case-statement(s)

Note the colons after the boolean-expression and after the else.
All of the statements in both if and else branches should be
indented the same amount.

CS303E Slideset 3: 11 Conditionals and Boolean Logic

If-else Statement: Example

In file compute_circle_area.py:

CS303E Slideset 3: 12 Conditionals and Boolean Logic

Multiway if-elif-else Statements

If you have multiple options, you can use if-elif-else statements.

General Form:

i f boolean-expression1:
statement(s)

e l i f boolean-expression2:
statement(s)

e l i f boolean-expression3:
. . .

e l s e : # optional
statement(s)

You can have any number of e l i f branches with their conditions.
The else branch is optional.

CS303E Slideset 3: 13 Conditionals and Boolean Logic

Sample Program: Calculate US Federal Income Tax

Simplified US
Federal Income Tax
Table

Source:
https://www.nerdwa
llet.com/article/taxes
/federal-income-tax-
brackets

CS303E Slideset 3: 14 Conditionals and Boolean Logic

income_tax.py

CS303E Slideset 3: 15 Conditionals and Boolean Logic

Break

Maybe take a break?

CS303E Slideset 3: 16 Conditionals and Boolean Logic

Logical Operators

Python has logical operators (and, or, not) that can be used to
make compound Boolean expressions.

not : logical negation
and : logical conjunction

or : logical disjunction

Operators and and or are always evaluated using short circuit
evaluation.

(x % 100 == 0) and not (x % 400 == 0)

CS303E Slideset 3: 17 Conditionals and Boolean Logic

Truth Tables

And: (A and B) is True
whenever both A is True and B is
True.

A B A and B
False False False
False True False
True False False

True True True

Or: (A or B) is True whenever
either A is True or B is True.

A B A or B
False False False
False True True
True False True

True True True

Not: not A
is True whenever A is False.

A not A
False True
True False

Remember that really
means not False, the empty

string, 0, or

CS303E Slideset 3: 18 Conditionals and Boolean Logic

Short Circuit Evaluation

Notice that (A and B) is False, if A is False; it matter what B is.
So no need to evaluate B, if A is False!

Also, (A or B) is True, if A is True; it matter what B is.
So no need to evaluate B, if A is True!

>>> x = 13
>>> y = 0
>>> l egal = (y == 0 or x / y > 0)
>>> p r i n t (l e g a l)
True

Python evaluate B if evaluating A is sufficient to determine
the value of the expression. important sometimes.
This is called short circuiting the evaluation.
Stopping early when answer it know.

CS303E Slideset 3: 19 Conditionals and Boolean Logic

Boolean Operators

In a Boolean context, Python always return True or False,
just something equivalent. going on in the following?

e q u i v a l e n t to F a l s e

c oerced to F a l s e

e q u i v a l e n t to F a l s e

c oerced to F a l s e
same as n o t (F a l s e)

same as n o t (True)

e q u i v a l e n t to F a l s e
same as F a l s e or True
e q u i v a l e n t to True
c oerced to True

>>> " " and 14

>>> b o o l (" " and 1 4)
F a l s e
>>> 0 and " abc "
0
>>> bool (0 and " abc ")
F a l s e
>>> not (0 . 0)
True
>>> not (1 00 0)
F a l s e
>>> 14 and " "

>>> 0 or " abc "
abc

>>> bool (0 or abc)
True

CS303E Slideset 3: 20 Conditionals and Boolean Logic

Leap Years

a concise way to do a Leap Year computation:

Note the use of outer parenthesis on the assignment to is_leap_year
to avoid the use of the continuation character, "\".

CS303E Slideset 3: 21 Conditionals and Boolean Logic

Leap Years Revisited

>pyt hon LeapYe ar 2 . py
Enter a y e a r : 2000
Year 2000 i s a leap y e a r.
>pyt hon LeapYe ar 2 . py
Enter a y e a r : 1900
Year 1900 i s not a l eap y e a r.
>pyt hon LeapYe ar 2 . py
Enter a y e a r : 2004
Year 2004 i s a leap y e a r.
>pyt hon LeapYe ar 2 . py
Enter a y e a r : 2005
Year 2005 i s not a l eap y e a r.

CS303E Slideset 3: 22 Conditionals and Boolean Logic

Conditional Expressions

A Python conditional expression returns one of two values based
on a condition.

Consider the following code:

S et p a r i t y according to num
i f (num% 2 == 0) :

par i t y = " even"
e l s e :

par i t y = " odd"

This sets variable parity to one of two values, or

An alternative is:

par i t y = " e ve n" i f (num % 2 == 0) e l s e " odd"

CS303E Slideset 3: 23 Conditionals and Boolean Logic

Conditional Expression

General form:

expr-1 i f boolean-expr else expr-2

It means to return expr-1 if boolean-expr evaluates to True,
and to return expr-2 otherwise.

f i nd maximum of x and y
max = x i f (x >= y) el s e y

CS303E Slideset 3: 24 Conditionals and Boolean Logic

Conditional Expression

Use of conditional expressions can simplify your code.

In file test_sort.py:

CS303E Slideset 3: 25 Conditionals and Boolean Logic

Operator Precedence

Arithmetic expressions in Python attempt to match widely
used mathematical rules of precedence. Thus,

3 + 4 * (5 + 2)

is interpreted as representing:

(3 + (4 * (5 + 2))) .

That is, we perform the operation within parenthesis first, then the
multiplication, and finally the addition.

To make this happen we precedence rules are enforced.

CS303E Slideset 3: 26 Conditionals and Boolean Logic

Precedence

The following are the precedence rules for Python, with items
higher in the chart having higher precedence.

Operator
+ , -

Meaning
Unary plus, minus, like - 3, +12

* *
not
* , / , / / , %

+ , -
< , <=, > , >=
==, ! =
and
or

Exponentiation
logical negation
Multiplication, division,
integer division, modulus
Binary plus, minus
Comparison
Equal, not equal
Conjunction
Disjunction

CS303E Slideset 3: 27 Conditionals and Boolean Logic

Precedence Examples

and 3 - 10 < 0

>>> - 3 * 4
-12
>>> - 3 + - 4
- 7
>>> 3 + 2 * * 4
19
>>> 4 + 6 < 11
True
>>> 4 < 5 <= 17 # n o t i c e s p e c i a l syntax

t h i s s ur pr i s e d me!

True
>>> 4 + 5 < 2 + 7
F a l s e
>>> 4 + (5 < 2) + 7
11

Most of the time, the precedence follows what you would expect.
CS303E Slideset 3: 28 Conditionals and Boolean Logic

Precedence

Operators on the same line have equal precedence.

Operator
+ , -

Meaning
Binary plus, minus

* , / , / / , % Multiplication, division,
integer division, remainder

Evaluate them left to right.

All binary operators are left associative. Example: x + y - z + w
means ((x + y) - z) + w.

Note that assignment is right associative.

x = y = z = 1 # a ss i gn z f i r s t

CS303E Slideset 3: 29 Conditionals and Boolean Logic

Use Parentheses to Override Precedence

Use parenthesis to override precedence or to
make the evaluation clearer.

an e x p r e s s i o n

what prec edence w i l l do

o v e r r i d e prec edenc e

not p a r t i c u l a r l y c l e a r

b e t t e r

>>> 10 - 8 + 5
7
>>> (10 - 8) + 5
7
>>> 10 - (8 + 5)
- 3
>>> 5 - 3 * 4 / 2
- 1 . 0
>>> 5 - ((3 * 4) / 2)
- 1 . 0

Work to make your code easy to read!

